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| Residual stresses were measured on sections cut from steel specimens after plastic
extension and after plastic compression, using the inclined incident X-ray beam procedure.
Computations based on the conventional assumption of a zero surface-normal stress com-
ponent were compared with those based on a recently suggested method of allowing for

some contribution of the normal component.
axial residual stress opposite in sign to the preceding deforming stress.

The conventional calculations indicated an
The more recent

method is said not to do so after compression but was inconclusive in this experiment because

ot lack of preecision arising from microfluctuations of stress about the average.
except perhaps as to sign, of extending the stress values

cast, moreover, on the validity,

Doubt was

measured on sections eut from a specimen to the residual stress system existing within the

specimen before sectioning.

1. Introduction

The calculation of stresses from crystal lattice
strains (»\N\l\(‘(l in pol\(l\\tallmo mefal specimens
by means of X-ray difiraction is a long established
procedure [1,2].1 The change in the Bmgg angle of
diffraction is a measure of the change in spacing
between layers of atoms in the metal crystals,
hence a strain, from which certain calculations of
stress in the material may be made in the licht of
rarious  assumptions concerning the stress-strain
relationship.  This method of stress measurement
is of particular interest in those cases where no
external force is acting on the body. These instances
of internal or residual stresses arise, generally
speaking, from some type of inhomogeneity or
anisotropy in the metal specimen or in its history
of thermal or mechanical treatment.

The change in the peak position of a diffraction
line indicates a mnonzero average strain in the
crystalline material in which the diffraction takes
place [3]. If the state of stress is constant over an
extended region of the specimen, with the forces
involved balanced by opposing system forces in
another region, the stresses are called body stresses
or macrostresses. If, on the other hand, the stresses
are balanced locally, between neighboring crystallite
grains or from one part of a grain to another part
within the grain, the stresses are known as micro-
stresses or textural stresses. Not only do the macro-
stresses result in a shift of the X-ray line peak
position, but so also do the microstresses under the
proper conditions. It is true in the latter case that
the average stress in the volume illuminated by the
incident X-rays may well be zero, but the diffraction
peak position is not the result of the state of the
entire volume, nor is it a random statistical sampling
of it. It is, on the contrary, a very specialized

I Figures in brackets indicate the literature references at the end of this paper.
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dependent upon the ecrystalline phase,

sampling, s
and the

the degree of perfection of the material,
orientation of the crystallites. If any of these
factors bears a relation to the state of stress, the
microstress will result in a shift of peak p(mli()n
and not merely in line broadening, which is some-
times mistakenly considered to be the only result
of this type of stress.

In this laboratory a few years ago a procedure of
X-ray stress measurements on s(‘(tl()nb cut from a
uniformly uniaxially plastically deformed material
was omplm ed to demonstrate that the sign of the
stress in the interior of the deformed specimen was
the same as had been reported on the exterior sur-
face [4]. The residual stress system, therefore, was
not a body stress system but a textural stress, or
microstress system that had the diffraction angle
shift characteristic of a body stress, or macrostress
system. This coneclusion has been supported by
recent work by M. J. Donachie and J. T. Norton [5],
with a different X-ray procedure, not involving
sectioning. A procedure involving diffraction from
the surfaces of sections has been employed by D. M.
Vasil’ev [6, 7], along with a new assumption as to
X-ray penetration and stress relaxation normal to a
surface, with somewhat surprising results that will
be discussed later in this paper.

The usual formula for the calculation of a residual
stress (or an applied stress), o, in a particular direc-
tion, ¢, with respect to some arbitrary direction in a
surface is [8]

_E 1 dy—d, (1)
T4y sint Yy dy '

where /£ is Young’s modulus, » is Poisson’s ratio, ¥
is the angle between the normal to the surface and
the normal to the crystal planes whose spacing is dy,

101



obtained by inclining the incident X-ray beam to the
surface, and d, is the spacing of crystal planes dif-
fracting when the X-ray beam is incident normal to
the Slllfd(() (Strictly speaking, d, should be the
spacing between planes parallel to the surface of the
specimen.) The usual polycrystalline gross mechani-

al values of /£ and » are custom(ml\' used. There
are some assumptions made in the derivation of this
formula; the most basic, perhaps, is that the dif-
fracting material is obeying the usual laws of elas-
ticity for an isotropic, homogeneous medium. There
are certain checks that can be made on this assump-
tion, which will be discussed later.

Another set of two assumptions has to do with
the relaxation of stress components at a surface of
the diffracting material. At the very surface, of
course, the normal component is zero; and it is
usually assumed that the depth of effective pene-
tration of the X-rays is so slight (less than a thou-
sandth of an inch in the case of iron diffracting cobalt
radiation, according to G. B. Greenough [1]) that
the normal component may be assumed to be zero
in the X-ray diffraction stress measurements. The
stress components lying in the plane of the surface,
on the other hand, are assumed to be totally un-
affected by the presence of the surface, in so far as
the X-ray diffraction measurements are concerned.
This is perhaps an irrelevant point when considering
the stress system on the original surface of a speci-
men; but the assumption is likewise made when the
surface is a section cut from the specimen, and it
should be recognized as such.

If, for an element of volume in the interior of the
deformed specimen as in figure 1, we write the
Hooke’s Law relationship for one of the principal
strains, such as ¢, resulting from the residual
principal stresses o, g5, and o3, we have

1
6= B [oy —v(oxta3)]. (2)
If a surface is cut normal to ¢;, and hence parallel to
o, and o3 (in this example a cross section), the princi-
pal stress normal to the surface will be modified by a
factor ky and the principal stresses lying in the plane
of the surface will be modified by a factor ks in that
shallow layer of material in which the effective X-ray
diffraction takes place. Inamannersimilartoeq (1),
we may then write for the principal strain normal to
the surface

(%)

1
EIA':E [kA\'O'l—V(kso';g%—]st'g)l (3:1)

and for the principal strains parallel to the surface

[kesoo—v(kyoy+ksas)] (3b)

1
ST g
and

f:;szj];j lksos—v(kyoy+-ksas)]. (3¢)
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The relaxation factors ky and ks must lie between

0 and -+1 for obvious physical reasons. They are
conventionally taken to be
kx=0 and ks=1,
whence eqs 3a, b, and ¢ become
— ‘
613\':*[;;‘ [02+U;;] (tgd)
1 .
€285 75 [o2—vas] (3e)
1 .
E‘;gw]’w [0'3 VU_;J. (Jf)

Another assumption usually made (and implied
in fig. 1) but seldom stated is that the directions of
the residual principal stresses, o;, o2, and o3 are
directly related to the geometry of the specimen and
its mechanical history. That i1s to say, that after
a uniform, uniaxial deformation of a specimen of
circular cross section, as, for example, the plastic
extension for a few percent of a standard tensile
specimen, o, will be axial and o will equal o, lying
in a plane normal to o;. If the deformation is truly
uniform and if the polycrystalline aggregate is made
up of a random distribution of many small crystallites
so that the effects of anisotropy may be well aver-
aged out, this assumption is no doubt quite valid.

Fraure 1. Principal residual stresses in a uniazially plastically

deformed test specimen.



Hence eq (3d) becomes

—2v
€EINT I‘J - 02 (421)
and (3e) and (3f) become
€25 ] ;V' 2. (4b)

The new assumption made by D. M. Vasil’ev,
briefly mentioned above, was that the penetrating
power of the X-ray beam in the metal specimens was
sufficiently great that the stress component normal
to the surface was not reduced to zero, and the
surface parallel components, as above, were un-
affected; that is, eq (3) became

0<ky<1 and ks=1, (5)

where ky may be determined from more measure-
ments of strain made on the original surface and on
a surface cut at right angles to the first, as indicated
in the following analysis. If we use superscripts ¢/
and L to denote cross and longitudinal sections and
subscripts 1 and 2 to denote axial and transverse
directions as above and in figure 2, we have from
Hooke’s Law a set of four equations. For the
principal strains normal to and parallel to the cross
section, we have

.1 .
ef;\-zﬁ [fexo1—2v0s)], (6a)

| .
6;(33:7{? [oo(1—v)—vkyay]; (6b)

and for the principal strains normal to and parallel
to the longitudinal section,

1 .
eéﬂy—E [oo(lby—v)—vay], (6¢)
1.
ffs:E ldl'Vaz(/lﬁv‘i‘l)}- (Gd)

[Notice that the surface strain component es in the
longitudinal section is to be measured in the axial
plane.]

From these equations Vasil’ev derived the follow-
ing expressions: ky is found to be

7 — (EélN——eﬁ\')_Vr(ggSAG{‘S) , (7)
: —v(efy—ely) + (55— ef's)

and the equations for the principal stresses are

—F ; ;
o= (ﬁ-ﬁy)r(wj/(,‘z) [eby—elst+k(efy—eSs)]  (8a)
—E (L L (@ (¢! |
2= (1+v) (1—k?) [k (v — €fs) +efy— €3] (8b)

( \
'
AN

Fraure 2. Sections, wilth surface stresses, cul from deformed
test specimen.

Vasil’ev  found, wusing various combinations of
X-radiation and diffracting material, that ky varied
from 0.3 to 0.7. He also found, after preliminary
extension of the specimen, the residual stresses were

01<0’g<() (921)
and after preliminary compression
O'Q<0'1<(). (9[))

In this latter case, to have the axial residual stress
negative after preliminary compression is contrary
to the usual observation [9].

In the technique for determining residual stress
by the two-exposure method, the strain normal to
the surface and the strain at some inclined angle v,
usually 45 deg, rather than at 90 deg, lying in the
surface, are usually measured. It is possible to mod-
ily eqs (7) and (8) for this procedure. Using these
equations and a typical residual stress system such
as one previously found in iron with cobalt radia-
tion [4], one may calculate the precision with which
the lattice spacing must be determined to dis-
tinguish between a value of /y of zero and a value,
for example, of 0.4. It appears that changes in the
fourth decimal place of the d-value are critical; and
it can be shown that changes in the 26 diffraction
angle of about 0.03°, therefore, must be detectable.
Since the change in the 20 angle can, under favorable
circumstances, be measured with a precision of
+0.02°, it appeared that a check of a typical ky
value might be possible. This was to be the princi-
pal objective of the present study.
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In addition to the attempt to find a value of the
surface normal stress relaxation constant, there was
a_desire in this study to investigate carefully after a
plastic compression the sign of the axial component
of residual stress, which we had previously found to
be positive [4, 9], in contradistinction to Vasil’ev’s
result. It was hoped, moreover, with the means at
hand for a greater precision of measurement of
diffraction anvlos that a more critical study would
be made of the ralidity of extension of the stress

values measured on sections cut from the Specunen
to the stress system existing within the specimen
before sectioning.

2. Experimental Material and Procedure

The precision of the X-ray method of stress
measurement is improved if the diffracting material
has grains sufficiently small (about 0.05 mm or
somewhat less in diameter) to eive reasonably smooth
powder diffraction lines, and if the combination of
lattice constant and characteristic X-ray wavelength
is such as to give a large diffraction angle, preferably
a 20 over 150 deg. A material satisfying these
conditions and having some commercial importance
was found to be 4130 steel. In addition to iron, the
material contained the following constituents, in
percent:

C—0:28 S1—0.26 Cu—0.10
Cr— .92 Mo— .20 S— 013
Mn— .50 Ni— .10 P— .006

A sample of the “as received” bar stock probably
in the hot-worked condition, was given a 1 hr
annealing treatment at 1,,)0()0 F.  Diffraction pat-
terns from this material showed continuous Debye-
Scherrer rings with partial resolution of the ka;—«,
doublet both with Co and Cr X-radiation. Another
prerequisite of the material is that it exhibits a
measurable residual stress system giving a detecti-
ble line-shift after a degree of plastic deformation
less than that which might lead to excessive line
broadening that results from severe fragmentation
or random microstresses. This requirement was
found also to be met reasonably well by the 4130
steel.

Tensile testing specimens, with a reduced diameter
of 0.505 in. and a gage length of 2 in., and compressive
testing specimens, right circular eylinders, of 0.505
in. diam and 1 in. length, were prepared from the
bar stock material and annealed as specified above.
The plastic deformation first employed was 10 per-
cent, but this was found to give excessive broadening
of the diffraction lines. A plastic deformation of
3 percent was then tried and found to be satisfactory.
The yield points of the specimens were found to be in
the neighborhood of 70<X10° psi, and the stresses
producing 3 percent permanent deformation were
about 82>(10? psi.

After the test specimens had been deformed,
three different diffraction specimens were cut from
ach, as in figure 2, so that the residual interior

stress system could be investigated on three different
sections: (1) a cross section, (2) a longitudinal
section, and (3) a 45° inclined section. These
specimens were mounted in Bakelite with the ap-
propriate section surface exposed, mechanically
polished, and finally electropolished in several
stages with intervening inspections by X-ray dif-
fraction photographs until no surface distortion
that might have resulted from specimen preparation
remained. Attempts were initially made to study
the residual stress from photographically recorded
patterns of the diffracted X-rays, with the incident
beam normal and inclined to the surface of the speci-
men. Although changes in the Bragg angle could
be observed and residual stresses could be c: alculated,
it was found that the breadth and diffuseness of the
lines, or rings, on the films were such that the pre-
cision was very low, and nowhere near that men-
tioned above as belno necessary in this study.

The precision can be significantly 11111)10\0(1 in
many cases by means of a point by point X-ray
intensity counting procedure with a diffractometer,
in which case the diffraction pattern is detected not
with a photographic film but with an electronic
device, in this case a proportional counter.

Before the standard commercial instrument can
be used for the inclined incidence method of X-ray
stress measurement, two modifications are necessary:
(1) the specimen holder must be free to change the
angle of incidence of the X-ray beam upon its surface,
independently of the position of the counter, and (2)
the receiving slit for the diffracted beam entering the
counter must be moved forward because of the
change in focusing conditions. The first modifica-
tion is not too difficult to make with the aid of a new
specimen mount. The second modification would
present much greater difficulty if the ideal arrange-
ment of continuously variable and accurately radial
positioning of the slit were attempted. Fortunately
it was possible to use a permanent compromise
forward position of the slit, as described by B. D.
Cullity [10].  The compromise may introduce a small
additional increment in the Brage angle change, but
it may be corrected by means of observations from a
standard, well-annealed specimen that is very nearly
stress-free.

The X-ray intensities, measured at small intervals
of 26 across the peak of an X-ray diffraction line,
were used to locate the peak position in the fashion
described in the SAE Information Report, TR-182
“Measurement of Stress by X-ray,” edited by A. L.
Christenson [11].  This involved first finding the
approximate peak position, then measuring with high
precision the X-ray intensity at three points strad-
dling the p(‘al\ and at least SO percent up from back-
oround. This choice of points minimizes the effects
of poor resolution of the ka;—a, doublet. The inten-
sity values obtained at the three points, which were
set usually 0.10° apart with a precision of about
+0.002°, are then corrected for the Lorentz and
polarization factors and for the absorption effect
and finally put into a formula to yield the axis
position of a parabola that passes through the three
given points. The intricacies of this procedure

104



make it difficult to calculate the expected precision
with which the resulting Brage angle 1s finally known;
but in cases where a measurement was repeated, a
reproducibility of 0.02° or better was usually
observed.

The coeflicient of thermal expansion of iron is
approximately 11X10-9°C. It is apparent that
large changes of temperature of the specimen must be
avoided when small changes of Bragg angle are to be
detected in the study of residual stress. In this case,
the temperature of the specimen holder was con-
stantly monitored. After the diffraction equipment
had approximately reached thermal equilibrium, it
was possible by controlling the temperature of the
room to keep the specimen holder to within about
half a degree of 25 °C.  Hence, any thermal expan-
sion error was negligible.

The instrumental variables of the X-ray equipment
were carefully kept constant during the use of each of
two different characteristic radiations, from targets
of cobalt and chromium. Both the voltage and cur-
rent of the X-ray tube were closely regulated. The
counting response of the proportional counter was
visually monitored on a strip chart recorder in order
to reject any preset count interval that included
spurious ‘“‘noise”” counts. This source of error in
intensity measurements was further reduced by
using the average value of three or more intervals.
With cobalt radiation the individual counting inter-
vals were for 40,000 counts, yielding an intensity
precision of the order of 0.5 percent; with chromium
adiation, since a more intense beam was available,
the intervals were for 100,000 counts, with precision
of about 0.3 percent.

3. Results

Equation (1) can be written in terms of the change
in strain observed normal to a surface, ey, and the
strain parallel to the surface, eg, as

E
U¢"

= )
11y (10)

(fs — é_\'\) 5

The strain, moreover, can be written in terms of the
change in Brage angle:

(/,-;(/A.}*—(‘Otiﬁ

==
(/A 2

where the subscript A refers to a well-annealed
specimen and 7 indicates the quantity pertaining to
a strained state. Henece, the stress in the surface
becomes

E  cot 6

0’¢:1 +V' Ty l(201“\'_20‘1..\')_(201‘.S—‘20.1,.s')]
E  cot 6
:]*_{:; . ) [ (20\_ 203) i (Qoy— 20g) A J (l 2)
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Now ordinarily the last term,
(20\"20g)\:0;

but using the compromise position of the receiving
slit on the diffractometer may cause the appearance
of a small nonnegligible spurious difference here, which
is the correction needed for the change ol focusing
conditions [10].  With cobalt radiation, this differ-
ence was vanishingly small; with chromium radiation
it was 0.06°.  Since the angular measurements are
made in degrees, there is a further factor in the
expressions to convert from degrees to radians, which
1s 0.01745 radians per degree. When all of the
constants are put into the equations, we have in the
case of cobalt radiation

oo = (3.37 X10* psi/deg) (20 —205], (13a)
for the (310) diffraction, which occurs with a 26 equal
approximately 161°; and in the case ol chromium
radiation, we have

0o=(4.334 X 10* psi/dee)[ (2605 —20s) —0.06], (13b)
for the (211) diffraction, which occurs with a 20 near
156°.  In a similar fashion, it is possible to replace
the differences of strains in Vasil’ev’s eqs (Sa) and
(8b) with differences in diffraction angles.

All of these equations call for the strain or the
diffraction angle measured parallel to the surface,
which, of course, it is physically impossible to obtain
directly; however, a value can be obtained by ex-
trapolation. The diffraction angle is measured at
several values of ¢, the angle between the normal to
the diffracting planes and the normal to the surface
of the X-ray specimen, as shown in ficure 3. The

b =
Ng
\% N
1 3
—~ — 71"
7
2// /

Ficure 3. Typical longitudinal section.
Ns: Normal to surface
Na: Normal to diffracting planes
¢: Azimuth angle
¢: Co-altitude or inclination angle



diffraction angle is found to be a linear function of
the square of the sine of ¢, which is in itself an
indication that the X-ray diffraction effects are
related to a stress system obeying the usual laws of
elasticity for a homogeneous isotropic medium.
Then, using a least root mean square error procedure,
one obtains best values of 260 for ¢ equal zero and ¥
equal 90 deg.

It does not seem necessary to present all of the
detailed data in this report, but four samples are
presented in the accompanying table 1 and figures
4 to 7, consisting of the 26 values versus sin * ¥ with
cobalt and chromium ke radiation for the annealed
specimen and the cross section of the tensile speci-
men. The precision of the individual values of
26 is about -£0.02°. The scatter, which will be
discussed later, is considerably greater than this,
about +0.08° with Co radiation. Therefore, the
precision of the best fit extrapolated values of 26
is somewhat questionable. One might estimate
an intermediate value for it, of the order of 4 0.05°.

TaBLE 1. Examples of diffraction angle, 20, as a function of

plane normal inclination ¥

Cobalt radiation Chromium radiation
v° | Sin?y |26°(Ann)[26°(C-S)|| ¢° | Sin?y ’ 26° (Anm) | 26° (C-S)
0 0. 0000 161. 25 161. 71 0 0. 0000 156. 08 156. 36
25 . 1786 161. 24 161. 48 10 L0302 oo 156. 30
45 . 5000 161. 24 161. 46 20 L1170 156. 04 156. 22
60 . 7500 161. 25 161. 29 30 . 2500 156. 04 156. 16
40 L4132 156. 04 156. 08
50 . 5868 156. 03 156. 01
Best fit extrapolated values
0 0.0000 | Average 161.66 ‘ 0 0. 0000 156. 06 156. 32
90 1. 0000 161. 24 161.18 ‘ 90 1.0000 | 156.00 155.76
|
161.6 T T T T
161.4 -
26
161.2 T v e N
161.0 | | 1 |
Y 2 4 .6 .8 1.0
SIN?y

Freure 4. Diffraction angle, 26, versus sin®  for annealed
specimen, Co ko, radiation.

26 161.4

161.2

161.0 L L L L
0 2 .4 .6 .8 1.0
SINZ2y

Ficure 5. Diffraction angle, 20, versus sin® ¢ for cross section
of tensile specimen, Co ko, radiation.

156.4 T T T T
156.2 | 4
26 I56.0h~v_\
155.8 | 4
-
155.6 I ] I !
0 2 4 6 .8 1.0
SIN2y
Fraure 6. Diffraction angle, 26, versus sin ¢ for annealed
specimen, Cr ka; radiation.
156.4 S T T T T
156.2
26 156.0

155.8

15/5.6 Il 1 4 1

0 2 4 .6 .8 1.0
SIN?y

Ficure 7. Diffraction angle, 20, versus sin? & for cross seclion
of tensile specimen, Cr ke, radiation.

A summary of the “best fit”” extrapolated values
of the diffraction angles and the lattice strains
measured on the eight specimens with the two
radiations is presented in table 2. The precision
of the diffraction angles is thought to be about
+0.02 of a degree, although that of the extrapolated
ralues given in table 2 is perhaps not this good.
The precision of the strain values in this table is
estimated to be about 41 > 10~%
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TasrLe 2.  Extrapolated diffraction angles and lattice strains

—
Specimen y° Cobalt radiation | Chromium radia-
tion
20° | «(X10-9) | 20° | (ex10-1)
. 0| 16124 | .. 156.06 |
Annealed......_.._.. { 90 | 16124 | 156,00 |
[ 0] 16166 —6.0 | 156.32*| —4.8| &
Tensile C-S_ . ___________ 1CN
Loo|tenis|  vo|wsme| 42| Sy
0| 161.08 2.4 | 156.01 L0 ||
Tensile L-S______________ iN
90 | 161.74 —7.2 | 156.18 —3.4 | g
016147 | —32|186.12| ~—10| oy
e 90 | 161.81 —8.2 | 156.46 | —10.0 |
. . o o 645S
{ 0| 160.83 5.9 | 155.91 2.9 | Sy
Compr. C-S___ 5
90 | 16127 | —0.4 | 156.11 | —2.1| g
{ 0| 161.49 —3.5 | 156.19 -2.3 | gy
Compr. IL-S . __ |
90 | 161. 52 10.4 | 155.82 5.3 as
i [ 016022 0.3 [ 156.15 | —16| egon
Compr. 45°-S_____________
| 90| 16207 | —119| 15617 —3.3 | g

C-8: Cross section.

L-S: Longitudinal section.

45°-S: 45° section.

*These differ from values in table 1 because more data included in an average

In table 3 are tabulated the extrapolated values
of the diffraction angles and residual stresses in the
plane of the surfaces of the three sections of the
tensile specimen, measured at three different azi-
muths, ¢, in each plane (see fig. 3). The radia-
tion employed was the ke, of chromium. A stress
on each surface calculated from elastic theory is
also given in this table.

Tasri 3. Extrapolated diffraction angles and stresses for
different azimuths on tensile sections with chromium radiation

20° ‘ Stress (X103 psi)
Specimen Azimuth | [ S
o
@
¥=0° ¥=90° Observed | Cale. a5
Op
l 0 156.32 155. 76 ‘ 21
Tensile C-S___________ 1 45 156. 32 155. 77 J 20 |r(Av:20.3)
| 9 | 15633 | 155.79 20
[ 0 156.02 156.18 —10
Tensile T-S___________ 45 156.02 156. 06 =) —4.5
1 90 155.99 155. 91 1
J 0 156.14 156. 46 —17
Tensile 45°-S__________ l 45 156.13 156. 25 =5 D)
90 156.09 155. 94 2

Table 4 contains the conventionally calculated
principal stresses and the 45° inclined stress com-
ponent from the tensile and compressive specimens,
observed with cobalt and chromium radiation. It
is not possible to give a rigorous value of the precision
of the values of stress presented in these tables,
since the true precision of the angular differences
upon which they are based is not known, but it can
be estimated at about 1 or 2>(10* psi.

TasLe 4. Conventionally calculated stresses

‘ Stress (X103 psi)

|
Co Rad. ‘ Cr Rad.

Specimen Stress component

AT | —22 —10

(IR OTIS1] 0 S Transverse_ 16 21
45° —12 =14

32 | 13

(€ 0T TESS] Ve N —15 —12
4 —29 —4

In table 5 are shown the very doubtful results of
the calculations of the surface normal relaxation
constant, k£, and the principal stresses using the
formulas of Vasil’ev. No values are given for the
stresses after extension from the measurements
with cobalt radiation because of the impossible
value of %, larger than 1, obtained in that case.

TaBLE 5. Surface relaxation constants and principal stresses
after the method of Vasil’ev

Tensile spec. Compressive spec.

Stress (X103 psi)

Radiation Stress (X103 psi)

k R k 2
Axial | Transverse Axial | Transverse
IS ()4 P S 0.79 53 29
0.87 16 32 .93 15 2

4. Discussion

It is evident that one of the principal objectives
of this study, an investigation of Vasil’ev’s method
of X-ray stress measurements, was not fulfilled in a
very positive manner. For ferrous materials, with
(o and Cr radiation, Vasil’ev calculated values of £
that ranged from 0.3 to 0.5. The £ values listed
in table 5 are all larger than would seem reasonable,
and they show no valid correlation with the pene-
tration power of the X-radiation. The stresses in
this table also are in disagreement with Vasil’ev’s
results. If we denote that axial residual stress by
o, and the transverse residual stress by a,, we should,
according to Vasil’ev, have the following inequalities:

after an extension: o< <0
and after a compression: << 0.

In this table, on the contrary, we find

after an extension: o> o, >0
and after a compression: o, >, > 0.

In view of the unlikely values of £ that entered into
the calculations of these stresses, however, one
should not try to infer too much from any seeming
relationship among them, except to say that the
result apparently is not in agreement with Vasil’ev’s
results.

The explanation of the failure in this study to
obtain meaningful values of & probably lies in the
lack of precision with which the extrapolated values
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of the diffraction angle were known. Although the
precision of individual values of 26 was high enough,
of the order of +0.02°, there was a scatter about the
straight line function of 26 versus Sin%, amounting
in the case of the cobalt radiation to a root mean
square error of about 40.08°.  This was reflected in
the precision of the extrapolated values upon which
the calculation of £ was based and hence precluded a
significant result for this factor. This scatter does
not arise from a lack of precision in the angular
measurements themselves, but is inherent in the
granular nature of the diffracting polycrystalline
material, the statistical fluctuations about a mean
stress from one grain to another, and the sampling
nature of the X-ray diffraction process. It would
seem that Vasil’ev’s method could be checked only
in situations where this statistical microfluctuation
of the stress was at a considerably lower level than
was the case in this study.

The results obtained by means of the conventional
equations for residual stress calculations, on the other
hand, appeared to be quite reasonable and self-
consistent. The basic assumption, that the changes
in Brage angle reflected lattice strains or stresses that
satisfied the basic laws of elasticity, that is, satisfied
the equation of the stress or strain ellipsoid, [12] was
borne out in two separate stages of the experiments.
The first corroboration was the linearity of the 26
versus sin’y measurements, which has long been
taken as the proof of a nonrandom stress distribution
in the region under analysis. The second was the
conformity to the stress ellipsoid on the part of stress
components measured in different directions lying in
a given surface; three such instances, each involving
three surface azimuths are shown in table 3. The
stress ellipsoid equation yielding the stress in any
direction 1s

aza%0i+a§oj+af.ak, (15)
where the a’s are the direction cosines and the o’s
are the principal stresses. For the surface case, a,
is zero, and the equation becomes

To=0; COS’p-Fa; SIn® ¢,

where the angle ¢ is measured from the direction of
. If ois taken to be 45°, this becomes
05=1/2 (¢;+0,). (16)

This relationship was checked on each of the three
sections cut from the tensile specimen. The three
directions chosen on the cross section would be ar-
bitrary; that is, because of the circular symmetry of
the specimen and the uniaxial loading, all stress com-
ponents on this surface should be equal. On the
other hand, the directions on the longitudinal and
45° inclined sections are not arbitrary. In these two
ases the ¢=0° direction was chosen to lie in the
direction or the projection of the direction of the
original axis of deformation loading of the specimen,
and the ¢=90° was taken to be at right angles to this.

It is seen in table 3 that the agreement between the
observations and the stress ellipsoid calculations was
excellent.

The third phase of the application of the theory of
the stress ellipsoid, however, was not successful.
This was the attempt to relate the principal stresses,
as determined on a cross section and a longitudinal
section, to the stress measured at zero azimuth on a
45°%nclined section. Examples of these measured
stresses are given in table 4; and it can be seen that
the 45°section component, which again should be
given by eq (16), is nowhere near the theoretical
value.

Another somewhat disturbing result that appears
when one compares the computed stresses on the
different sections is the lack of agreement evident in
table 3 between the values of the transverse stress
found on each of the three sections. This stress is
any one of the three equal values on the cross section
and the value of stress at ¢=90° on the longitudinal
and 45° sections. The latter two values are very
small, an order of magnitude smaller than the cross-
section value, and are indeed near the limit of pre-
cision of the method of measurement. However, all
three values, being positive, do agree in sign.

The points of disagreement between these experi-
mental results and the results expected if the sec-
tioning process did not disturb the planar stress
components, as originally postulated, have placed
this assumption in serious doubt. Sectioning at 45°
to the deformation axis in particular seems also to
be questionable from the theoretical standpoint, for
in this case the actual directions of two of the
principal stresses or strains must be rotated through
45°, so that one is normal to the new surface and one
is lying along the projection of the axis in the new
surface, while the direction of the third is presumably
unchanged in the plane of the surface. Following
this modification of the internal stress ellipsoid, it
is not improbable that the magnitudes of the stresses
have undergone change. Although the sectioning
along principal planes, as was done to obtain the
cross and longitudinal sections in this work and
that of Vasil’ev commented upon in this paper, does
not change the directions of the principal stresses,
the experimental results described above do cast
doubt on the constancy of even the planar stress
components. It does appear that, although the
residual stresses measured by a conventional X-ray
method on any one particular surface conform very
satisfactorily to the laws of elasticity for a homo-
geneous, isotropic medium, the stress components
determined by this same method on different
sections of a single, uniformly deformed specimen
cannot in this sense be combined.

In spite of this lack of conformity to an interior
stress ellipsoid, presumed to have existed before
sectioning, the conventionally calculated principal
stresses do, however, present a self-consistent
pattern. The stresses revealed by the two radia-
tions bear the same sign in all cases, with those
revealed by chromium, the less penetrating radia-
tion, being in most cases smaller in magnitude than
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those revealed by cobalt. The axial residual stress
after plastic extension is compressive, and after
plastic compression, in contradiction with Vasil’ev’s
results calculated with his equations using nonzero
k factors, it is tensile. These results agree with
those obtained previously in this laboratory [4, 9].

The opposition of the sign of a residual principal
stress, measured by X-rays, to the sign of the pre-
ceding plastic deformation is in accordance with
the usual two-material explanation for the origin
of residual stresses under these circumstances.
Briefly, this theory holds that, when a specimen is
plastically deformed, for example in tension, some
regions, A, deform sooner, that is, support a lower
elastic stress before slip or other deformation begins,
than do other regions, B. When the external load
is released, the harder regions, B, containing higher
elastic stresses, try to contract more than do the
more plastically deformed, softer regions, A.  Hence,
there are balanced residual stresses in the specimen,
compressive in regions A and tensile in regions B.
If the preceding deformation has been compressive,
the signs of the residual stresses in A and B are
reversed.

The distinction between region A and B is not one
simply of crystallite orientation, since qualitatively
the same result is obtained from different groups of
grains using different radiations; nor is it a matter
of body stresses balancing on the surface against the
interior of a specimen, since the same sign is obtained
on the surface and interior [5]. Apparently the
hardness difference, in terms of flow stress, of regions
A and B, is ascribable to structure. The harder
regions B3 are very likely regions of high disorder or
imperfection, regions of high density of impeded
dislocations.  Among such regions might be the
boundaries of grains or subgrains. The softer
regions, A, are regions of lower density of imperfec-
tion, of lower resistance to the passage of dislocations;
such regions might be the interior of grains. This
picture is supported by the fact that the X-ray
measurements indicate the stress condition, not of
the average, but of the softer regions A. It is
quite logical that the more disordered regions B
should contribute less to the coherent diffraction
of the X-rays.

In conclusion, therefore, the following may be
summarized concerning the X-ray measurement of
residual stresses on sections cut from uniformly
plastically deformed polyerystalline specimens; using
the conventional formulas in computations. Al-
though the stresses on any given section do conform
very closely to a stress ellipsoid for an ideal elastic
system, the stresses computed from measurements
on the various sections cannot be combined to yield
a wholly consistent picture of a unique internal
stress ellipsoid. Nevertheless, the theory and con-

ventional formulas applied to the two principal
sections do yield values of the principal stress that
are reasonable in magnitude and consistent with the
geometry and deformation history of the specimen.
That is to say, the axial and transverse residual
stresses have opposite signs; and, when the prestrain
is changed from extension to compression, the signs
of the stresses change, although there is little change
in their magnitude.
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ing the planning stage, G. W. Geil, who suggested
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the preparation of the specimens for X-ray exami-
nation.
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