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The general solution of the equation 'l'.r.r + 1. 'l'.r + Kx"e'" = 0 is displayed in terms of simp le tabu
x 

lated functions . The existence and uniqueness of solutions of a simple boundary value problem are 
determined as a function of the parameter K. 

For a class of problems in the steady flow of viscous 
fluids with a viscosity depending exponentially on 
temperature, an ordinary, nonlinear, second-order, 
differential equation arises [1.2)1; viz, 

1 
'I' xx +- 'l'x + Kx"e\j! = 0; x> O. 

x 
(1) 

The same equation may arise in calculating the tem
perature distribution in a dielectric in an alternating 
field [3]. In this equation, 'I' is an unknown function of 
x, while K and n are arbitrary real constants. The 
equation is of considerable mathematical interest as an 
example of that exceedingly small class of strongly non
linear equations whose general solution can be dis
played in terms of simple tabulated functions_ 

The reader may verify by direct differentiation that 
the following array is indeed a collection of solutions 
of eq (1): 

{ 2m2 } '1'= log . K > O. 
KX,,+2 cosh2 (m log x + a) , (2a) 

'I' = log {-::-::----:-_ . ...,-_-=2:c.:m..:...,2 ___ } 

KX"+2 smh2 (m log x + a) , (2b') 

'I' = log { . . - 2m2 
} 

KX"+2 sm2 (m log x + a) , K < 0 (2b") 

'I' = log {Kx1l+2 (~~ X + a)2} , (2b''') 

'1'= mlogx+a, K =0. (2c) 

In these equations, m and a are two arbitrary real 
constants which may be thought of as constants of 
integration. 

It is important to show that this array contains all 
the real solutions of eq (1). One can get at this ques
tion through some well known properties of ordinary 
differential equations. Observe that eq (1) can be 

l Figures in brackets indicate the literature references at the (' nd of this paper. 

written in the form of a system of two first order 
equations: 

'l'X=CP=/I(CP, 'I',X) 

cpx =-!/};- Kx"e\j! = h(cp, '1', x) (3) 

It is immediately clear that the partial derivatives of 
/1 and h are continuous in the region x > 0, and hence, 
by a well-known theorem [4J eq (1) satisfies a Lip
schitz condition in some neighborhood of each point in 
the region. It follows immediately [5J that there is 
exactly one solu tion- of eq (1) with a value and slope 
assigned at any given value of x ¥- O. We can thus be 
sure that the array of eq (2) contains all the solutions 
if we can find values of the constants of integration 
which determine a solution of preassigned value and 
preassigned derivative for arbitrary, nonnegative x. 
We notice that eq (1) may be transformed in the follow
ing way. Let '1'*='1'+'1'0 and y=x/xo, then eq (1) 
becomes 

1 * '1'* + - 'l'* + Kx n+2e-'I'Oyne\j! = 0 yy y yO. (4) 

This equation is of the same form as eq (1) with K 
replaced by Kxon+2e-\j!o, while '1'0 and Xo are unspecified 
constants. We see, therefore, that it is sufficient to 
show that among the solutions of eq (1) which vanish 
at x = 1, there is a solution whose derivative at x = 1 
takes on any preassigned value. 

Consider eq (2a) evaluated at x = 1. By the vanish-

ing of '1', we have that m=± ~ cosh a, and thus that 

('l'xh=1 =-(n+2)±2 ~sinh a. 

It is clear that we may choose a so as to make ('I' xh= 1 
take on any real finite value. 
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When K < 0, anyone of the three forms of the solu· 
tion, 2b', 2b", and 2b'" is possible. By the vanishing of 

'I' at x= 1 we have respectively, m=±.J-2K sinh a, 

m = ± .J-K sin a and a = ±.J 2 . 
2 -K 

The slope of 'I' at 

x = 1 can then be seen to be, 

FK 
('I'xh=1 =-(n+2)±2 VT cosh a, 

FK 
('I' xh=1 = - (n + 2) ± 2 V T-2- cos a , 

FK 
('I'xh=1 =-(n+2)±2 VT-2-

a~O 

a~O 

for the three forms 2b' , 2b", and 2b"', respectively. 
It is again clear that we may choose a in these equa· 
tions so as to make ('I' xh=1 take on any real finite 
value. We see further that all three forms are 
necessary, indeed, that we must choose form 2b', 
2b" or 2b'" according to whether the absolute value of 
('I' xh= 1 + (n + 2) is greater than, less than, or equal to 

2.J-2K . 

For the case K = 0, the solution must be of the form 
(2c), but s ince eq (1) is linear when K = 0, the existence 
and uniqueness of solutions is well known and needs 
no further discussion . 

We have thus shown that the array of forms of eq (2) 
contains all real solutions of eq (1) in the region 
x>O. 

Of practical interest is the question of existence and 
uniqueness of solutions of boundary value problems. 
We s hall consider a boundary value problem in which 
values of 'I' are given at two values of x and a solution 
of eq (1) is sought which is bounded and smooth in the 
interval. Assuming that two solu tions exist, call 
them '1'1 and '1'2, we define the difference '1'1 - '1'2 as a 
new function w. We then perform the following inte· 
gration by parts, 

lXI a XI f XI 
w7) (xwx )dx=xww.l' - xWx 2dx, 

Xo X Xo Xo 
(5) 

where Xo and XI are the values of x at the boundaries of 
the interval. We replace the integral on the left of 
this equation by using the fact that both '1'1 and '1'2 
satisfy eq (1) to get 

f XI XI f XI 
K xn+le'i'2w(l-ew)dx=xww.f' - xw;idx. (6) 

Yo .To Xo 

Now it is very easy to see that the integrand on the left 
is always negative. Furthermore, if we restrict our· 
selves to solutions with bounded derivatives it is clear 

that the first term on the right vanishes (since w van· 
ishes on the boundaries) and, since the integral on the 
right is always positive, the right hand side of this I 

equation is always negative. Hence, if K is negative, 
there is at most one solution to the boundary value 
problem. If K is greater than zero this uniqueness 
proof breaks down, and indeed we shall see that mul· 
tiple solutions may be possible. 

We will next consider the case when K < 0, and 
show that there always exists a solution of the boun· 
dary value problem. We first use eq (4) to redefine 
K in terms of the given boundary data so that the 
vanishing of the scaled 'I' at x = 1 corresponds to the 
boundary condition at the first boundary. When 
this condition is satisfied eq (2b) becomes 

'1'=10 - K 1 sinh2 a ) 

g xn+2 sinh2 (a ± ~2 log x sinh a) 
(7a) 

f ~~a I 
'I' = log l xn+Z sin2 (a ± ~-2K log x sin a) (7b) 

(7c) 

If the second boundary condition is '1'='1'2 at x=Xz, 
(X2 > 1), we shall show that there is always one fo~m of 
eq (7) which will satisfy the condition and which will 
define a smooth bounded function in the interval. For 

convenience, we define cp = exp ~ ('1'2 + (n + 2) log xz). 

Then cp is a number determined by the boundary data 
which can be expressed in terms of the constant of 
integration a. From eq (7) we see that there are five 
possible forms of cpo From (7a) we get two forms z 

sinh a cp - --...,-----,,;;;;,:;,;ii-'''-------:- , 0 < a < 00, 

I - sinh (a + ~-2K log X2 sinh a) 

_ sinh a 0 < a < Q' 

CP2- FK ' " 
sinh (a - v=f log X2 sinh a) 

from (7b) we get only one independent form 3 

SIll a 
CP3 = ( ~_ K ) , 0 < a < 7T, 

sin a + Tlog Xz sin a 

2 The symbol a here represe nts the positive Tool of the equation 

sinh a / J- K I 
-a-=1 VT OgX2. 

:lThe form with the negative s ign is equivalent to this form with a replaced by a+1T. 
On the ot he r hand 'P3(21T - a) = 'P3Ia) , hence it is only necessary to consider values of a 
between zero and 7r. 
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and from (7c) we get two more forms 

1 
'P4= .J-K 

2logx2+1 

1 'P5 = ---,=~"'---~-

.J-2K log x2-1 

We confine our considerations, at first, to the situa

tion when .J-: log X2 < 1. A straightforward study 

of the range of values of the various forms of 'P re
veals the following scheme: 

1 
0 < 'PI < ---==---

1 + .J-2K log X2 

1 

-K < 'P3 < ~ < 'P2 < 00 

1 - -2-log X2 

in which, for a suitable choice of a and of the form of 'P, 
'P can take on any value between zero and infinity. 
It is clear, therefore, that there is always a solution to 
the boundary value problem. 

/-K 
When 'VT-2-logx2 ~ 1 some of the solutions rep-

resented by eq (7) are no longer suitable because they 
no longer correspond to smooth bounded functions in 
the interval. In particular, forms 'P2 and 'P5 correspond 
to inadmissible solutions, and in form 'P3, a must be 
restricted to the range 0 < a < 7r - {3, where {3 is the 
smallest positive root of the equation 

sin{3_ .J-K T-1/ -2-logx2. 

We then find the following scheme for the possible 
values of the various forms of cp: 

1 
o < 'PI < R < 'P3 < 00 -K 

1 + -2-logx2 

and again 'P can ta ke on any value be tween zero and 
infini ty, so that there is always a solution to the 
boundary value problem. 

When K> 0, we have seen that the uniqueness proof 
fails. In fact we cannot expect a unique solution of the 
boundary value proble m. Upon fitting the boundary 
condition 'I' = 0 at x = 1, eq (2a) becomes 

{ 
cosh2a ) 

'1'= log - K ,-oo < a< oo 
X" +2 cosh2(a+ R log x cos h a) 

Again, we represent the second boundary condition by 
'1'='1'2 at X=X2, (X2 > 1). As before, we define 

1 
'P = exp "2 ('1'2 + (n + 2) log X2), a nd find 

cos h a 
'P = -----=:-------

cosh(a + ~ log X2 cosh a). 

(8) 

A study of this function shows it to be a smooth posi
tive function of a, vanishing as a approaches plus or 
minus infinity and with a single maximum at a= a, 
where a is the root of the equation 

!K tan h a 
tanh (a + V"2 log X2 cosh a) = fK . (9) 

1 + -y~ log X2 sin h a 

In this case, therefore, there are two solutions to the 
boundary value problem when 'P < 'PIIlUX, one solu tion 
when 'P = 'PlIlUX and no solutions when 'P > 'P",OX . Thi s 
non-existence of solutions of the boundary-value prob
lem can be associated with an instability phe nomenon 
in physical problems of viscous heating [6] . 
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