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There have been many analyses made of models for equipment inspection, i. e ., where a system 
may suffer a bre.akdowfl, ~ut such an event is only discovered by an inspection. Most analyses as· 
~ume t~at the tIme to failure follows a negative exponential law which implies that only periodic 
mspectlOn programs need b~ considered. Another model which has been analyzed by Barlow, Hunter, 
and Proschan finds the optimal program of inspections when the equipment reliability function is of 
gener.al form , but a particular los: function is given. In this paper we find the optimal pe riodic in· 
spectlOn program for systems whICh do not have negative exponential reliability functions . These 
programs have the virtue of simplicity even though they may not be optimal in an absolute sense. 
Besides the periodic inspection programs, we derive results for random inspection programs. 

1. Introduction 

There have been many papers published on the sub· 
ject of determining optimum checkout intervals for 
systems with random failure characteristics, [1-5).1 
The objective of any checkout program is to minimize 
the down time due to system failure. When the re­
liability function which describes the system's failure 
characteristics is negative exponential the optimal 
checkout policy must be a periodic one. If the system 
reliability function differs from the exponential, one 
does not expect such a simple result to obtain. Indeed 
Barlow, Proschan, and Hunter [3,4] have devised an 
algorithm for calculating the optimum checkout sched­
ule for a system with a general reliability function. 
They minimize d the total loss incurred by inspection 
costs and the cost of uninspected down time to derive 
an optimum policy. This policy is, however, a difficult 
one to actually compute since all of the inspection 
times are a function of the first inspection time. 
This parameter must be varied in order to find the 
optimal policy. It has been found that the optimal 
inspection periods are extre'mely sensitive to the 
choice of the first period, hence a good deal of accuracy 
is needed in the calculations. Other studies of the 
problem have used the assumption of an exponential 
reliability function and found the optimal pe riodic 
solution [1-5] . 

It is the purpose of thi s paper to find the optimal 
periodic solution for the checkout interval of a sys­
tem which does not necessarily have an exponential 
reliability function. Clearly, such a policy will not be 
optimal in the sense of Barlow, Proschan, and Hun­
ter's results. However the periodic inspection pro­
gram does have the advantage of simplicity and it is 
the sort that would most likely be followed in prac tice. 
The exact class of policies which will concern us will 
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be denoted by ( ~, T) policies. The parameter ~ is the 
inspection interval and T is a time at which the sys tem 
is to be replaced by a new one if it has passed all of the 
previous inspections. Three possibilities may be con­
sidered: ~ can be held fixed and T varied; T can be 
held fixed and ~ varied; or both parameters can be 
varied. In the case of an exponential reliability func­
tion or no wearout, ( ~, 00) policies would be the only 
logical ones to consider if inspection is considered to 
be perfect. We may wish to consider this possibility 
for the general reliability function as well. In addition 
to an analysis of periodic inspection polic ies we shall 
also consider random inspection policies in which the 
periods between successive inspec tions are identically 
di stributed random variables. 

2. The (~, 00) Policy 

Our criterion for de termining the best ( ~ , T) policy 
will be the parameter set which maxi mizes the ex­
pected operational readiness of the sys tem. Thus, 
implicitly the cost function will be measured in lost 
time; time that is spent in inspection and replace­
ment. The present mathematical model is therefore 
applicable to computer systems and to other systems 
which are operated continually. 

We assume that system failure is complete, and that 
the system is replaced rather than repaired when 
breakdown occurs. The system failure characteristics 
will be described by a reliability function R(t) (the 
probability that a system installed at t = 0 will survive 
for a time t or greater). It will be assumed that the 
first moment 

1-'-= t R(t)dt (1) 

is finite . If the inspection and replacement times are 
assumed to be random variables then one can dis-
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tinguish between two types of models. In the first, 
inspections are scheduled for times .:1 , 2.:1, 3.:1, . . . re­
gardless of the amount of time spent in the last inspec­
tion. In the second model the beginning of the next 
inspection is scheduled .:1 units of time after the end of 
the present one, i.e., inspection is scheduled after a 
usage period of.:1. If the inspection and replacement 
times are fixed rather than random the two models are 
formally identical after a redefinition of.:1. In this 
paper we will treat the case of a usage period of ~. 
Finally, we will assume that the system is turned off 
during inspection, i.e., that it does not age during an 
inspection. 

The notation in addition to that already defined is: 

Ti = time for a single inspection. 
T,· = time for a single replacement. 
8 = probability of not detecting on inspection a system 

that has failed. 

The first case to be studied will be the (~, (0) policy, 
that is, inspection is continued until a system failure 
occurs. Let us consider the history of a single system 
and enumerate the times whic h will be necessary for 
our analysis . The nonoperational times will be of 
three types : An installment time ; n + 1 inspection 
periods, where n is a random variable; and a period 
when the system is inoperative but that condition is 
not yet determined by inspection. There will also be 
n + 1 periods of operation, at least n of them being of 
duration .:1, the remaining one being of duration less 
than or equal to.:1. For a single system the time his­
tory is summarized in figure 1. Let T be the lifetime 
of a single system measured from its installation to 
the installation of the next system. Then T is the sum 
of two parts: 

(2) 

where To is the operational time and TN is nonopera­
tional time. Barlow and Hunter have shown in [6] 
that the operational readiness, or proportion of time 
that the system is operational, is given in the limit 
of t~ 00 by 

(3) 

where E(T) is the expected value of T. This result is 
also a simple consequence of renewal theoretic con­
siderations, [7]. Hence in order to evaluate P we 
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FIGURE 1. Representation of the history of a piece of equipment . 

must only calculate E(To) and E(TN) for a single system. 
The calculation of E(To) is a simple one, since it is 

just the operational time till failure. This is just 

E(To) = JL (4) 

where JL has been assumed finite. 
E(TN) is slightly more complicated. 

The calculation of 
TN can be written 

where Tr is the replacement, or installation time, T" 
T2 , • • • , Tn+! are the inspection times till just after the 
failure (n is a random variable) and ~ is the time los t 
due to faulty inspection. If the expectation of thi s 
equation is taken, we find 

where the T'S have already been defined. The random 
variable n has a distribution 

Pr{ exactly n operational periods} = R(n.:1) 
- R((n + 1).:1). (7) 

Hence E(n + 1) is 

E(n + 1) = :f (n + 1) [R (n.:1) - R((n + 1).:1)] (8) 
n=O 

= ~ R(n~) =G(.:1) 
n=O 

where the finite ness of the first moment insures the 
convergence of thi s series. Finally, the residual 
nonoperational time is composed of the random time 
between the failure and the firs t inspection thereafter 
and a random period due to the effect of imperfect 
inspection. The probability density of a system failure 
is - R'(t), which implies that E(~) is given by 

00 «n+ 1)6-

E(~)= - ~Jnt. ((n+l).:1-t)R'(t)dt 

+ (1 - 8) ~ m8m(Ti +.:1) 
m=O 

00 8 (9) 
= L .:1R(n.:1) - JL + 1- 8 (n +.:1) 

n=O 

(J 
= .:1G(.:1) - JL + 1 - 8 (Ti + .:1) . 

Combining eqs (3), (6), (8), and (9), we find for the 
operational readiness 

P(.:1) = JL 

Tr + (Ti +.:l) ( G(.:1) + 1 ~ 8) 
1 

(10) 
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where we have introduced the dimensionless param­
eters 

(11) 

Occasionally useful bounds on P(/:1) can be obtained by R (t) - -- -- - --""j..;;:--------, 

use of the inequalities 

(12) 

This is easily derived by reference to figure 2. There 
it is seen that /:lG(!:l) is the area under the upper set of 
rectangles, which is greater than the area under the 
curve for R(t). F urthermore the area under the curve 
for R(t) is greater than that under the lower set of 

rectangles . This latter area is, however!:l ~ R(n!:l) 
n=l 

= !:l(G(!:l) - 1) from whic h the upper bound follows. 
The inequalities of eq (12) thus yield bounds on 
P(!:l) as follows 

1 

(13) 

If we write this inequality as L (!:l) < P(!:l) < U( !:l) then 
it is interesting to note that both L(/:1) and U(!:l) have 
maxima. The maximum of L(!:l) occurs at 

(14) 

and the maximum of U(/:1) occurs a t 

- - - - -~f.-::::::-------, 

-------r--_ 

30 

t--

FIGURE 2. Plot of R(t) and upper and lower bounding functions. 

cally equal to zero, that is, if inspection takes no time 
to carry out, then !:lo = 0, or continuous monitoring is 
the optimal solution. If T;j() is small but not identically 
equal to zero, it may be supposed that /:101 IL will al so be 
a small quantity. Let us then expand G(!:lo) and 
G'(/:1o) for sm all !:lo by means of the Euler-Maclauren 
expansion, [8] 

G(/:1) = ~ R(n /:1)=~+.l_R'(O) /:1 +0(/:12) 

n =O !:l 2 12 

G'(/:1) =-~-R'(O) + 0(/:1) 
/:12 12 . 

(19) 

In this approximation the equation for the optimal /:10 
becomes 

(20) 

W e have neglected terms R'(O) /:1 and R '(O)Ti which are 
presumed small in comparison to terms like 1/2 and 

/:1' = /:1 m 
In Yo (15) TiILI/:12 in the present calculation. Equation (20) has 

the solution 

Thus the maximum value of P(/:1) obeys the inequalities 

1 

Ar+ (1 + ~1 ~-f)r < Pmax 

< 1 (16) 

Ar + ( 1 + ~ I"! f)) 2 

The optimal value of /:1 , call it /:10, is the solution to 

(l7) 

and the value of P(!:lo) is 

(18) 

When T;j1L is small in comparison to 1 we can derive 
an approximate expression for !:lo. If Ti were identi-

(21) 

which generalizes a result found earlier for the ex­
ponential reliability function [5]. To this approxi­
mation the value of P max is 

P = 2(1- f) 
max 2A r(I-f)+ CVAi(I+()+Y2(1 -())2 (22) 

In fi gure 3 we have plotted P(/:1IT) for the reli abi lity 
function R(t) = exp (- t2/P) for !:liT in the range 0 to 
0.20 and f) = 0 and f) = 0.25. It can be observed that 
the variation of the maximum with !:l IT is negligi ble in 
the range that we have considered. 

3 . Random Inspection Periods 

Thus far we have considered an idealized case in 
which inspec tions are performed as scheduled. It is 
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FIGURE 3. Plot of p(a) for R(t) = exp (-t2/P) for () = 0.25 and Ai = 
0.01, A, = 0.05. 

of some interest to consider the possibility of random 
examinations, since this, rather than perfect control 
over inspection is likely to be a more accurate descrip­
tion of actual monitoring situations. We will assume 
that the inspection following a given one takes place 
at some time t after the conclusion of the first inspec­
tion. The time t is a random variable which will be 
described by a probability density function 'l'(t) with 
a finite first moment v. 

Again, in order to calculate operational readiness we 
may use eq (3) with E(To) = 11-. The expression for the 
nonoperating time given in eq (6) is still valid but it 
requires somewhat more effort to evaluate E(TN). As 
before we need to evaluate E(n + 1) and Em. We con­
sider E(n + 1) first. For the evaluation of this quantity 
we define a probability density Wn(t) by 

Wn(t)dt = Pr{ sum of n periods of operating time IS III 

(t, t + dt)}. (23) 

The probability that there are exactly n complete 
operating periods without a sys tem failure is 

11n = Lx' w,,(t)R(t)dt - L" Wn+l(t)R(t)dt (24) 

since the first integral is the probability that the 
system is reliable through at least n inspections and the 
second integral has a similar interpretation. The 
expectation of n + 1 is therefore 

E(n + 1) = ~o (n + 1) { foX R(t)[w,,(t) - W,,+I(t)]dt} 

= 1 + foX R(t)w(t)dt 
(25) 

where 

W(t) = :! Wn(t) 
n = 1 

and we have used as a definition 

Wo(t) = S(t) . 

Since the Wn(t) satisfy the recurrence relation 

Wn+l(t) ={ Wn(r)'l'(t -r)dr 

(26) 

(27) 

(28) 

It IS easily verified, by summing both sides of this 
equation, that w(t) is a solution of the renewal equation 

W(t) = 'l'(t) + L W(T)'l'(t - T)dr. (29) 

Notice that w(t)dt is the probability that some inspec­
tion occurs after an amount of operating time between 
t and t+dt. 

Finally, we must evaluate E(~). Let us assume that 
there is a system failure after r hours of operating 
time. The first component of ~ is the time to the im­
mediately following inspection period. A second 
component will have to be added in case 8 ~ O. Let 
the time from the system failure to the immediately 
following inspection be t (in the terminology of re­
newal theory this is the forward delay time). In order 
to calculate the distribution of the forward delay we 
must take two possibilities into account; either the 
next inspection is the first one, or else the last inspec­
tion ended in the time interval (x, x + dx) with probabil­
ity w(x)dx. These last two events combine to give a 
result for the forward delay density at time T, p(T, t), 

p(T,t)='l'(T+t)+ J: w(x)'I'(r+t-x)dx. (30) 

The first component of E(~) is 

Elm =- foX dT txo dt tp(r, t)R'(T) (31) 

where we have averaged over all possible failure times. 
The second component of Em is the expected down 
time due to undiscovered failure. The probability 
that it will take exactly n inspections to discover the 
failure is (1- 8)8"- 1 and the expected amount of down 
time consumed before the discovery is made is 

E 2m = (1- 8) ~ 8n- l (n -1) (v + Til 
n = 1 

8(v + Ti) (32) 
1-8 

since v is the expected time between two consecutive 
inspections. Combining the expressions for Elm, 
E 2m and E(n + 1) we have the final result 

226 



P = ~ 
[f oo . ] O(v + T) 

Tr+~+Ti 1+ 0 R(t)w(t)dt + 1 - 0' 

In the particular case of a completely random exami­
nation policy, 

(34) 

all of the quantities required by eq (33) are readily 
evaluated. It is well known and easily verified that for 
the negative exponential distribution one has 

w(t)=a, v= 1/0" 
(35) 

Thus we find that 

f'" f 00 1 100 1 - R'(T)dT O"te-u1dt =- R(T) =-, 
o 0 0" 0 IT 

{ OO R(t)w(t)dt = 0" fo'x> R(t)dt = O"~. 
(36) 

The value of P can be given explicitly as 

(37) 

where the dimensionless parameters Ai and AI" have 
been defined before. The solution for the maximizing 
value of 0" is 

(38) 
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FIGU RE 4. Plot ofP (a-)for random maintenance /or (J = 0.0, 0.25 and 
A;=O.Ol, A,=0.05. 

{X dT t'" dt tp(T , t)R'(T) 
(33) 

and the maximum value of P is 

( Ai ~)- 1 
Pmax= I+Ar + l_0+2V~ (39) 

It is interesting to notice that this result does not de­
pend on R(t) except through ~. 

In figure 4 we have plotted P as a func tion of O"~ for 
Ar = 0.05, Ai = 0.01, and 0 = 0 and 0.25. It will be ob­
served that the curve is rather flat around the maximum, 
and the maximum itself does not shift appreciably as 
o is changed. 

4. The (Ll, N Ll) Case 
Whe n the reliability func tion drops off much more 

quickly than a negative expone ntial, it is plausible 
that one might want to replace the equipment after a 
specified time rather than continuing to inspect it. 
Even if the reliability function is a negative exponential, 
finite scheduled replace me nt times would be indicated 
if the qualit y of inspec tion is poor, i. e., if 0 is close to 1. 
Quite genet'ally, one might consider a (Ll, N Ll) policy in 
which replace ment takes place after N Ll units of op­
erating time. In thi s way the number N beco mes an 
adjustable parameter in the problem, and the poli cy 
can be maximized over both Ll and N. Thi s procedure 
leads to quite complicated ex press ions. Let us there­
fore restrict our effort s to a co mpari son of (Ll, Ll) and 
(Ll, 00) policies for particular parame ter values. 

For the (Ll , Ll) policy we note that 

E(To) = L)' R (x)dx = ~(Ll) (40) 

and 

(41) 

These results are to be substituted into eq (3) to obtain 
the expression for P(Ll) 

{~. R(x)dx 

P(Ll) = Ll + Tr (42) 

In figure 5 we have plotted P(Ll) as a function of 
Ll/T for R(t) = exp (- t i T), for the parameter values 
Ar=Tr/T=0.05 and A;= TdT=O.Ol. When 0=0 one 
can do better with a (Ll, (0) policy than with a (Ll, Ll) 
policy although when 0 = 0.9 this is no longer the case . 
For other parameter values there may exist an N such 
that the (Ll, N Ll) policy is better than either the (Ll, Ll) 
policy or the (Ll , (0) policy. The value of P(Ll) for the 
(Ll, N Ll) policy can be calculated from E(TN) given by 
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N - 2 N-j-I 

E(TN)=Tr-(I-(}) L L (}k - I 

j = O k = 1 

J 0 + 1)6 

j6 [j~ + k(~ + Ti) - x]R'(x)dx 

.5 .6 .7 

R(x) = exp (-xjT) for 

.V- 2 J 0+1)6 - L (}N- j - J. [N~+(N-j-I)Ti-x]R'(x)dx 
j = O )6 

JN6 

- (N ~ - x)R'(x)dx 
(N- l)6 

(43) 

and 

fN6 

E(To)= 0 R(x)dx. (44) 

The expression of eq (43) is derived by noting that if 
the system fails at time x in the interval [j~, (j+ l)~] 
then the time loss due to inspections and to down time 
is j~ + k(~ + Ti) - x if k - l .inspections have been incor­
rect, accounting for the first set of terms. If all in­
spections are faulty then the term 1- () is to be omitted 
and the second set of terms results. Finally, if the 
system fails in [(N -l)~, N ~J there are no inspections 
so that the last term has no () dependence. The ex­
pression for P(~) which results from the use of eqs 
(43) and (44) is so cumbersome that no information can 
be extracted from it without considerable computation. 

I thank the readers Joan Rosenblatt and Joel Levy 
for detecting several errors in the original manuscript 
and for suggesting many improvements. 
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