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Zonal Harmonic Perturbations of an Accurate
Reference Orbit of an Artificial Satellite*

John P. Vinti
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The theory developed in an earlier paper, for an accurate reference orbit of an artificial satellite,
is first slightly modified, so as to prepare the way for a treatment of zonal harmonic perturbations.
Delaunay variables are next introduced, by means of certain linear combinations of the action variables,
along with their canonical conjugates. Application of the von Zeipel method then permits the cal-
culation of the most important zonal harmonic perturbations. These arise from the third, with co-
efficient J3, and the residual fourth, with coefficient Js+J% The accuracy of the secular and short-
periodic effects is through terms of order JZ and that of the long-periodic effects is through terms of
order J,. Since the reference orbit itself, with its exact secular terms, takes care of all but 0.5 per-
cent of the deviation of the earth’s gravitational field from spherical symmetry, the overall secular
accuracy of the final orbit surpasses that of other second order theories. The results are compared
with those of Kozai.

1. Reference Orbit

The author [Vinti 1959a,b] has introduced a potential
V'=— up(p*+ c2n?)~! (1.00)

that can represent accurately the gravitational field of an oblate planet. Here w is the product of
the gravitational constant G and the planet’s mass, c is an adjustable length, and p and n are
oblate spheroidal coordinates, defined by the equations

X+iY=rcos 0expip=[(p*+c?)(1—n?]* expid (1.01)
Z=r sin §=pn. (1.02)

If an artificial satellite is at the field point, r, 6, and ¢ are respectively its planetocentric distance,
declination, and right ascension, and X, Y, and Z are its rectangular coordinates, OZ being along the
planet’s axis and OX pointing toward its vernal equinox.

If r. is the equatorial radius, the true potential is

V=—ur 1 —i(rp/r)"j,,Pn(sin 0)] + tesseral harmonics, (1.03)
n=2

where only the products rJ, need to be known. That is, differences in the definition of re, when
noncircularity of the equator is taken into account, can be reconciled by small adjustments of the

J’s. Then if
c=reJ%, (1.04)
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V' represents exactly the zeroth harmonic — u/r and the second harmonic and also gives higher
even harmonics, characterized by

Jz:n:(— I)NHI.]%"- (105)

In particular it gives Js+J3=0, as compared with observed values for the earth ranging from
—(0.9)10-° to (0.4)10-% (Kaula 1962; King-Hele, Cook, and Rees 1963). Consequently it accounts
for about 99.5 percent of the deviation of V' from the value —u/r corresponding to spherical sym-
metry. It thus accounts almost completely for the flattening of the earth, leading to a geoid that
never departs by more than about 30 m from the true sea-level surface.

For the drag-free motion of an artificial satellite the potential (1.00) leads to a separable prob-
lem, which has been worked out analytically [Vinti 1961 a,b, 1962]. This solution, holding for
all angles of inclination and containing no critical inclination or long-periodic terms, gives secular
terms exactly by means of rapidly converging infinite series and short-periodic terms correctly
through order /3. We call this orbit corresponding to (1.00) the reference orbit. For such a ref-
erence orbit error can never accumulate, because of the exactness of the secular terms, and the
periodic terms can be in error only by amounts of the order /3, i.e., by about 1 part in 10°, since
J>=1(1.08)10"3 for the earth.

2. Zonal Harmonic Perturbations

For a satellite of the earth, if its orbit is high enough so that drag is small and low enough so
that the moon’s effect is small, the above reference orbit ought to hold rather well for a good many
revolutions. (I purposely choose vague words here, since numerical comparisons are still incom-
plete.) Eventually, however, the actual orbit will deviate more and more from such a reference
orbit, because of the neglected forces. These include forces arising from drag, meteoritic impact,
radiation, electromagnetic fields, the sun, and the moon, and the neglected part of the earth’s
gravitational potential, corresponding to (1.03) minus (1.00). Since the expansion of (1.00) in zonal
harmonics is

V' =—pur= 13 e/ P~ Joy"Pansin 0), (2.00)

this difference is

5

V—y' = ,u,r“[(%)gjsPs(sin 6)+ (’—:)4(14+J§)P4(sin )+ (’7) JsPs(sin )

6
4 (%) (]G—Jg)Ps(sin 0)+. . } + tesseral harmonics. (2.01)

Of these forces the most important, for any satellite with a large ratio of mass to area, are the forces
corresponding to J3 and Js+J% in (2.01) and drag, which as determined empirically may include
effects of meteoritic impact. For a double satellite [Langer and Vinti 1963] only (2.01) and the
lunar-solar perturbation remain.

The purpose of the present paper is to devise a method for correcting for the effects of any of
the zonal harmonics in (2.01). The first example considered is the residual fourth harmonic, with
coefficient Js+J3.  This harmonic leads not only to short-periodic effects and secular effects, but
also to long-periodic effects depending on a resonance denominator 1-5 cos? I, giving rise to a
critical inclination /=63.4°. The second example considered is the third harmonic, with coefh-
cient J;3. This gives rise only to short-periodic effects and to long-periodic effects without singu-
larities, so that it is qualitatively less interesting. Because of its greater magnitude, however,
Js being about (—2.4)10~% and |Js+ J2| being probably somewhat less than (0.5)10-% [Kaula 1962;
King-Hele, Cook, and Rees 1963], it leads to somewhat larger periodic effects.
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3. The Dynamical Problem

Our problem is thus to find the motion of a satellite, taken to be of unit mass, when the Ham-
iltonian is

F=—T+ pup(p*+c*n?)1+F,, (3.01)
where T is its kinetic energy and where, for the residual fourth harmonic

Fi=—urir-5c4P4(sin 0) (3.02)
os=Js+J3 (3.03)

(We have here reversed the sign of the Hamiltonian, to agree with the usual practice with Delau-

nay variables.) In carrying out this solution we shall use the results and notation of the solution
[Vinti 1961 a,b, 1962] for the reference orbit, for which ' =0. If in (3.02) we then put

r=a(l—e cos E)=a(l —e?)(1+e cos v)! (3.04)
sin #=sin I sin(v+ B,), (3.05)

the expression (3.02) for F; will be correct through order J2. To this order of accuracy the anom-
alies £ and v may be given by the quasi-elliptic expressions

E~M;+E, (3.06) v = M;+ v,. (3.07)
Note that (3.04) corresponds to r = p.and (3.05) to other approximations of zeroth order in J,, viz,
U= Ys+Po=Ms+B2+vo=v+ (3.08) M = sin 6. (3.09)

Such an order of accuracy will result in errors of order J§ for those secular and short-periodic
effects which are produced by the perturbing potential (3.02) and of order J? for the correspond-
ing long-periodic effects. This perturbation (3.02) represents about 0.1 percent of the departure of
the earth from sphericity. The solution for the other harmonics in (2.01) will have the same
accuracy. However, since all of these higher harmonics represent only about 0.5 percent of the
earth’s departure from sphericity, their lower accuracy, as compared with that of the reference
orbit which has already accounted for 99.5 percent of this departure, should not result in serious
cumulative errors.

In doing the perturbation theory, the first canonical variables that come to mind are the
Jacobi “constants,” viz, the a’s and B’s of the reference orbit. When the reference orbit is ellip-
tic, however, their shortcomings are well known and they lead to the same troubles in the present
problem, giving rise to Poisson terms, linear in the time, in the variations in a; and ae.

The next set of canonical variables that one might try is the set generated from the a’s and f8’s
by the generating function

S'=—aut + pu—200) % B + By + 3. (3.10)
If we define no by

w=nia} ao=—Fula, (3.11)
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the resulting canonical variables are

L=(ua*  [=no(t+p)
o B. (3.12)
o3 ,33’

canonical with respect to the Hamiltonian
F=%3p*L*+F,. (3.13)

When the reference orbit is elliptic, this set is the same as the fast Delaunay set [Garfinkel 1960].

One may then attempt to apply the von Zeipel method in the way successfully used by Brouwer
[1959] and Garfinkel [1959], first eliminating short-periodic terms and then proceeding to eliminate
long-periodic terms. One finds, however, that the corresponding generating function S¥, which
ought to be of the first order in the parameter o4 = J4+ J%, must then satisfy

aSt/dB;=zeroth order in oy, (3.14)

One may alternatively eliminate short-periodic and long-periodic terms simultaneously, but
one then obtains a Poisson term of the form v sin 28, in @ —a,. Since v’ has a secular part, such
a result would appear absurd, since the “constant” a», which ought to have only a small periodic
variation, would then increase indefinitely with time.

These difficulties are examples of the failure of the von Zeipel method whenever the following
conditions both hold: (1) the perturbing potential has a long-periodic part of the first order in the
perturbation parameter, and (2) the canonical variables are such that the unperturbed Hamiltonian
depends only on L.

To obtain a successful set of variables, we may proceed as follows. Let ¢? and p?, i=1,2,3,
be the coordinates and momenta p, m, ¢, pp, Py, Ps corresponding to the unperturbed problem (the
reference orbit), with Hamiltonian FF=F,  Also let j¢, w?, i=1,2,3, be the corresponding action

and angle variables.
Then

p?=0d5(q}, 48, 48, 1%, 7%, 73)/ 9q" (3.15)

wi=0S(qt, a3, g8, %, 13, DI, (=123 (3.16)
where S is the Hamilton-Jacobi function of the unperturbed problem [Vinti 1959b], with the Jacobi
o’s replaced by the . Here

1= fotdat =l o, ). (3.17)

Now let gi, pi, i=1,2,3, be the coordinates and momenta corresponding to the perturbed problem,
with Hamiltonian F'=F,+F,. Introduce new variables ji, w;, i=1,2,3, by means of the canonical
transformation

pPi— 95(41, q2, qs, J1, jZ.js)/GQi (3.18)

wi = 3S(q1, 2, g3, J1» J2» J3)/ 3ji, (t=1,2,3) (3.19)

where S is the same function of the ¢; and j; that the above Hamilton-Jacobi function is of the
q? and j9. Then the w; and j; are canonical variables, satisfying the equations

dji/dt = oF [ow; # 0 (3.20)

dwi/dt =— dF|dj; # constant (3.21)
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They are thus not action and angle variables, since the j; are not constant and the w; are not linear
functions of t. Moreover

Ji # %pidqi, (3.22)

in contradistinction with (3.17).
It pays to go further, however, and introduce still another set of variables, a new Delaunay set
L,G,H, I, g, h, by the transformations

2rl.=ji1+j2+]3 sgn as [ = 27w,
270G =j2+j3 sgn as 3.23) &= 21 (ws — wn) (3.24)
2nH=], h=2m(ws —w> sgn as),

where sgn a3==1 respectively for a direct orbit or a retrograde orbit. To verify that they are
canonical, note that

Ldl+ Gdg+ Hdh = jidw, + j2dws + jsdws, (3.25)

They were used by Izsak [1962] in his application of the author’s reference orbit to the problem
of the critical inclination. From (3.23) we now have

J1=2m(L—G6) Jo=2m(G— H sgn ) Js=2mH. (3.26)

4. The New Delaunay Set

The functional relations among any of the quantities «;, ji, w; for the perturbed problem are the
same as those connecting !, j?, w) for the unperturbed problem. We may therefore usually drop
superscript zeros and depend on the context for the meanings of the quantities.

From the author’s paper [Vinti 1959 b] we now find

p,
j,=2f lg—de=27r[;L(—2m)'% — ]+ O(/)>) (4.00)
pl
. [M™aS ,
ja=4 %dn—%r(az—ag sgn az) + O(J>) (4.01)
0
Js=2mag. (4.02)
Next put
Qs = day[0)s (4.03) vi = dal/9)? (4.04) Jrs = 0jr/ 0. (4.05)
Then, since
&3S dji _ 98 o
“~ 6_], 301;; _aak’ (A 1’2,3) (4‘06)
we find
ﬁzt‘h& =juwi + j2102 (4.07)
aoq
S . .
E— [))2 = J12W1 +j22w2 (4.08)
aS . .
—=B3=Ji3wi + Josws + 2mws- (4.09)
L2
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With the aid of (3.24) these equations become

20t + B1) = jul + jr(l+ ) (4.10)
27y = jrol + joo(l+ g) (4.11)
27Tﬁ3 :jl;;l aF (iz;g + 27T sgn Cl;;)([ +g) + 27T}l (412)

The quantities j,; occurring here are given explicitly as functions of the a’s in eqs (7.16) through
(7.21) of an earlier paper [Vinti 1961a].

The constant orbital elements in the perturbed problem are then the constant parts a”, e,
Mo of a,e,mo, along with the initial values [j, g, h of the secular parts of /, &, h. The corresponding
Hamiltonian F is given by

F:Fo(L,G,H)+F1 (413) F0=—a1, (414)
so that

L=aF/ol I=—20aF/oL

G=0Fldg  (4.15) &=—aF/dG (4.16)

H=0F/ah=0. h=—aF/aH.

With the use of (3.23), (3.26), and (4.04), we find for the unperturbed problem that

0Fy _day & dau )i

TTeL oL & 9, ol 2™
__8]70*8011_ : da 8/,_
8=73G oG & aj ac 2T (4.17)

1

Fy  da 3. day 9
__0F¢_dau _ ﬂL:QW(W—yzsgnag)

oH oH &~ o oH
and thus for the unperturbed problem that

[: /()+ 27’7V1t
g&=got2m(vs— i)t (4.18)
h=ho+2m7(vs — v sgn a)t,

where we have dropped the double primes from /o, go, ho.

Before finding the effects of the perturbing potential, it is desirable to change the algorithm for
the unperturbed problem, given in an earlier paper [Vinti 1961 a, pp. 197-200], so that the constant
orbital elements become a, e, I, ly, go, and B3. (B is better than Ao, as we shall see later.) To do
so, insert (4.10), (4.11), and (4.18) into eqs (8.2) and (8.3) of that paper and carry out the same
process that was carried out there. One finds

AM,-: l0+27TV11 (419)
l,lls = l() aF £o A 27TV2f. (420)

With these new definitions of M, and s the algorithm then becomes the same as in the earlier
paper. Note, however, that the restriction on the angle of inclination / has been removed

[Vinti 1962].
5. Variations in the Spheroidal Coordinates

It is convenient to derive here the variations in p, 1, and ¢ that will arise from the variations
produced by the perturbing potential in the Delaunay variables. From the later solution of the
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canonical equations (4.15) and (4.16) we shall find that the mth zonal harmonic produces variations
in the Delaunay variables of the forms

0L = amlmn _ ol= (Tmlm+0'm.]§lzm
8G=0mGn+ oul;'Gn  (5.00) 8 =0mgm+ TnJ5'En (5.01)
6H =0. Sh= O'mhm + O'm.]g‘lgm-

Here o3=J; and o4=Js+J3. The terms oulm and onGn are short-periodic of order J3; the
products of o Jz! with Gy, L, &m, and hy, are long-periodic of order Jo. For m=3 the products of
o3 with [3, g3, and hy are short-periodic of order J3. For m=4

14 = 141 aF 142
&1= gt gaz (5.02)
hs=hy + /142,

where the products of o4 with /4, g41, and hsy are short-periodic terms of order J2 and where the
products of oy with s, g42, and A4 are secular terms of order J3.

From 6L and 8G we can find the variations of the j’s, then of the «’s, and finally of the ele-
ments a,e, and my =sin /. From these and from 8/, 8g, and 8k we can then find 8E, v, &y, and
Sx and finally the coordinate variations 8p, 87, and 8¢. To obtain the §;’s, use (3.26) and (5.00).
The results are

Sjl = 277(0'::1[4" - (TIIIGIII - (Tmcm/.lz)

8j2 = 277(0'mcm aF O'Iném/.]z) (5.03)
Sj:;:().
To find the éa’s use
3, dar .
day= 3 2 8. (5.04)
iz 9

Within the accuracy of the calculation, the coefficients da,/dj; are needed only through order

J9. Thus by (5.03), (5.04), and (4.04)

Sats = 2010 mlom + 270(0s — V)0 Gom + 27 (2 — V1) Gl . (5.05)
Then, by (5.03), (5.04), and (4.03)
Satz = 270210 mLim + 27(Qo2 — 021)TmGom + 277(0t22 — 021) TGl J- (5.06)
Also, by (4.02) and (5.03)

day =0. (5.07)
To find as; and aw» note that i das Bji _ aaz:l
&9 dan da c
3. das i}:@ﬁ: (5.08)
= aj, day o ’
so that

Qa1f21 T+ Qagfor =1
. (5.09)
a1j11 + agf12 =0,
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with the solution

21 =—Ja1/A a2 = jii/A, (5.10)

where
A = jiije2 — Jizjor. (5.11)

From an earlier paper [Vinti 1961 a, p 189], it then follows that

as; = 0(/)>) 2= (2m) '+ O(/2) (5.12)
and also that
2mvi=n+ O0(J2)

ve—v1=0(/]>),

(5.13)

where
n=pu*a’> (5.14)

On carrying secular and short-periodic variations only through order J? and long-periodic perturba-
tions only through order Js, it then follows from (5.04) through (5.08) and (5.12) through (5.14) that

day = nomlnm (5.15)
802 = TmGm+ TnGml)> (5.16)
oas=0. (5.17)

In finding the variations of other quantities we may drop all terms in their defining equations of
order J¥, where k= 1. To show this, note that if P=0(J9) and 8P = onP1 +ow/;' Py where P, and
Py are both of order JI, then

SUEP) = J5(anPy + anl 7Py (5.18)

Thus if k=1, J§ owP: is a secular plus short-periodic term of order £+2 = 3 and J& 0',,J2‘11~’1 is a
long-periodic term of order £+1=2. This proves the statement.

To obtain the variations of a, e, and no we may thus use

- 2~ . P 5.19
a % l1—e e 1—mn3 (5.19)

the neglected terms being of order J,. There follow

“ 2a?
da==— 6oy =— b
2az 1 “ 1
2
ede =2 sa; + 2"“2‘"2 daz (5.20)
m u

a
N00M0=—; datz*
ol

With use of (5.15), (5.16), (5.19), (5.20) and the relation

a3 = up +0O(Js), we then find

pa=222ln (5.21)
an
% —
se=E" Gl b= (ae)“(ﬂ) (omGm+ ont5Gm) (5.22)
pe ®
8m0="15"(up)* (1 — NN TnGm + TnJ5'Gm). (5.23)
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The element a thus has only a short-periodic variation while the elements e and 1o = sin I have

both short-periodic and long-periodic but no secular variations.

To find 8E, dv, and &y we first insert (4.10) and (4.11) into eqs (8.2) and (8.3) of the earlier paper

[Vinti 1961 a], rejecting all terms of order J%, where £ =1. We find

E—esin E=1+0(/,)
y=v+g+0(/>)

Equation (5.24) gives
OFE =(1—e cos E)~1(8/+ sin E&e).

To find dv, we use the anomaly connection

tan2=(l+e)%t E
g f=g [5G

from which there follows
ISR e Al ERIN 2 By sin ¢
81;—(1_6) (1 1450 2) 6E+1_62 de
=(1—e?)%(1 —e cos E)"[8FE + (1 —e?)~! sin Ede].

Then
oy =0v+ dg.
The variations of the spheroidal coordinates

p=a(l —e cos E)
M=o sin Y
are then

dp=(1—e cosE)da—a cosEde+ ae sin ESE
dm = sinPidmno + Mo cos YdY

(5.24)
(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
(5.31)

(5.32)
(5.33)

To find the variation 8¢ of the right ascension, we note that by eq (8.49) of the earlier paper

[Vinti 1961 a],

¢=B3+x sgn az+ O(/>),

where

tan x=(1—m%* tan ¢

cos x=(1—m3sin?y)~* cos .
Equation (5.36) was given in Vinti [1961 b]. Also by (4.12) and the results

Ji3= 0(/2) Jist2m sgn az= 02
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from page 189 of Vinti [1961 a], we find

Bs=h+0(/>), (5.38)
so that
833 = dh. (5.39)
From (5.35) and (5.36) we find
&x = (1 —m§ sin® ) [(1 —m§)* 8 — 5 (1 —m3) %m0 sin 2ys8mo]. (5.40)

Then, from (5.34), (5.39), (5.40), and (5.23), it follows that
8¢ =06h+ (1 —misin2 Y)~! cos I[6 — % (up)~* sin 2y nGm + Um]Eléz::)], (5.41)

where we have used (1 —mn3)*sgn az=—cos I.

It is well to note here that B is just as useful an orbital element as h,.

6. Solution for the Perturbed Delaunay Variables

We now have to solve the canonical equations (4.13) through (4.16), the perturbing potential
being

Fi=— pre‘r04P4(sin 6) (6.00)

in the case of the residual fourth harmonic. To obtain secular and short-periodic variations through
order J% and long-periodic variations through order J», it will suffice to use elliptic approximations in
(6.00), since o3 = J5;+J3=0(J3). Thus in (6.00) we may put

sin @ =m=m sin Y ="y sin (v+ &) (6.01)
r=p=al(l —ecos E)=a(l —e?)(1+e cosv)™! (6.02)
and we may use
[=FE—esinE (6.03)
dl=(rla)*(1 —e?)*%dv (6.04)
y=v+t+g. (6.05)

Then

= rg 5 . S5 5
F, ==ty [(3 — 153+ 193 wt) (4) +5m3(3— 3 18) (%) cos 20432 y(4)’ cos 411;]' (6.06)

The part of F; independent of [ is then
27 ,40- 27 105 a 3
Fim=2m)! —_ KTeO4 _2—1&f [(_ 2 _4><_>
1 (27m) jo Fidl 16 as (1—e?» . Silonssls g M) |7
3 3
+ 502 (3—%1,3) (%) cos 2q;+-38§n3 <9> cos 2¢] dv  (6.07)

r
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From (6.02) and (6.05) it follows that

2T a 3 3
j (—) dv=2m(1 — e2)‘3<l += ez> (6.08)
g i 2
2m a 3 3
f <7> cos 2y dv=§7rez(l —e?)3 cos 2g (6.09)
0
27 a 3
f (—) cos 4y dv=0. (6.10)
o \7
Equations (6.07) through (6.10) then result in
F1m=F1C+F1p, (61])
where the constant part is
_ uréoy B 3, , , 105 .
F]c———v(l—ez) 72 <1+562) (3-151}5+?7)3 (6.12)
and the long-periodic part is
15urio . 17
F“':_—3—2as_4(l_ez) 7/26"11(2) (3—57)6) cos 2g (6.13)

The short-periodic part is then given by
Fu=F,—F—Fy, (6.14)

so that

4
Mmreos | /. ., 105 a\® _— 3,
F”‘“——‘W{(i—lfﬁ'}ﬁﬁ*?n“) [(;) =({ll=¢) 7/2(1+§€2)

5 ¢ S5
SO (3 —% nﬁ) [(g) cos 21{1—-% eX(1 —e?) "2 cos Zg] 3 % e (2) cos 4d1}- (6.15)
r

From (3.23) and (4.00) through (4.02) we now obtain
L=pu(—2a,)* G=aw H= ay, (6.16)
with neglect of terms of order /.. To the same accuracy
a=—tuap  ad=pall—e)  odag=l-zi 617
Thus, with neglect of terms of order J,,
a=L*u! 1—e2=G3L~2 ni=1-—H*G>2, (6.18)
as expected. When we later take derivatives of a generating function with respect to L, G, and H,
we shall have to use the expressions (6.18) to replace them in the results by the elements a, e,
and mo.
In solving the canonical equations (4.15) and (4.16) we first make a canonical transformation
to new canonical variables L', G', H', ', g', and h’, so that the new Hamiltonian F'* shall be

independent of /' and h'. This first step will yield the short-periodic effects. To carry it out,
introduce the generating function

SWL',G' H',l,g,h)y=Se+S:«(L",G',H', L, g), (6.19)
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where
So=L'l+G'g+H'h (6.20)
and where S, is to be of the first order in 4. Then follow the von Zeipel method, as applied by

Brouwer (1959) to satellite orbits.
On splitting F* into parts F§ and Ff, we then have

FL,G,H)+F(L,G H, I, g=FgL',G',H)+F¥L',G',H, g (6.21)

along with the following relations connecting S; and the primed and unprimed variables:

_8S_,, 85 ,_9S_,, 95
L*al_L+al l_aL'_HaL’
_a_‘S= 4 a—& '=£= _ai
G_Gg G+6g 6.22 g ac—8tac (6.23)
_3S_p 38 _, 98
H_ah"H L _aH'—h“LaH

Since the new Hamiltonian will not contain /' or A’, we shall have H' = H = constant and L’ = con-
stant. Insertion of (6.22) and (6.23) into (6.21) then gives a partial differential equation for S;:
Sy G,+651 a5, 45, a5, 651)

3l a—g,H)+F1<L +Fl",(y +a—g,H,l+a—‘L—,,g+aG,

F0<L’ +

=F;‘(L’,G’,H)+F;"<L’,G’,H,g+g—f;i,>- (6.24)
Taylor expansion in the neighborhood of L', G', H, [, and g, with rejection of terms beyond the
first order in o4, then gives

3FydS, | 0Fy35,

FO(L aG aH)+aL/ E)l aGr ag

+R(L, G H, L, g =F L, G, H)+FL',G',H,g. (6.25)

The zeroth order terms lead to
FoL',G',H)=F§(L',G', H) (6.26)

and the first order terms to

' ’ ' ’ ' ' — X(T " ' '
aL, c')l aG’aG,—i_FIC(L;G »H)+FID(L903H,g)+Fll(L7G’Hvlag) F](Lac ’Hog)

(6.27)

In writing down (6.27) we have used (6.14) to express F'; as a sum of the terms F., F1,, and Fy; and
we have replaced g by g’ in F'§f, a permissible step involving an error of order o%. In (6.27) the
terms independent of / then yield

FY=Fi(L',G,H)+F(L',G, H,g), (6.28)

so that (6.26) and (6.28) together provide the new Hamiltonian F*. The remaining terms, depending
on [, then yield

0F0 351  9FodSi __ oo o
oL ol ToC oz FulL',G,H,lI,g), (6.29)
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a partial differential equation for S;.  With use of (4.17) it becomes

45, aS

2wy~ 2m(ve — ) —g‘= Ful',G,H,I, g (6.30)

Since v: — vy is of order J; and since S; is to be of order oy = J4+ J%, it follows that 27 (v, — v1)0S:/dg
will be of order J3 and is thus to be rejected. Thus

2711 S = f Ful',G',H,L, g)dl+ ®(g). (6.31)

To evaluate the integral in (6.31), apply (6.15), (6.02), (6.04), and (6.18). Since Fy, has a factor
os=0(J?), we can make a number of approximations at this point and still achieve our desired

accuracy. These are: drop the primes from L’ and G in (6.31), place
2mvi=n= u*a 32, (6.32)

express a, e, and o by means of (6.18), drop the primes from L' and G’ in calculating 9S,/dL" and
3S,/0G’, and finally use (6.18) again to replace L, G, and H in the final formulas by a, e, and 7,.
We obtain

L3 3, 3
0'401[( 5€ )v l)+<3e+4e>smv+4e 9m2v+12sm3v]

+04Qe [ (v—1_) cos 2g+— sin (v —2g) + (; e +§e3)sin (v+2g)

8 8
+<l +392> sin (2v+2g)+( )sln(3v+2g)+£sm(4v+2g) sm(‘3v+2g)]
2 4 2 8 16 40
+ 0403 { sin (v+4g)+3 e?sin (2v+4g)+ (2 8) sin (3v +4g)
=F (1 +3 ez) sin (4o +4g) + (%e 2 ) sin (5v +4g)+— sm (6v+4g)+ (7v+4g)] +d(g), (6.33)
4 8 10 40 8
where ®(g) is a constant of integration. Here
Q‘:;rﬁ (%)7 (11:—% (%)4 (1p)* i, (6.34)
where
g1 =3—15m5+ 13 M @=5M (3—% n%) g3 = %né- (6.35)
With use of (6.18) and (6.33) we find
Bl i+ ou), (6.36)
and
0= 162‘0—';‘(9 90 L+ 105 %) 6.37)
Q.= ?’g G’j (1 —%) (1 —7 g) (6.38)
03=_z’igﬁ (1 —%’;)2, (6.39)

through terms of order J5.
To make S; purely short-periodic, one would have to choose ®(g) in such a way that
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— 2m
2wS, = j Sidl would vanish. It turns out that ®(g) would then not vanish, but would have to be a
0

long-periodic term, just cancelling a long-periodic term of order J3 arising from the rest of the
expression for S;. The later calculation of long-periodic effects, however, will be accurate only
through order J,. If we arbitrarily drop ®(g), whose calculation would be extremely laborious, the
net effect will be only to leave in the short-periodic terms of G, [, g, and A some long-periodic
impurities of order /3, not affecting the accuracy of the calculation.

The errors of the short-periodic terms will be of order J3, for two reasons. First, the short-
periodic terms of the reference orbit were calculated only through terms of order J3; second, the
present calculation makes use of elliptic approximations, so that a variation of the form o4f has an
error of order J» in f and thus of order /3 in o4f. For this second reason the secular corrections
produced by the perturbing potential will also have errors of order J§, even though the first omitted
term in the von Zeipel equation (6.25) is of order o3 or Ji.

7. Short-Periodic Terms

It is now straightforward but tedious to calculate the short-periodic terms. From (6.22),
(6.31), (6.32), and (6.15), we find, through terms of order J3

aS

—EZL:L-L,:U‘JA’ (700)

where

___re _ » 105 4) [(9)5_ —L2)—7/2 3 2)]
Ly 8a5n{(3 15m5+ g Mo - (1—e?)~"2(1+ ¢
7 . 35 a
+5n%<3—§nﬁ> [( ) cos(2v+2g)———(l—ez) eos Zg] § 3( ) cos(4v+4g)}. (7.01)

From (6.22) and (6.33), we find

%:G_G'Z(NG:&, (7.02)
8

where

3
Gi=0: [—%ez(v—l) sin 2g—%cos (v—2g)+ (364-34 )cos (v+2g)

e’ 3e? e’ i
—) cos (3v+2g)+ g cos (4v+2g)+ 20 €08 (5v+2g)

+ <1 +%ez> cos (2v+2g)+ <e+ 1

+ 03[ —edcos (v+4g)+ 2 e?cos 2v+4g)+(2e+ % e’ cos (3v+4g)+ (1 + ez) cos (dv +4g)

+ <65€ 3{6) cos (bv+4g)+ l e? cos (bv+4g) + 7 €08 (Tv+4g) |- (7.03)

Since the dependence of Sion H is only through the Q’s, the calculation of

aS
h—h' =—6—H1= o sha (7.04)

is simple. First calculate the derivatives dQi/0H. From (6.37) through (6.39) and the sufficiently
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accurate relations H/G = cos I, H*/G*=1—7?2 and G*= up, we find

90 _15 2

oH 16( )(7 4) cos [
8()3 5 e & G

i :Z <1—)) (3—Tm3) cos I
Qs

4
oH 16< )nocosl

From (7.04), (6.33), and (7.05) we then obtain

2
ha =-—%(r ) cos I{ (77;'6—4)[(1 +%e2>(v—1)+<3e+3e )sm v+3—sm 2v+—sm 311:|

4 4 12
+4(3— 77;5)[ e*(v—[)cos 2g+—8 sin(v —2g) + (326+ 3 )sm(v+2g)
1 3e? 3e?
+<§+ 1 )sm(lv-%—Qg) (2 8)sm(3v+2g)+ 16 sin(dv+2g) + 20 sm(5v+2g)]

2
+ T} [ sin(v + 4-g)+— sin(2v +4g) + <2 8)sm(3v +4g)+ < i ar 3%)sin(llv +4g)

3e | 3e
+(10 40)sm(5v+4g) §sm(6v+4g) 56s1n(7v+4g)]}

(7.05)

(7.06)

To find [ — /" and g—g’, we use (6.23), (6.33), and (6.38) through (6.40). We may write (6.33) as

=04Q:(G, H)fr(e, v)+ 04Q:2(G, H)fs(e, v) + a4Q5(G, H)fs(e, v),

where
(113 3¢ 3 &
file,v) = <l+2e >(v )+ (3e+ 1 )Sllll)+4€ sin Zv+12 sin 3v
3e
fole, v) ——e‘(v—[)cos 2g+§ sin(v — 2g) + 5 + 8 %m(v+2g)
ah (l +éez)sin(2v+ 2g)+ <7+i)sin(3y+2g)+ det bm(4v+2g)+ sxn(5v+2g)
2 4 2 8 16
. . @ AN .

fale,v) 8 sm(v—l—ﬁl-g) 8 (2v+2g)+(2+ 8>sm(3v+4g)

‘{

1 32
+<1+3—§->sm(4v+4g) <3e L )sm(5v+4g) —sm(6v+4g) %

10 40 8
Then

S=oso(L+L8) 7

B3 9010 S0 (2 2020 2

aG dv de) IG
3 6(), 65. de <de>
g 8L AG\OL
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From (6.37) through (6.39), with the same approximations used in obtaining (7.05), we find

an 2 4
G 6 ( ) (136 — 500m2 + 38573)

Q. __5
G 16

ad 35 (re\*
o= 28 (=) mar1m—a

(=) a2 —s2ni+ 77mg 7.13)

Next we need the elliptic approximations

de

oL wma) el —é?) (7.14)
— p2\ %

%=-e*(%) (7.15)

ﬂ=< 1 +9> sinv=(1—e2)~1(2 sinu+1esin2v> (7.16)

de 1—e? r 2 ’

To compute the dS;/dL and 3S:/dG we need finally the six derivatives dfi/de and dfi/dv, i=1, 2, 3.
From (7.08) through (7.10) we find

ofr _ _ 9e?\ . 3 . G ¢
e =3e(v l)+<3+—4 )sm v+2esm 2v+ 3 Sin 3v (7.17)
R RN e
av_1+26 +(36+ 1) cos v+2e 0052v+4cos 3v (7.18)

f_3 . _ 3¢ L (p— 3 9_6_2)-
ae—ze(v [) cos 2g+ 3 sin (v 2g)+( + 8 sin (v + 2g)

+§ e sin 2v+2g)+ <% 3; ) sin (3v+ 2g) + 8 sin (4v + 2g) + sm (5v+2g) (7.19)

2
mie et o290+ e+ ) (2+3¢)
90 4 cos2g+8cos(v 2g)+({set+ 3 cos (v+29) + l+2e cos (2v+2g)

3 2 3
+ @ e+ 3i> cos (3v+2g)+ %— cos (dv+2g) + % cos (5v+2g) (7.20)

8
3 .
3f3 38 sin (v+4g) +—— sin (2v+ 4g)+< I ég—) sin (3v+4g) + 7 Sin (4v+4g)
e

+(130 ZO )sm(5v+4g)+ sm(6v+4g)+——sm (Tv+4g) (7.21)

: 3e
%é—_—e—gcos (v+4-g)+§z- cos (2v+4g)+ <—+38 ) cos (3v+4g)+ (1 + ) cos (4v+4g)
v
i (§2£ + 3; ) cos (5v+ 4g) + §4— cos (6v+4g)+5 cos (Tv+4g).  (7.22)

There then follow

(il= 2)<_L+6f1 61}) 3e 1—e2)(v-—l)+<5+3—e-—1—7e- sinv+(56—e—3)sin2u

dv de 3 1
2 4
+(5i—e )sm 3v+5 sin 4v+ sindv  (7.23)
af af d 3 2 16 8 16
1= )< : avz av) —%(14‘+5€2) sin2g+£(l—e2) (v—1) cos 2g
3e2  9et\ . 5e3 .
+< 2 32)51“( —2g)+ g sin(2v— 2g)+—sm (3v—2g)
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als (l—éeZ-—&> sin (v+2g) + (ge—ée“) sin (2v+2g)+<3+e2—5—> sin (3v+ 2g)

2 2 16 2 16
17¢ e 6e* 3
(?-F 4)sm (4v+2g)+<5 160) sin (5v+2g)
516 sin (6v+2g)+—sm(7v+2g)
3 2
== e)(—ég 3%31;) ;2 sm(v—4g)——sm4 —-(3Te+135§ >s1n(v+4g)

Te

8 16

<e+L)sm(2v+4~g) (1 Sez+ 1

2
) sin (3v+4g)+ (ﬁ = 3_(’-) sin (4v +4g)

13 | 21e* 13¢* 3e
+ (E 20 80 > sin (5v+4g) + <Ze+ 8 ) sin (6v +4g)
33e? | 9e et
ale <-§+ @) sin (7v+4g)+ sm (8v+4g) + 3—2 sin (9v +4g)-
From (6.34), (7.14), and (7.16) it follows that
de__1(ny(1=eyi _
QlaL_ 8<p>< p ) qi (1—1,2,3)

and then from (6.23), (7.11), and (7.23) through (7.26) that

1—1,20'4141,

where

(=2

b= 2048

(p) {6(8 —40m3+ 357;3)[48(1 —e)wv—1) +% (40+ 12e2—17€* sin v

+ 4(20 — €?) sin 2v + e(40 — €?) sin 3v + 10e? sin 4v + €® sin 51)]

— 4Am3(Tm— 6)[240(1 —e?)(v— 1) cos 2g + 5e? sin (3v — 2g) + 50e? sin (2v — 2g)

+ 15e(16 — 3€?) sin (v —2g) — 20(14 + 5€?) sin 2g + 1?0 (8 —24€*— 19¢*) sin (v + 2g)

0

+ 240(1 — €?) sin (2v+ 2g)+ L (24 + 16€% — Se?) sin (3v + 2g) + 20(17 + 2¢?) sin (4v + 2g)

+ 3e(64 + €?) sin (5v+ 2g) + 50e? sin (6v + 2g) + 5e3 sin (Tv + 2g)]

+ 78 [3563 sin (v —4g) — 350e? sin 4g — 105e(8 + 5e€?) sin (v + 4g)

— 140(8+ 11e?) sin (2v+4g) — ? (8+ 20e?+ 7e*) sin (3v + 4g) + 840(1 — €?) sin (4v + 4g)

St 1:4 (104 + 84e2 — 13¢*) sin (5v+ 4g) + 140(16 + 3€?) sin (6v + 4g)

+ 15e(88 + 3e€?) sin (7v +4g) + 350e? sin (8v + 4g) + 35€? sin (9v + 4g)] }

From (6.23), (7.12), (7.14), and (7.15), we find

4
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Then, from (7.13) and (7.08) through (7.10), we find
&—8 = 0ugu, (7.30)

where 1
gu=—(1— )L~z () {2(136—50077'6+ 38562+ 3e2)w— 1)

~+ 9e(4 + €?) sin v+ 9e? sin 2v+ €3 sin 3v] —2(12 — 82m3 + 11m3)[60e*(v — [) cos 2g
+ 10e? sin (v — 2g) + 30e(4 + €2) sin (v + 2g) + 20(2 + 3€?) sin (2v + 2g)
~+ 10e(4 + €?) sin (3v + 2g) + 15€? sin (4v + 2g) + 2€? sin (5v + 2g)]
+ n3(11m3— 4)[35€? sin (v +4g) + 105€? sin (2v + 4g) + 35e(4 + €?) sin (3v + 4g)
+ 35(2 + 3€?) sin (4v+4g) + 21 e(4 + 3e?) sin (5v+4g)
+ 35€? sin (6bv + 4g) + 5e? sin (7v+4g)]}' (7.31)

This concludes the solution for the short-periodic terms arising from the residual fourth harmonic,
with coefficient oy = J4 + J3.

8. Long-Periodic Terms
y (6.21) and (6.28) the Hamiltonian F'* is
F*=F(L',G' ,H)+F\(L',G',H)+F(L',G',H, g"), (8.00)

short-periodic terms having been eliminated. We now try to find new canonical variables L",
G", H", I, g, and A", corresponding to a new Hamiltonian F¥*(L", G", H")+ F¥*([L", G", H"), so that

FolL',G',H)+Fi(L',G'",H)+F,(L',G',H, g")=FF*L",G", H") + Ff*L", G", H").  (8.01)

If we can do so, then L", G", and H" will be constants of the motion and

_ aF** . F** T aF** )
l - aLH g/ - aGH h - aHU . (802)

To find the necessary canonical transformation, we introduce the generating function
S*=L"l'"+~G"g'+H"h' +S¥(L",G", H", g) (8.03)

where ST is to be of order ;. Then

’ aS* n " __ aS* ﬁ

L'= al’ L "= Lu =t Lu

,_9S* _ ., aSf ,_3S* St

G = o —=G"+ 8g (8.04) g'= FYa =g +E)C” (8.05)
_ /_is_*_ " "__ aS*_ @

H—H—ah,—H h'= SH h' +8H
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Insertion of (8.04) and (8.05) into (8.01) leads to

aSt aS} ) ( ), 35t , as;k)
L, .8+
o o H)HFu(L, 6"+ 20 Hoe

Fo (L’ c H>+F,,<L LG"+
whose Taylor expansion, with neglect of terms of order o2 or higher, is

oF, aS¥
G” a ’

FoL', G" H)+—,—+Fi(L',G", H)+ F (L', G", H, g")=F¢* + F{*. (8.07)

Splitting (8.07) into zeroth order and first order terms yields, respectively,

F§*=FyL',G", H) (8.08)
dF, 0S¥
a—Ggg“}‘F]c'*'Flp:FT*- (8.09)

Resolution of (8.09) into constant and long-periodic terms then shows that

Ft*=F.\(L",G", H) (8.10)
oFy oSt _ - '
a(,w ag/ - Fl]l(L s U 9H9g )- (811)

With use of (4.17) and (6.13) and of double primes to denote quantities corresponding to G", (8.11)
becomes

o 0ST _ 15ur} 7
27 (V] — Bg' = 3,;(:,(? e"(1— e"z)‘7/27)82<3 -5 n{?) cos 2g’. (8.12)

By eqs (7.34) and (7.37) of an earlier paper [Vinti 1961 a], we have

3
2m(vi—v)=— :;J 22 (5 cos? I—1)+0(J3)
_3 W)z SH? ‘ -
—EL’.‘}("’M (1— G”Z)+O(J§) ( 5 )

On inserting (8.13) into (8.12) and replacing elements by Delaunay variables, we find

aS¥ Su*rio G" H? H? H>\! o
6*571':—_—.—16.]26"3 (l _Z'-2> <] G"2) <l 7 G"Z) (1 m) cos 2g". (8.14)
Integration then yields
Su*rios G" H? H? H2\t | ,
ST:_32J26"3 (1 L'2) (1 —E@) (l 7 C"2> (1 = @) sin 2g’. (8.15)
Then
St Suirios I—E _q H? _sg H2\-1 | 9y’
oL’ - 16JZGIILI3 < Gug) ( G”2>< lez) sin 28 (816)

oSt Su’rioy H*\ G H?*\ 8H* G" JEENT
- 15 )G (10 ) M - ) - )
H® G" H2\~%] . ,
_80ﬁ(1_ﬁ) (1—5m> ]sm2g (8.17)
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e —G"2> [3+ 162 (1 o E>_l+ w0 (1 = Ez)_z] in 2’ 1
aH - 16,]2 G/l5 ( L Gllg G"2 Grl4 GNZ sin 28 . (8- 8)

We now express the long-periodic terms in the notation of (5.00) and (5.01).

GIY—GHZ%C-;; g g/ 3’4574
r—r=2l,  K—h"=Tth, .
e A (B2

If we then use (8.04), (8.05), (8.14), and (8.16) through (8.19) and place G"*= up, L'*=pa, H/G"

=cos I, G"?/L'*=1—e?, g =unperturbed g as given by (4.18), we find to the required accuracy
~ oren 2 2)—3/2 2 2 -1
Gy=— 6 e2(1 —e2)32m2(1 — 7 cos? I) (1 —5 cos? )~ cos 2g (8.20)
= B i _ o
14:E " (1—e*)%m3(1—"7cos*I)(1 —5cos?I)~!sin 2g (8.21)
= 5

2
—_ (%) [2 + 62 — 3(2 -+ 362) C()32 I— 8(2 -+ 562) COS4 I(l . 5 0052 I)_l

—80e? cos® I(1 — 5 cos? I)~2?] sin 2g (8.22)
2
hi=—— (%) 2 cos I[3+ 16 cos2 I(1 —5 cos?)™' +40 cos* I(1 —5 cos2 )~2]sin 2g.  (8.23)
9. Secular Effects

We now have to use (8.02), (8.08), (8.10), and (4.17) to obtain ", g’, and A" as linear functions
of the time. From (4.17) and (8.08) we obtain

AF & . oFF* by kR
=9 —_ p— 2 —
oL’ s Yz @ oH

=27(vy sgn as — V). (9.00)

From (8.10) and (6.12), with use of e'?=1—G"/L"?, L'>=pa’, and ny?=1— H?*/G", we have with
sufficient accuracy

3usrioy G H? H*
Fi* = sarir (-3 73) (330 gt 5 ) 50D
Then

IF**  45uSrio G" H? H*
3L~ 128L7C" (1 L ) <3 0GRt G”‘*) (9.02)
OF*  15ufria, G G” H? G\ H
86’1’ = 128L’gC”3 [3 (7 3 e >+ 18 (7 N 15) m+ [ (55—27 e )67‘] (9.03)
OF ™ 15ubrioy G"” H?
e e [ (.04

Since our constant orbital elements a, e, and I, and thus the frequencies v, and v», correspond
to L', G", and H, we may drop the double primes from the v’s in (9.00). Also, to our speciﬁe(j ac-
curacy, we may put e2=1—G"%/L'?, L'>*= pa, and n3=1—H?*/G" in (9.02) through (9.04). Then,
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with the unperturbed values [, g, and h given by (4.18), we find
"= 14 o4lss g =g+ 018 h"=h+ o ihs,

where

las =_£
128

4
gu=— % <§) n[3(4+ 3e?) — 18(8 + 7e?) cos? [+ 7(28 + 27e?) cos* I |t

4
(%) n(l1 —e?)*(3—30 cos? I+ 35 cos* )t

115 i\ ;
hyy=—5-(—| n(2+ 3e?) cos [(3— 7 cos? I)t.
32 \p

(9.05)

(9.06)
9.07)

(9.08)

We postpone summarizing the results for the residual fourth harmonic until the complete algo-

rithm in section 11.
10. Effects of the Third Zonal Harmonic
By (2.01) the contribution of the third zonal harmonic to the potential is
AV = urir-J3Ps(sin 6).
Corresponding to (3.02), this leads to
AF,=— urir=*J3Ps(sin 6)

and thus to

__Mre, [_3 15 . (a)'. _5 3<‘_1)4 - ]
AF,= 04.]3[ 2n0+8 °<r> sin (v+ g) g sin (3v+3g) |,

corresponding to (6.06). Following the notation of section 6, we then find

2 3
AFxm=(27r)’1f AF,dl:—I;Z"’ Jae(1 — e2)-5i2 (—%n0+18—5n3> sin g,
0

which is purely long-periodic, so that
AFlm:AFlp (10.04) AF]CZO.

Since AF;.=0, there are no secular effects.
The short-periodic part of AF; is then

urs 3 5 a\* .
AF”:AF.J"‘AF“n:_';;J:; [(—§n0+§ng){<;) sm(v+g)'

—e(1 —e?)~52sin g} —% 3 (:—1)4 sin (3v + Sg)]-

On following the same procedure as in section 6, we find

dAS;

T:_ (27TV1)~1AF1[
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where

A81 == (27TV1)_1fAF11dl (1008)

3
ok Ja(1 —€2)732m4{3(1 — 5 cos2 I)[ 12e(v — [) sin g+ 3e2 cos (v—g)

~ 96na*
—6(2+ €?) cos (v+g) — 6e cos (2v+ g)—e? cos (3v+ g)] + M3[15€2 cos (v + 3g) + 30e cos (2v+ 3g)

=+ 10(2 + €?) cos (3v+ 3g) + 15€ cos (4v + 3g) + 3e? cos (5v+ 3g)] }. (10.09)

Before taking derivatives of (10.09) with respect to L' and G’ one must replace e® by
1—G'?/L"%, n2 by 1—H?/G"*, and a by L'?/u. The short-periodic effects are then given by

dAS, 9AS,

3[ :L—L’=J3L3 ‘_‘W:l~l’=]3l3

dAS , __9AS

@EG—G =JiGs  (1010)  —Z=t=g—g = (10.11)
0AS: . . _ 9AS, L

ah_H H =0 aH_h h'=Jshs,

4
L3=—7 {(—g Mo+ 185 nb) [(a;) sin(v+ g) —e(1 — e?)~%2 sin g]

—m <-’§->4 sin (3v+ 3g)]}- (10.12)
3 2
Gs=—na’(l —e?)* <%> {( z Mo+ 185 3 ) [e(v — 1) cos g+% sin(v—g)

+<1+;e2) sm(v+g)+1

2
2esm (2v+g)+ —sm 311+g)]—%7)8 [% sin (v+3g)+%e sin (2v+ 3g)

12

;) (1 I é ez> sin (3v+3g)+ sm (4v+3g) + = sm (Sv+ 3g)]}- (10.13)

3
l;;=£(l —e?)* (%) {3(57}0—4) [(1 —e?)(v—1[)sing+ (l +%e2) cos g

3
4.-%(14-—362)cos(v—g)+%ezcos(2v—g)+f—6cos(3v—g)—e(l—e2)cos(v+g)
e (e e R ) B = G e Gv+e)

5 cos 2vtg)—o; e*) cos (Bv+g)—5 e’ cos (dvtg 16cos v+g

Sidom?E [—% e’ cos 3g—1—6- cos (v—3g8) — g (6 + 5€?) cos (v+ 3g)——<%+ ez) cos (2v+ 3g)

+§ (1—e€?) cos (3v+3g) +i (5+e€?) cos (4v+3g)+ 4% (54 + €?) cos (5v + 3g2)
1 e’
-i—§e2 cos(6v+3g)+ﬁcos (Tv+3g) |- (10.14)

3 4
gs=—(1—ed) %1y —% (r;) {n61(4_ 39m3 + 40md) [e(v— l) sin g+% cos (v—g)

2 2
—(l +%e‘)cos v+g)——ecos 2v+g) —Ecoe (3v+g)] + 5m0(813 — 3) [%cos (v+3g)
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2 2

2

3
hy= (%) {§ cot I(l —%sin2 I) [e(v—l) sin g+

2

2

+lecos(2v+3g)+ <l+ e)cos (3v+3g)+

+lecos (2v+3g)+%(1+le'> Ccos (3v+3g)+ cos (4v+3g)+—cos (5v+3g)]}'

e? 1
Zcos w—g— (l +§ez> cos (v+g)

oL ecos (2v+2g) ——= cos (3v+ 2g)] e sin 2/ [— cos (v+3g)

4

cos (4v+3g) + 20 908 (5v+ 3{1)”’

(10.15)

(10.16)

Continuing on to the long-periodic effects and following the procedures of section 8, we find

(AF)**=0,

so that the third harmonic gives no secular changes, and

BAS
27 (V] — v5) L=—AFy,.
Now
3uirie” .
Flp:_gL,36,1513710< G”2> qlng )

by (10.03) and (10.04).

aASik lyﬁ.}'} "_n
ag/ 2 Gu .] € 7’0 S ng )
so that
1 n._n
AS?‘:—E % e'ng cos g'.
It follows that
AASE ., 4, dASY o w1
-al’—l_L _L - (”L,l :l _[ :J313/J2
aAST ' " ~ aAST ’ " =
G =G —C'=hCall (1022)  —Zt=g' &= Jial):
dAST ) dASH
n —H —H — =g =h = k'=Jshdl]s,

where

With use of (10.18) and (10.19) and of (8.13) for 27 (v — v}), we find

é =—r,na(l—e )" *%emno sin g

1r.(1—ey®

1322 i . sin/ cos g
5 _lg(ecos”_sin]) cos
&s 2p\ sinl e &

_1re
3= 2pecotlcosg.
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(10.19)

(10.20)

(10.21)

(10.23)

(10.24)

(10.25)
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(10.27)



A summary of the results for the third harmonic will appear in the next section, which gives the
complete algorithm.

11. The Complete Algorithm

We shall summarize results by writing out the complete algorithm for the calculation of the
motion in the potential field (1.00), as modified by the third harmonic and the residual fourth
harmonic. This will involve a repetition, with some changes, of about two pages of an earlier
paper [Vinti 1961 a], but it is highly desirable to assemble the whole solution in one place.

Let the planetary constants u, re, J2, J3, and J4 be given, along with the constant orbital ele-
ments a, e, I, lyo, g, and B3. To calculate the

Unperturbed Reference Orbit

compute
c=reJ% no=sin [ p=a(l —e?
D= (ap—c?) (ap — c*n) +4a*c*n} D' =4a**1—n})+D
A=—2ac?D~'(1 —n3) (ap — c*n?) B=c*n2D-'D’
b1=—%A b,=B* — 20y =w(a+by)!
2
—-% = aopo=—cX1—m2)+apD-'D’ ae=(—2a1)% (aopo)* >0
1
C2n2 % CZI)
3= <1 ﬂaop(:) cos [ n;2=apD, k=c*p~? g=mnm;"*

A== e%p S (bo/p)"Pulb/bo)Rn—2[(1— €)% ]
n=2
Ay =(1—e%p1 S, (balp)P(bi/b)RA[(1 — e2)%],
n=0

where P,(x) is the Legendre polynomial of degree n and where R,(x) = x"Pn(x~!), always a poly-
nomial of degree [n/2] in x2. ‘
Ay=(1—e4p= S DyuRpsa[(1— V%],
m=0

where

Dyi= i (—1)i="(c/p)*=2"(ba/ p)*"Pan(b1/b2)

n=0
i

Dsi1= 2 (— 1)i_"(C/P)2i_2"(b2/P)2"+1P2n+1(bl/b2)

n=0
B,=27"'¢7%*[K(g) —E(@)]  B:=2m"'Kl(q),

where K(q) and E(q) are the complete elliptic integrals of the first and second kinds, respectively.
It may be convenient to have the series

1, 3 15 , , . 9
Bi== +16q 128q+..‘ B;= l+4q+64q
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Continue with

(2m)! ™1 (2n)!nn
22m(m!)2 - 22n(n!)2

B;=1—(1—=m;3"%— Y ymn;*", where yn=
m=2
An=3(1— e pre(—2b:b2p+bY)  Aiy= % (1 — e2)h p-3ble?
4 1050 2 L) €)=p "0y
Ay =(1—e?) p"e[blp“ + (36— bp2 —3 b,bg( 1 +%2)p_3 +2 pya+ 3e2)p—4]
— — p2)% n—1 e_2 2__ h2\p—2 9 2 - 3 -
Ano=(1=etp~t | T (37— bYp~ — ebibip~1-+ 2 bi(be® +et)p*

3
A= (1= pt & (— bibip~>+bip~)

3 (1_82)% —5b4e4

A2=5c8

Az =(1—e2*%p3e [2+b1p"1(3+ ) ( )(4+3e2)]
A32=(1—62)"2p‘3[4+ bip~le*—p- <Z %2> (%bz )]
Asz3=(1—e?)%p-3e3 [[f_lzp‘l ( )]

A -—_L 1_2% »54lb2+2

s 32( e)p622 <

2mvy = (— 201)% (a + by + A, + c*nd.B\B; 1)1
2771/2—((12_(13 1A2B2_1(a+b| +Al—+—(;27’gAzBlB2—1)-1

The uniformising variables E, v, and s are then given by E=M;+E,, v=M;+E),, and ¢ =
+p. If t is the time, their secular parts M, and s, are given exactly by

M= lo+ 271t Us = lo+ go+ 27rvst.

Let the periodic parts be split as follows: E,=E¢+ E,+ E,, vy, =uv+v1+ v, and Y, = o+ ¢
+ {2, where, e.g., Ey contains terms of order J9, Jo, and J3, E; contains terms of order J, and J3,
and E» contains terms of order /3 only.

Then E, is given by the Kepler equation

M+ Eo—e' sin(Ms+ Eq)=M

where e’ = ae(a+b1)"! <e. The term v, is then given by placing v=M;+ vo and E = M+ v, in the
anomaly connections
cosv=_(cos E—e)(1 —ecos E)! sinv=(1—e?*% (1 —ecosE)!'sinkE

or equivalent relations. (Note that e here is the original e and not the e’ in the Kepler equation.)

Then
Yo =(—201)"% (a3 — ad)* ny'A2Bzvo. '
The term E; is now given by

E1=[1—e’cos(Ms+Eo)]"M1—%e’[ —e' cos (Ms+ Eo)]|=*M3sin (Ms+ E),
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where

2
M;=(a+ b)) [— (Ay + c2n242B1B3 Yo + CZ (—2a1)% (03 — a3)~%mj sin (25 + 2!110)]'

The term v, is then given by placing v=M;+vo+v: and E=M;+ E¢+E; in the anomaly connec-
tions. Then

l!fl - (_ 2&1)_% (aé_ a%)‘éna‘Bgl[szl +A21 sin (Ms =+ Uo) +A22 sin (2Ms =+ 21)0)]

+98—232—1 sin (205 + 200).

Finally

Es=[1—¢€' cos (Ms+ Eo+ E1)] 7'M,
where
My=—(a+b))! [Awl + A1 sin (Mg~ vo) + A2 sin (2M s+ 2v,)

+ 2 200)% (03— )% md {Bﬂpl = Yt cos @i+ 20 — 9§sin (2015 + 24) +—g£ e 44;0)}]-

Then v is found by placing v=M;+ vo+ vi +v2 and E=Ms+ Eo+ E; + E> in the anomaly connec-
tions and

U = (— 201) % (a3— a2)* 5" Bz '[A2v2 + A21v1 cos (M~ v) + 242001 cos (2M s+ 2vo)

2
+ Aoy sin (3M + 3vo) + A24 sin (4M s+ 4wp)] +%B§1 [L}ll cos (2ys + 2)

2
+ 3—? sin (2 + 240) — %% sin (445 + 4%)] :

Unperturbed Reference Orbit
The spheroidal coordinates p and n are then given by
p=all—ecosE)=(1+ecosv)'p n=m sin Y,

where E=M;+Ey+E,+E> and v=M;+vy+v:+vs. To obtain the unperturbed right ascension ¢,
first calculate an angle x, equaling y whenever ¢ is a multiple of 77/2 and satisfying

cos x=(1—m3sin? §p)~*% cos ¥ sin x=(1 —m3)% (1 —n3sin? Y)* sin Y
Then

¢ =3+ az(af —az)* 7)0[(1 —m3)~% (1 —m32) % x+ B+ -5—32— 305 sin 2{/;]

— az(—20;) % [A.w ols 42 A3zp sin m}].

n=1

The Zonal Harmonic Perturbations

Within the accuracy of calculation of the perturbations, we may use either the approximate or
the accurate formulas listed below. (Use of the approximate formulas may involve more work than
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use of the accurate ones, because the latter will already be known from the solution of the un-
perturbed problem.) Compute

Approximate formula Accurate formula
n pra?
l lo+ nt Ms=lo+ 274t
g go+4 ( ) nJa(5 cos* I — 1)t go+2m(ve — i)t
E M+ E, M;+Eo+E\+E,
v M,H—vo Ms+1)0+l}|+l);:

Also, r=p, within the accuracy of the calculation. Then compute

Third Harmonic Short-Periodic Quantities

3 4 4
Ly= n:) [( i Mo+ 185 7)0> {(g) sin (v+g) —e(1 —€?)72 sin g} —% i1k (%) sin (3v -+ 3g)]

g 2
G3=—na*(1 —e?)% (r;,) {(—%no—kl{;jng) [e(v— ) cos g+% sin (v—g)

L e sm(2v+g)+—sm 3v+g)]

1,
(1+2e>qm(v+g +2

15 e’ 1 1 12 .
—gno 151n(v+3g)+2eqm(2v+3g)+ 2e sin (3v + 3g)

e . e’ .
+4sm (41)+3g)+20 sm(5v+3g)]}.

(Note that v — /= v,, within the accuracy of the calculation.)

_3 [:_'“ 2 __ — o2 (y—]) <} ( _1.2) € (14 — 2,2 _
l;;——se(l ek (p)'no(S’r)o 4)[(1 e?) (v—1)sing+ l-+—26 cosg+8(l4 3e?) cos (v—g)

cos (Bv—g)—e(l —e?) cos (v+g) — §cos u+g)— i (34 —e?) cos Bv+g2)

3
+le2cos(2v—g)+e— 5

2 16

_1, _e 5 _m<2)33[_12 _e _
9 € cos (dv+g) 16 cos (5v-+-g)] (l e?) e s 5 € cos 3g 16 08 (v—3g)

(6 + 5€?) cos (v+3g) — (1 + 62) cos (2v+3g) + (l —e?) cos (3v+3g) + (5 + e?) cos (4v+ 3g)

"8
'i
40(54+ez)cos 5v+3g)+ e? cos (bv+ 3g)+ Rco%(?v-f—Sg)]
—— (1= )% l— (1) ms 14— 30m2+ 40mD) | ew— D) sin g + & ~
&=—(1—e>)"%l3 8\p iy m; my) | elv—1) sin g 4cos(v g)

2

(141, _1 _
(1+2e)cos(v+g) ecos (2v+g) 2

62
—cos (3v+ g)]

3 2
_% k) 10(8n2 — 3) [% cos (v+3g)+ % ecos (2v+ 3g) +]§ (l + % e“’) cos (3v+ 3g)

+£ 4,08 (4o + 3g)+— cos (5v+3g)
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_(re\[3 _15 —DVei e a—(1+1L.2
hs s 2cotIl R e(v l)smg+4 cos (v—g) 1+2e)cos(v+g)

—%ecos(2v+g) cos(3v+g)]——1§sm2l[ cos(v—i—3g)+1

16 2e cos (2v+3g)

1.1, e e )
+3 (1+2e )cos (3v+3g)+4cos (4v+3g)+20 cos (5v+3g)]}

Third Harmonic Long-Periodic Quantities

(33 = % rena(l —e*)~*%emgsin g

~= Te — p2)%
I3 2ae(1 e)%m, cos g

~ :Q(ecoszl_sin
&s 2p \ sinl e cos &

’;32—%‘;600tlcosg

Fourth Harmonic Short-Periodic Quantities
__1(re\? _ » 105 4) [(‘l)s_ 2 —7/2( 3 2)]
Ls= 8((1) (na)® {( 15mi+—— 3 . (1—e?) l+2e
2 7 2 a)? 3 2\—7/2
+5m; 3—51)0 - cos(2v+2g)—ae(l—e) cos 2g

= % <9>5 cos (dv+ 4g)}

_ 3 (re)! 2 _7 2)[_§ Ap— D) _e =
Gs= 8<p) (MP)”’Wo{(?’ 5 M 2e(v l) sin 2g 4cos(v 2g)

2

<3e+34 )cos (v+2g)+(]+382> cos(2v+2g)+<e+ 1

) cos (3v+2g)
3e? 1 3e?
+ Y cos (dv+2g) + = cos Sv+2g) |+ 3 7;0 5 e3cos (v+4g) + 5 cos (2v+4g)
1 3 3
+ 2e-+-§e3 cos (Bv+4g)+ 1+§e2 cos (dv+4g)+ 5 10 cos (5v+4g)

+ jlz e? cos (6v+4g) + cos (Tv+ 4g)]}

! =<_e) (1 = b {6(8—40 2+ 35m4) [48(1—62)@—1)
4=\3,) 2048 oo
+2 80+ 1262 1764 sin v+ 420 — ¢2) sin 20+ (40— ) sin 30+ 106 sin 4o

‘ + €3 sin 51}] — 4T3 —6) [240(1 —e?) (v—1) cos 2g+ 5€* sin (3v—2g)

+ 50e2 sin (20— 2g) + 15e(16 — 3e?) sin (v — 2g) — 20(14 + 5e?) sin 2g

o L 10 (8 — 2462 —19¢%) sin (v + 2¢) + 240(1 — &) sin 20+ 2¢) + Ly 10 24+ 160 5% sin 3o+ 20)

+20(17 + 2€?) sin (4v + 2g) + 3e(64 + €?) sin (5v + 2g) + 50e? sin (6bv + 2g) + 5e? sin (Tv + Zg)]
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i [35@" sin (v — 4g) — 350¢? sin 4g — 105¢(8 + 5e2) sin (v + 4g) — 1408+ 11¢€?) sin (2v + 4g)

= E (8 +20e? + 7e*) sin (3v+ 4g) + 840(1 — €?) sin (4v + 4g) + = (104+ 84e% — 13e?) sin (5v+ 4g)

+ 140(16 + 3€?) sin (6v+4g) + 15e(88 + 3e?) sin (7v + 4g) + 350e? sin (8v + 4g)

+ 35€3 sin (v + 4g)]}

gin=—(1—e?) %lsy— ’5/12 {2(136 500m2 + 38572 [6(2 + 3e2) (v — )

+ 9e(4+ €?) sin v+ 9e” sin 2v + €3 sin 3v] — 2(12 — 822 + 77n;) [60e*(v — ) cos 2g

+ 10e? sin (v — 2g) + 30e(4 + €?) sin (v + 2g) + 20(2 + 3e?) sin (2v + 2g) + 10e(4 + €?) sin (3v + 2g)
+ 15e2 sin (v + 2g) + 2¢3 sin (5v + 2g) |+ n§(11ng—4) [35€3 sin (v + 4g) + 105€2 sin (2v + 4g)

+ 35e(4+ €2) sin (3v + 4g) + 35(2 + 3€?) sin (4v + 4g) + 21e(4 + 3e?) sin (Sv+ 4g)

+ 35€2 sin (6v + 4g) + 5€3 sin (Tv + 4»g)]}

4
hai T (%) cos [ {3(77)'0—4) [(l +%ez) =0+ <3e+% e:‘) sin 1}+%€Z sin 2v

16
€ in By 4B ToD)| 2 A=) cos 2+ sin (=2 (‘3€+3) (+ 2g)
12sm v ( no) v—1[) cos 2g 8sm v—2g8) 5 8 sin (v+ 2g
! 1, 3e? 1 3e?
‘ +(§+4 sin (2v+2g) + e+8 sm(3v+2g)+ sm(4v+2g) 4051n(511-f—2g)
2 3
‘ e SR et (2v+4g)+(le+e—) sin(3v+4g)+(l e )SIn(4v+4g)
8 8 2 8 4 8
+<3e < ) (50 +4 )+— (6v+ 4g)+ (To+4 )]}
1ot 20 sin (5v +4g sin (6v+4g 56sm v+4g
Fourth Harmonic Long-Periodic Quantities
~ 5,-2
Gy=— 16 eX(1—e*)32n3(1—7cos*I)(1—>5 cos? )~ cos 2g
P 0 (re)? 2)— 1 2 2 2 -1 o
14_E " (I—e%)%n2(1—7cos?I)(1—>5cos?I)!sin2g

2
g=— é% (%) [2+e*—3(2+ 3e?) cos® I —8(2+ 5e?) cos® I(1 — 5 cos? )

— 80e? cos® I(1 —5 cos? I)~2] sin 2g
hy = 156 < ) e?cos I[3+16 cos? I(1 — 5 cos? I)~' +40 cos* I(1 — 5 cos? [)~?] sin 2g.
Fourth Harmonic Secular Quantities

L=
#7128

__ 15
8277108

15
32

\4
(E) n(1 —e2)% (3— 30 cos? I+ 35 cos? It
( ) n[3(4+ 3e?) — 18(8 + 7e?) cos? [ + 7(28 + 27e?) cos* It
hy=— ( ) n(2+ 3e?) cos I(3—17 cos? t.
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With o4 = J4+ J%, next compute the variations in the Delaunay variables

SL:J3L3+(T4L4 6H=0

SG=J303+'&G~3+U4G4+QG"4

Js Jo
_ Js T
61 —_13[3 aF l,; + 0'4([41 + 142) ar l4
J2 J2
_ Jie gs;
58"—.]353‘{‘ g3+cr4(g41+g4z)+ 84
J2 J2
_ Js p Ts}
8h—,]3h3+ h3+0'4(h41 +h42)+ h4
Jo J2

The variations of the elements a, e, and n, are then

2 % — a2
da=—238L se=L" 8L—(ae)“<£> 56 me=—Tigg
an ue n KMop

The variations in the uniformising variables E, v, and ¢ are

8E =(p/a) (8] + sin Ede)
dv=(1—e** (p/a) [6E + (1 —e*)~! sin Ede]

oY =0v+dg

The variations in the spheroidal coordinates p, m, and ¢ are then
dp=(p/a)da — a cos Ede + ae sin ESE
om = (1/10)8m0 + Mo cos YdYs
8¢ =38h+ (1 —m3 sin® )" cos I[oy —% (up)~* sin 248G

The final rectangular coordinates X + 8X, Y+ 8Y, and Z + 8Z are then given by
X+8X+i(Y+8Y)=[(p+p)*+c2]%[1—(n+m)2]*% exp i(d + db)
8Z = pdn +ndp.
12. Discussion of Results

Since the chosen accuracy of the quantities appearing in the present perturbation, with factor
of order J3, is only that of an elliptic approximation, the variations in the Delaunay variables may
be checked against those found by Brouwer [1959], by Garfinkel [1959], or by Kozai [1962].
Comparison of the above results with those of Brouwer or of Garfinkel shows that the long-periodic
effects of the third and fourth harmonics and the secular effects of the fourth agree with Brouwer’s
or Garfinkel’s, provided that one replaces their J; by Js+J% Comparison with Kozai shows that
the short-periodic effects agree with his.! Similarly one can read out of Kozai’s paper the long-
periodic effects of /5, J7, and Jo and the long-periodic and secular effects of Js and Js; in so doing
one ought in principle to replace his J¢ by Js—J3 and his Js by Js+ J3, but this would be going be-
yond the accuracy of the present calculation. Since the author’s orbital elements differ from
Kozai’s by terms of order J,, the agreement with Kozai holds only through terms of order J, for
long-periodic effects and through terms of order J2 for short-periodic effects.

' On his page 451, however, in the first line for AG, the expression cos 2g should be cos g.
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To compare accuracies, we construct the following table, noting that the author’s reference
orbit accounts for about 99.5 percent of the deviation of the earth’s potential from spherical sym-
metry. Thus my perturbation potential is only about 0.5 percent of Kozai’s.

Effects of 99.5 percent of deviation from sphericity

Secular accuracy Short-periodic accuracy | Long-periodic accuracy
Kozai Through J3 Through J3 Terms do not exist
Author Exact Through J3 Terms do not exist

Effects of remaining 0.5 percent of deviation from spherity

Secular accuracy Short-periodic accuracy | Long-periodic accuracy
Kozai Through J3 Through J3 Through J2
Author Through J3 Through J3 Through J.

Thus the advantages of the author’s treatment are the exact solution for the secular effects
arising from 99.5 percent of the aspherical deviation and the much shorter algorithm. The prin-
cipal advantage of Kozai’s treatment, arising in connection with the remaining 0.5 percent of the
aspherical deviation, is his more accurate solution for the long-periodic terms.

The present solution, like all previous perturbation theories, gives rise to the resonance
denominator 1-5 cos? I in some of the long-periodic terms. These terms are thus not reliable
if one considers inclinations [ sufficiently close to 63.4° or 116.6°. For such inclinations one could
improve the accuracy by boldly dropping the long-periodic terms with coefficient J; +J? or, better,
by superposing on the present treatment lzsak’s [1962] solution of the problem of the critical
inclination. :

The element e occurs in the denominators of e, I3, g, I3, g, l41, and g4; and thus also in the
denominators of 8/, g, 8E, v, and &. No corresponding trouble occurs in the coordinates,
however. To test this point, reject all terms except those containing e”!. One then finds /;=
— &3, i3=—g~3, l41=—g41, L3=G:;, L4=G4, and G3=G;=0. Then 6€=0(€0), 8E=8v=81, and
oY =08v+06g=05l+8g=0. Trouble could occur in 8 or in 8¢ only through &y, so that 89 and &¢
do not become infinite for e=0. Similarly, trouble could occur in 8p through the term
—a cos Ede, which, however, does not become infinite, or through the term ae sin ESE. But 8E =8/
=0(e"), so that this term also remains finite. B

The quantity 7y = sin [/ occurs in the denominators of o, g3, hs, &3, and hs, and thus also in the
denominators of &g, 6k, 6y, and 8¢. Again, however, the coordinates remain finite when sin /=0.
To test this point, reject all terms except those containing ' =cscI. Since G and G are of order
Mo and G4 and G, of order n2, it follows that 8G is also of order Mo and 6mo= (1 — 92)8G/(Mmoup) remains
finite. Thus the term sin Ydmo in &1 remains finite. We also have gs=—h;=0(n"), 83=3% erep™!
X cos® I cscl cos g, hs= —3erep~' cos I csc I cos g, and 8 =8g=O(n5'). Thus the term 1o cos Y&
in 87 also remains finite, so that 8n remains finite. Finally, 8¢ = 8h + cos 18g = J3(gs + hs3) +J3,];‘(7L3
+g3 cos )=3%JsJ3'erep~ cos g csc I (cos® [ —cos I)=—3% JaJ3'erep~ sin I cos I cos g=0. Thus
8¢ remains finite. There is no trouble with 8p.
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