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Effect of Error in Measurement of Elastic Constants
on the Solutions of Problems in Classical Elasticity
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It is well known that a small error in the measurement of the elastic constants will result, for all
physically interesting boundary value problems, in small errors in the computed values of the stresses
and displacements. In this paper actual bounds are given for the error in both the first and second
boundary value problems. In addition it is shown that as Poisson’s ratio tends to % the results for
compressible theory tend to those for the analogous problems in the classical incompressible theory.

1. Introduction

In the boundary value problems of classical elasticity the elastic constants of the material in
question are assumed known. The solution of the problem is then expressed in terms of the
“known” elastic constants. However, the values of these elastic constants are actually deter-
mined empirically and are therefore not known exactly. Rather the values of these constants
may be determined to lie between certain limits.

It appears to be well understood by workers in classical elasticity that a small error in measure-
ment of the elastic constants will not have much effect on the solution to the problem in question,
and in problems where the solution can be determined explicitly for arbitrary elastic constants the
effect of a small error can be easily determined. However, if the solution cannot be computed but
instead pointwise bounds for the solution and its derivatives are sought, one must also take into
account the error which might arise due to inaccuracies in the determination of the elastic constants.

In this paper we develop a priori inequalities appropriate to the first and second boundary value
problems. These inequalities give upper and lower bounds for the pointwise error in approxima-
tion of the exact solution by an arbitrary function. The error in measurement of the elastic
constants as well as the error in approximation of the data of the problem is taken into account in
the bounds. Thus by choosing trial functions to closely approximate the data, a close approxima-
tion can be obtained, with a known bound on the error, provided the error in the constants is also
known. The part of the error which results from the fact that the trial function does not satisfy
exactly the data of the problem is quadratic. Thus, the Rayleigh-Ritz technique may be employed.
This means that we choose from a class of trial functions the best function in the sense that the error
term involving the data is minimized (see e.g., [3] ).

The above mentioned inequalities also are interesting in that they clearly display the fact that
the solution to the first (or second) boundary value problem for an incompressible medium (Pois-
son’s ratio, o, having the value ') as formulated in the literature, is actually the limit of the solution
for values of o <%. We show in fact that at points in a given region the solution for oo < % con-
verges with all its derivatives to the classical solution. To the authors’ knowledge this fact has
not been pointed out in the literature.
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2. Notation

Let D be a bounded domain with boundary I' in three dimensions. The displacement vector
u*(u®, ug, ug) corresponding to elastic constants w, and o, is assumed to satisfy in D the system
of equations

Aug=p*,— u'Fi, 1=1,2,3

uj j == Cap®. (2.1)

Here A denotes the Laplace operator, the symbol, i, denotes partial differentiation with respect to
xi and the summation convention is employed for Latin but not Greek indices. The constant ¢,
is given by

ca=1—20,, (222)

and F; denotes the body force per unit volume. In terms of u¢ and the elastic constants the stress
components 7% are expressed as

7= Maluf j+ ug ;— (1—ca) p8;]. (2.3)
The physically interesting values of ¢, lie in the interval
0<c,<3. (2.4)

In this paper we shall, for simplicity, restrict our attention to the first and the second boundary
value problems in classical elasticity. In particular, we assume that in D

Aug—psi=—p'Fii  Auf—pli=—py'Fi

U, ;== Cap" o= P (2.5)
We wish to compare the solutions u¢ and «# if one of the following sets of boundary conditions is
satisfied:

w=ul=fionT (2.5A)
Ma'Thn = up'thnj=gi on I (2.5B)
T8n;=78n;= h; on F._ (2.5C)

From the point of view of actual physical applicability, problem (2.5A) and (2.5C) are the two
interesting cases.
In the subsequent sections we shall set

w;i = ud— uh. (2.6)

3. Pointwise Convergence

We demonstrate in this section that if p# and F; are square integrable in D and h; is square
integrable on I, then at interior points of D, u$ and all its derivatives tend to ## and its correspond-

ing derivatives as c,—> cg, and pa = ug.
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We assume that there exists a constant Mg such that

L [pP]2dv < Mp. (3.1)

Let us assume now that we were able to obtain for either of problems (2.5A) to (2.5C), an
Ls bound for w; in terms of L. integrals of the data of uf. Suppose further that the coefficients of
the integrals of data tend to zero as c,— cg and we— ug. Then if the data of uf are in L, it follows
that as «—> B, wi— 0 in L,. Pointwise convergence would then follow from the continuity of w;.
The required L bounds for w; are derived in appendix 1 and appendix 2. Since we are also inter-

ested in computing pointwise bounds, explicit constants will be obtained. In problem (2.5A) we
have

f u)iwid'US MB (Ca—Cﬁ)Z"}‘MJ FiFidU’ (3 2)

D 2\ icCa A2
and in problem (2.5B)

f wiwidy < %F(CQ)MB(CG—CB)Z—" (! —ug‘)zkff FiFidv. (3.3)
D D

These inequalities follow from (3.1) using (5.23) and (5.30) of appendix 1. For case (2.5C) we have
instead from (3.1) and appendix 2,

= 2 =1
f wnndy < G—giatCa—caF M,,+k4[’“ s i ] f hihids
D

2 3))ll () l)ca K3 (2 3))
+L‘L—Lk 1 1 dv, 3.4‘

where vy satisfies (5.8).
We wish to obtain from these expressions pointwise inequalities in terms of the appropriate
sets of data. In order to do this we introduce the function I'g, (P, Q), the Kelvin fundamental solu-

tion of (2.1); i.e.,

1 {(1+2Cu [XI(P)-_XI ][XA(P _YI\(Q)]}

87 (1+ca) rpQ Tha (3:5)

I (P, Q)=

where rpq is the distance from the point P to the point . Then a particular solution u$ of (2.1)
is given by

a(P j I's.(P, Q) Frdvg. (3.6)
Let u¢ now be defined as
0= ug — us. (3.7)
Clearly then 2¢ satisfies the system

Aﬁ‘»“%i L'}" -=01in D. (3.8)
o s

We now define



where

w=a == | 42 TP, Q) ~ w3 TR(P, )1 Fide (3.10)
and
u/;i=z')‘,?—11€3. (3.11)

Since 0% and # are biharmonic functions, it follows that ﬁ'/,- is a biharmonic function. We may,
therefore, make use of some mean value inequalities for biharmonic functions (see, e.g., Bramble
and Payne [2]). That is, if R denotes the radius of the largest sphere contained in D with center
at the point at which bounds are desired (we take this point to be the origin), then

A A 75 A A
w(0)w;(0) < 167K |, w;W;dy. (3.12)

Similarly, as is shown in [3], it is possible to obtain

N N A A
DY (w)0)D*(w)(0) < C* L w W dy. (3.13)

where DV is any vth order partial derivative and C” is a constant depending on R and v.
It is clear at this point that if in any of problems (2.5A to 2.5C) the body force F; is identicatly

zero, then ; = 0 and ; = wi. By using the appropriate bound for | wiwidv (given by (3.2), (3.3),
D

or (3.4) we would obtain the desired pointwise bounds for u¢—uf. In fact, in any compact sub-
domain of D, we could obtain a uniform bound of the following type for any vth order partial deriva-
tive, D"(u¢ — uf), of u¥— uf (assuming that in (3.5), . hihids is bounded):

Do — uhD" (s — ) | o, o, o)< Fvlca— ]2+ K[! — pz']2 (3.14)

In either of problems (2.5A) or (2.5B), the constant K, would in fact be zero. We turn now to the
case F; # 0.
Clearly

W (0) w(0) < 2[T(0) W(0) + W(0) (0)]. (3.15)

But from (3.12)
A A 75 _
wi(Q)wi(0) < B8R’ [ L wiwidy + f Wiwid'l)]. (3.16)
D

Combining (3.15) and (3.16) we obtain

75

w(Owi0) < 5

fD wandv-+2 THOTIO) + 7 fnm-mdv. (3.17)

We seek now an appropriate bound for the last two terms of (3.17). An application of Schwarz’s
inequality to (3.10) gives

Wil; < fn [T — up T ] [ma' T — np'TE]dv J‘DF;;F;.-dv. (3.18)
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We now insert (3.5) into the first term on the right and make use of the arithmetic-geometric mean
inequality to obtain

1 - G(P) ey [ +2ca)  (1+2cp) |2
f Lz T8 = T L Pildv =g {2 [na' = 15'] +|:I~La(l+ca) MB(1+Cu)H

(3.19)
where C(P)ZJ rpadvg.
D
Combining (3.18) and (3.19) and integrating we have
—— H 1, —172 [ (1+2Ca) l+2Cﬂ) :| } 359
J:)wlu),dvsgzw2 {2 o = wa(l+ o) MB(1+CB) FiFrdv, (3.20)

where H= f f rpadvedvp.
DJD

It follows now from (3.18), (3.19), and (3.20) that
75 _ 1
1R L Wilidy < 763 {0(0)+ 8 R‘H}

L (I+2ca) (14 2cp) ]}f
{2[;La‘ ,uﬂ‘]l-l—[ (d+c) /.Lﬁ(l'*‘C[j) FiFrdv. (3.21)

The following bounds on G(0) and H are easy to obtain:

2wi( OYwi(0) +

G(0) < (4md) (3.22)

and

H <V (4wd)
(3.23)

where V' is the volume of D and d is the diameter. Thus combining (3.17), and (3.21), (3.22), (3.23),
and (3.26) we obtain

i e 155

1+ 24 142 ,
'{2(;L;1—;LE‘]2+[; (1+Cc)) M( (Hcé*)] ” FiFdv.  (3.24)

If F is square integrable then the insertion of (3.2), (3.3), or (3.5) into (3.24) gives in any compact
subdomain D; of D a uniform bound of the following type.

[ug(P) —uf (P) 1 [u(P) —uf(P)] < Bi[pg' — pp')* + Be[ca—cp]? (3.25)

where B, and B; are independent of the point P in D, and can be chosen independent of the elastic
constants. This follows because of the fact that since ¢q, cg =0,

[(1+20,,) _(l+203)] {( . )1+26a ) }2

tal+ca)  mal+cp) Fa =) T, T M (14 )1+ cp)

< 2 {dug' —pg'P + pg'(ca—cp)?} (3.26)

The inequality (3.25) clearly implies the uniform convergence of u¢ to uf in any compact subdomain
of D as p,— g and ca — cg.
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It is clear that if F has a sufficient number of square integrable derivatives then the conver-
gence of the derivatives of u$ may be obtained in a similar way. To see this we note that
al'g.(P, Q) arg.(P, Q)

e 9xg (3.27)

Thus (3.6) may be differentiated with respect to the variables of the point P, the order of differentia-
tion and integration being interchanged on the right. Then (3.27) is used followed by an integration
by parts which takes the differentiation off of I'..  The bounds for |ug ,(P)| are then obtained in a
manner similar to that used in obtaining (3.25). To obtain the desired expressions for higher
derivatives, we successively differentiate I'§. and use (3.27) to throw the differentiation off of I'¢, in
the volume integral on the right. Then if a sufficient number of derivatives of F). are square
integrable over D and over I' we obtain a uniform bound similar to (3.25) for any desired derivative of
u?. This shows, then, that u¢ and its derivatives converge to u8 and its derivatives.

We note, in particular, that if ¢g=0 the «# problem is the classical boundary value problem
for an incompressible medium. It follows then that as co—>0 and w,— g the solution to the
problem corresponding to a converges to the solution in the incompressible case. This fact, to the
knowledge of the authors, has never been pointed out in the literature.

Another interesting fact is that Fx need only have the desired number of square integrable
derivatives in a neighborhood of the point at which convergence is sought. The procedures used in
this section could be applied to any neighborhood € of the origin. Then since

f wiwidy < f wiwidv
Q

D

it would follow that if Fx were square integrable over D and enough derivatives of F; were square
integrable over ) and its boundary, uniform convergence in ) of the derivative would follow.

4. Effect of Error in Measurement of Elastic Constants on Pointwise Bounds

We consider now problem (2.1) with either the displacement components or the surface
tractions prescribed on I'.  Since ¢, and u, must be determined empirically we shall assume that
some error was made in making the measurements and that the values cg and wg were actually
obtained. If ¢i is a sufficiently smooth vector function chosen to approximate the solution u¢ we
may write

|ug— @il < ug —uf| +Huf — gil. (4.1)
We wish to obtain upper and lower bounds for u%0). If we can make each term on the right of
(4.1) less than some prescribed € we would then have

—2e<uf— i< 2e (4.2)

and ¢; would be a good pointwise approximation to uf.
The bound for the first term on the right of (4.1) is obtained for the first boundary value prob-
lem in elasticity from (3.24) and (5.22) of appendix 1.

(u(0) = u (0)) (u2(0) — uf (0)) < 715

(ca—cp)’pp'E (uP, uP)
)\10&65(3 - CB)

{Aaﬁj FiFidU+3 }, (43)
D

where
Aag= (1/N2+2R3d[15+ 5Vd|4m) (pn3' — pg')? +dup' (2R3[T5+ V/da) (ca—cp)*.
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A bound for E(uf, uP) is obtained by the methods of Diaz and Greenberg [4], Fichera [6], Synge
[10], or Bramble and Payne [3, eq (3.12)].

The second term on the right of (4.1) may be dealt with by the method of Bramble and Payne
[3, eq (4.10)].

We look now at the stress components 7. Using the triangle inequality we obtain

l7g— 75| < |78 — 78| + |7 —yl, (4.4)
where
1 —
T =,u;3[¢i,j +;, i+ %ﬁcﬁl%.ﬁi}] (4.5)

is an approximation to 7¢%. Bounds for the first term on the right of (4.4) may be obtained using
(3.13) following again the method outlined at the end of section 3. The second term on the right
may be dealt with as described in [3].

For the second boundary value problem in elasticity we again use (4.1) and (4.4), where in this
case u% and uf are solutions to (2.5C) and bounds for the second term on the right are given in [1].

5. Appendix 1

In appendix 1 we derive the inequalities (5.22), (5.23), (5.29), and (5.30) which are needed in the
text. In order to do this we start with

f wi, j(wi, j+wj, i) dv.

D

In particular, we bound this expression in terms of the solution of the problem with elastic constants
g, cg. Consider then the Green’s identity

fwl',j(Wi_j_"'wj"i)(lU:Jlwl‘(ll)i'j“_wj"i)njds—f wi(Awi-ij‘j,-)ds. (5.1)
D i D

Making use of (2.5) and integrating by parts we obtain for w; satisfying (2.6)

le,-,j(wi,j+wj,i)dv=—f wilpy ' T8 — pg ik ds + (ug' — pg ‘)f wilidv
D

+(ca+cﬁ—2cacB)fnp"p”dv—ca(l—ca) L (p)2dv—cp(1—cp) fn (pP)3dv. (5.2)

In either of problems (2.5A) or (2.5B), the boundary integral on the right of (5.2) will vanish. In
fact, this integral would vanish for various mixed boundary conditions which are encountered in
physical situations. On the other hand, in problem (2.5C) the boundary term does not vanish. We
shall thus consider first problems (2.5A) and (2.5B) and then treat (2.5C) at the end of the section.
If 0 < cq<3/4 (0= 1/8) we rewrite (5.2) for (A) and (B) as

o Alm s - _— — a_(Ca+cB_2CaCB) 3:|2
Lw.,l(wz,fi—w,,;)dv— Ca(l Cu) L)[p QCa(l—Ca) p dv

—-1__ ,,— (CG — Cﬁ) : B)2 b
W (e =z LwiFidv+74ca(l—ca) " (pP)3dv. (5.3)
The first term on the right is nonpositive. Thus

f wi, j(wi, j+wj, i) dv < 4‘4—(1—_‘@L (pP)2dv+ (u ]—/.LEI) f wilFidv. (5.4)
D Ca) D
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The strain energy E(u?, u?) corresponding to u” is given by:
2up'E(uP, uP) :f“ [uf j(uf j+ub ;) +cs(1—cp) (pP)*]dv.= —Céé (3—cp) fn (pP)3dv. (5.5)
The last inequality results from the fact that
uf j(uf 4 uf ) < 2[(uf 1)+ (4, 2)*+ (uff 5)?] = 2/3[uf ] (5.6)

Hence if c¢g # 0 we have from (5.4) and (5.5)

3uz' (ca—cp)®
2¢cqcp(1—cq) (3—cp)

fw;,_;(w,-,j-i-w;,i)dvz E(uf, u")+(u;‘—ng‘)] wiF'idv. (5.7)
D D

Boun;is for E(u?, uP) in problems (2.5A) and (2.5B) in terms of the data of the problem have been
given for instance by Diaz and Greenberg [4], Fichera [6], Prager and Synge [9], Synge [10], and
Bramble and Payne [1,3]. If F; =0 such bounds would give then for 0 < ¢, < 3/4 an upper bound
for

fl) wi,_,'(wi,j'f"wJ" i)dl)

in terms of the data of the u# problem of (2.5A) or (2.5B).
For ¢, > 3/4 we choose a constant vy in the interval

l—c'<y< 2/3 (5.8)

and consider the following identity derived from (5.2) by addition of the appropriate term to each
side of the equation

fwi.j(wi.j‘*’w;\i)dv_yj w; idvz[ca+cﬁ+2('y_l)ca€ﬁ]]po‘dev
D D D
—co{l+ (y—1)ca} fn (pa)sz_Cﬁ{l_('y_l)Cﬁ}f (pP)2dv+ (;L;'—/.Lg‘)f wilidv. (5.9)
D D
Using (5.6) then we have

_3y s e _ _ ay [cates+2(y—1)cacs] ,3}
<1 Z)J;)w,d(w,,‘,+wj,,)dv$ ca{l+ (y l)ca}f{ + Seal 1+ (v —1)co] dv

(ca—cp)?
de[1+ (y—1)ca] Jp

(pP)? dv+(;l.a‘—,u.“)f wilidv. (5.10)

Thus we obtain

2(py =

(ca—cp)®
2—3y)ea[l+ (y—1)eatp

f wi, j(wi, j+wj, i) dv < [pB]ZdU+
D 2(

i
(2 3 ) fw’Fd” (5.11)

The choice y=2cq/(3+ 2¢,) yields

o+, )y < B 2€aP(ca— Q@Lf by - f
Lw,,J(w,,_,—f-wj,,)de Teu(3 —c)? (PPrdv+ (n pgt) Dw,F,dv (5.12)

Proceeding as before we obtain finally the inequality

fwi,j(wi,j+ wi, )dv < F(cq)(ca— cp)? f(p3)2dv+(#«;‘ —pgt) fDFiwidU, (5.13)
D D
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where

[ [4ca(1—ca)]1, 0 < co < 3/4
F(ca) = (5.14)
[(3+ 2ca)?[4ca(3—ca)?], ca > 3/4.

It follows then that for cg# 0

=]
fWi,j(w,',j'f‘wj',i)dv$6—#é£(c—a)(Ca_CB)ZE(uB, uB)+([.L;l—,LLE1)j wilFidv. (5.15)
D cg(3—cp) D

In problem (2.5A) we have the relation

f wi,jw,-,jdv———-—f w,-Aw,dv=—f wi(p*— pP)dv
D D D

=—f (cap“—cﬁpﬂ)(p“—pﬁ)dv+(/w;‘—ﬂ,}‘)L)Fiw.-dv. (5.16)
D

or

(catc A ‘
J;)Wi,jWi,jdv:_CaJ;) [p"—2—cﬁﬁ)pﬂ]2dv+(u;‘—m§‘) fDF;widv-f-(LLTH)J;) (pP)2dv(5.17)

Thus, dropping the first term on the right,

)2
f wi,jw,‘,jdvsic"TcéLJ‘ (pP)2dv+ (pug'— pgt) J Fiwidv (5.18)
D Ca D D
and if cg # 0
T i <= _y_(ca—cp)? B B ~1_—1f,,
sz,le,]d'U = 3#’3 2CaCB(3_CB) E(M , )+ (/.La Mg ) DF'zuhd‘l). (5.19)

We have retained the term (u ! —p.g‘)f Fiwidv up to this point since in the important case
D

Fi;= 0 this term will vanish and the inequality will not be altered. Let us assume now that F; # 0
and note that

3 . — 2 —lE : -1_ ;-1
(ca—cp)*mg'E (up ue)+ (m'— g )J’ Faudo.
D

f wiwidy < —lf Wi, jWi jd’l) =
) e 2Nicacs(3 —cp) A1

A1 Jp (5.20)

Where A, is the first eigenvalue in the three dimensional fixed membrane problem for D. A lower
bound for \; is given by the Faber-Krahn inequality [5, 7], i.e.,

4ar |23
A =7 [3—V] s (5.21)

where ¥ denotes the volume of D. From the arithmetic-geometric mean inequality applied to the
last term of (5.20) it follows that

3(ca—cp)’mz’ (p' —pg")®
e = DA~ IS R F:
L wisidy < Nicacg(3—cp) E(up, ug) + A2 LF,F,dv. G

Similarly if we insert (5.18) into the first inequality in (5.20) and apply the arithmetic-geometric
mean inequality to the last term we obtain

(ca—cp)® (pa' — pg")?
LwiwidUSTlcaJL (pB)2dv+—rLFif'idv. (5.23)
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For problem (3.5B) it was shown in [1, eq (3.14)] that if w; is normalized so that f wids =0 then
P

k
Jr wiwids < 2—1; fD wi, j(wi, j+wj, i) dv (5.24)

where k; and k; are constants given in [1, eqs (2.9) and (2.19)], which are computable in terms of the
geometry of D.
We now make use of the identity

5 f wiwidv = fr xkwi (2niwy + ngwi) ds + 2f xkwi (wi, k +wr, i) dv+ 2 f xFwrwi, idv. (5.25)
D D D

An application of the arithmetic geometric mean inequality and (3.8) then yields (see e.g., [1, eqs
(2.26) to (2.28)])

28r3,
25

where ry denotes the maximum distance from the origin to I'.  From (5.24) and (5.26) it follows
then that

6
fw,'widvﬁ—r‘w‘[ wiw;ds + wi, j(wi, j+wj, i) dv (5.26)
D 5 Jr D

f wiwidy < k4f wi, j(wi, j+wj, i) dv (5.27)
D D
where
3 28
ky= [ H ryakilks+ 35 rﬂ]- (5.28)

Thus if in (2.5B) ¢ # 0,

12A‘4}LE1F(C(1_C5)2 B /3' 1 —1\27.2 ¢
8 ) B, )+ (' — ') [ o 529)

j wiwidv <
D

Finally, after inserting (5.13) into (5.27) and using the arithmetic-geometric mean inequality on
the last term we have

f wiwi(lv$2A‘4F(Ca)(ca—cﬁ)2f (p")zdv-f-ki(u;'—,ugl)zj FiFidv. (5.30)
D D D

6. Appendix 2

We derive here inequalities (6.3) and (6.4) which are needed to treat problem (2.5C).
Again we start with | w;, j(wi, j+wj, ;)dv and instead of (5.2) we obtain
D

f wi, j(wi, j+ wj, ,‘)dv=—fr wihi[y;‘ —[.Ll;l]ds+ (catcg—2cqcp) Lp“pﬁdv
D
—cal=ca) [ (peydo—ca1=en) [ (p02do+ (g =) [ wibido, 6
D

which follows from a calculation involving the use of the divergence theorem. We thus obtain as
before

S A _2 —1_—1J’..
fD wi, j(wi, j+wj, i) dv+ 2=3y) [pug!—pp'l rw,h,ds

2

= i e N — (Ga=aqa)* 9
~ Gy ) [ P < g St [ e 62
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where vy satisfies (5.8). It follows then from the arithmetic-geometric mean inequality, (5.24), and
(5.27) that if w; is normalized so that | wids =0 then

r
[l_f_é]f wi, j(wi, 34wy, ) dv < L’uﬁ_(k i )2f Al
2 9 L\, ) Js 1 = (2 3 )2 1”3 - illi

(c —CB)ZJ- (pP)2dv 2(#;1_#51)2
T 3y)[1+(y— Dea (2—3y)%b

k* f FiFidv (6.3)
D

for any positive numbers a and 4. In particular for a=%%, b= " (6.2) becomes

ky (pa' = pgh)
fww(wu+w,, )dv\[ks 2=37) jlfhhds
8(uy! _“31)2 (Ca— cp)? )
+Wk4 fDFiFidv+ (2—3y)[1+ (‘Y—l)ca] L (pP)3dv. (6.4)

As before inserting (6.3) into (5.27) we have

2 (u;‘-u;‘)]z f 8(uz' — f
wadv k4[k3 (2=3y) rhhds 2=3 )2 FiF:dv
k4(ca'_cﬁ) f B3
(2 3y)[1+ (y—1)ca] D(p I (6.5)

7. References

[1] Bramble, J. H. and Payne, L. E. Some inequalities for vector functions with applications in elasticity, Arch. Rat.
Mech. 11, No. 1, pp. 16-26 (1962).

[2] Bramble, J. H. and Payne, L. E. Pointwise bounds in the first biharmonic boundary value problem (to appear in J.
Math. Phys.).

[3] Bramble, J. H. and Payne, L. E. A priori bounds in the first boundary value problem in elasticity, J. Research NBS
65B (Math. and Math. Phys.) No. 4, pp. 269-276 (1961).

[4] Diaz, J. B. and Greenberg, H. J. Upper and lower bounds for the solution of the first boundary value problem of elas-
ticity, Quart. Appl. Math. 6, pp. 326-331 (1948).

[5] Faber, G., Beweis, dass unter allen homogenen Membranen von gleicher Flache und gleicher Spannung die Kreisfor-
mige den tiefsten Grundton gibt, Sitzber. Bayer Akad. Wiss., pp. 169-172 (1923).

[6] Fichera, G. Sull’esistenza e sul calcolo delle soluzioni dei problem al contorno, relativi all’ equilibrio di un corpo elas-
tico, Annali di Pisa 4, (1950); see also Methods of functional analysis in mathematical physics, Proc. Intr. Cong.
Math. Amsterdam 3, pp. 273-296 (1954).

[7] Krahn, E. "('Jber eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94, pp. 97-100, (1924);
see also Uber Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta. Comm. Univ. Dorp. A9, pp.
1-44 (1926).

[8] Nicolesco, M. Les fonctiones polyharmonique, Hermann, Paris (1936).

[9] Prager, W. and Synge, J. L. Approximations in elasticity based on the concept of function space, Quart. Appl. Math.
5, pp. 241-269 (1947).

[10] Synge, J. L. Upper and lower bounds for the solutions of problems in elasticity, Proc. Roy. Iris Acad. 53, pp. 41-64
(1950).

(Paper 67B3—-100)

167



	jresv67Bn3p_157
	jresv67Bn3p_158
	jresv67Bn3p_159
	jresv67Bn3p_160
	jresv67Bn3p_161
	jresv67Bn3p_162
	jresv67Bn3p_163
	jresv67Bn3p_164
	jresv67Bn3p_165
	jresv67Bn3p_166
	jresv67Bn3p_167
	jresv67Bn3p_168

