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Error Bounds in the Pointwise Approximation of
Solutions of Elastic Plate Problems
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(May 27, 1963)

Methods are presented for obtaining upper and lower pointwise bounds for the deflection (and its
derivatives) in certain physically interesting elastic plate problems.

1. Introduction

In a recent paper [1]' the authors presented a new method for obtaining pointwise bounds
in the first boundary value problem for elastic plates. The method is based on a mean value
inequality and an a priori inequality for biharmonic functions. In this paper we use the same
techniques to obtain pointwise bounds in terms of known data for the deflection and its derivatives
in the second boundary value problem for an elastic plate, i.e., the displacement and bending
moment prescribed on the boundary of the plate. In addition we derive pointwise bounds for the
solution (and its derivatives) of the third boundary value problem, i.e., the bending moment and
reaction prescribed on the plate boundary. In each of these problems bounds at an interior point
for the deflection and any derivative up to and including the third are obtained in a straightforward
manner. The inequalities obtained, bound an arbitrary (sufficiently smooth) function at a point
in a region in terms of the data of the given problem. Thus if one applies the inequality to the
difference between a desired solution (with known data) and an arbitrary trial function, it yields
a bound for the error in the approximation of the unknown solution by the known trial function.
The trial functions need only possess piecewise continuous fourth derivatives and are not required
to satisfy any differential equation or boundary conditions. If the applied loading is sufficiently
smooth in a neighborhood of the point at which bounds are sought, it is possible to obtain in addi-
tion to the above mentioned results, bounds for higher derivatives of the deflection in either of the
two problems considered here. We note the somewhat unexpected fact that it is considerably
easier to obtain bounds in the third boundary value problem than in either of the first two.

In a subsequent paper the authors wili present methods for obtaining pointwise bounds in
mixed boundary value problems for elastic plates.

2. Notation and Definitions

Throughout this paper we assume the plate to occupy a two dimensional bounded region R
with boundary C. If R is not polygonal it is necessary (for our method) in the second boundary
value problem to assume that C have bounded curvature. We make use of the summation con-
vention throughout this paper and employ a comma to denote differentiation, e.g., W, ;= oW [ox'.
The symbol o is used to denote Poisson’s ratio and D to signify the plate rigidity. The symbol A
denotes the Laplace operator and A? the biharmonic operator. Additional notation will be defined
as need arises in the text.

*University of Maryland, College Park, Md. Part time at National Bureau of Standards, Washington, D.C.
! Figures in brackets indicate the literature references at the end of this paper.
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3. Second Boundary Value Problem for Elastic Plates

The boundary value problem considered in this section may be stated as:

Au= 3.1
in R and w=/ 6-1)
u=g,Mu)=h (3.2)
on C. The quantities f, g, h are prescribed data and M(u) is the bending moment; i.e.,
A étu | 1ou)).
M(u)= D[Au 1—o) (33 +p 6n) (3.3)

2 . - . ’
In (3.3)%denotes the second tangential derivative of u, du/dn the normal derivative and p is the

radius of curvature on C.

It is possible to obtain bounds for the strain energy, but since this quantity is not usually of
physical interest we do not present a bound for it here. We indicate now a method for obtaining
pointwise bounds for u and its derivatives. The result may be stated as follows:

THEOREM 1: For any biharmonic function V with piecewise continuous fourth derivatives in
a domain R whose boundary C has bounded curvature, the following a priori bound holds for any
pth order derivative of V at a point O in R:

[V®(0)]2 <Ki(p) 3@0 Veds+ Kalp) 3§C (%)st + Ky(p) fe (%)st +Ki(p) jﬂc [MOV))2ds, (3.4

where the constants Ki(p), . . ., Ki(p) are explicitly determined.

Before proving this theorem we indicate how such an a priori inequality leads to pointwise
bounds for u and its derivatives in R. If we denote by ¢ any particular solution of (3.1) and set
V=u—¢—B, where B is biharmonic, then by choosing the data of B to approximate that of u—¢
(the usual Rayleigh-Ritz technique ?) we obtain pointwise bounds for u and its derivatives.

In proving theorem I we make use of mean value inequalities derived in [1], i.e., if S, denotes
the interior of a sphere contained in R and of radius r about O, then

V(0)|2 s% L Vdedys;‘% fk Vedxdy 3.5)
o |z<—f Vedxdy \— Prdxdy (3.6)

with similar expressions for the higher derivatives (see [1]). Thus in order to establish (3.4) it is

sufficient to obtain a bound | V2dxdy in terms of the quantities on the right of (3.4).
R

To this end we decompose V as

V=B+H (3.7)
where
AH=0 (3.8)
in R and
H=V (3.9)
on C. Then
A*B=0 (3.10)
in R and
B=0
(3.11)
M(B)=M(V) (H)
Gl Handbuch der Physik, 1, Mathematische Methoden, Springer Berlin, p. 278 (1956).
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on C. Clearly
f VZ(IX(I}'SZ{[ Bzdxdy—i-f szxa’y}' (3.12)
I R R

We first derive a bound for f B%dxdy. To do this we introduce an auxiliary function W satisfying

AW =B (3.13)
in R and
W=0,M(W)=0 (3.14)

on C. Then using the divergence theorem we obtain

fB%ixa’y:f BAlelxdy'Z——é M(B) LW(IS. (3.15)
R R (&

Thus by Schwarz’s inequality

fb’ dxdy \[ § [M(B)]% e 3€ <‘jff) (/.sj| i (3.16)
!

where ¢ is any positive function on C.
In order to bound the last integral in (3.16) we introduce a vector field with components /7 such
that fin; > O on C. Then setting
t=f"ni (3.17)

we have

2 J . ,-Atr’d,x—(1_y:5£f(‘;ﬁ’f)ﬂlw f (k8L — 26, VW, W, wdxdy. (3.18)
R [ R

This is one form of an identity due to Rellich (ef. [5]).

If the derivatives of /7 are bounded in R, we obtain by applying the arithmetic-geometric mean

inequality to (3.18)
fﬁ! (ﬂ)—(l.s = <('+ /—)) J' W, W, idxdy+ « f(AlV)zdxdy. (3.19)
¢ \dn «) Jr R

Here ¢ is just some bound for the largest eigenvalue of the matrix 2/1,— /%, 8! i.e.,
j 2fL i —f2 8HW . W, idxdy < cf W, W, dxdy, (3.20)
and
b= max (fif1). (3.21)

In (3.19), « is any positive constant. For a star shaped boundary we may choose fi=x" in which
case we may take ¢=0. Now, since W vanishes on C, it is clear that

fll (lul\<—J’H,, W

where A, is the first eigenvalue of the fixed membrane problem for R.?

(AW dxdy (3.22)
)\ R

The strain energy E(W, W) is given by

EW, W)Zg {f [o(AW 2 dxdy + (1 — o)W, ; W, i;](l_r(ly}- (3.23)
R’

3 For a discussion of the fixed membrane problem see for instance Courant, R., and Hilbert, D., Methods of Mathematical Physics 1, Interscience (1953).
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(AW )2, that

N | —

It follows easily, since W, ;W, ;j =

f AW)ldxdy<1 f [DE(W, W)], (3.24)

and, since W and M(W) vanish on C, + E W, W)= fWAZdedy Hence

I(AW)dedy = f WA*W dxdy. (3.25)
R R

(1 + o)
From (3.22)

f Wdxdy < (AW pdvdy. (3.26)
We thus obtain, using Schwarz’s inequality on (3.25) and inserting (3.26),
2 L]Z‘[ 2 2
L(AW) dxdy < [(1 Ton R(A W)2dxdy. (3.27)

Combining (3.19), (3.22) and (3.26) we now have (choosing ao=[b/\]?),

oW \? 4

In (3.28) we may use any lower bound for A;, e.g., that obtained from the isoperimetric inequality
of Faber [3] and Krahn [4]

< 7j3/A. (3.29)

Here jo is the first zero of the Bessel function J, and A denotes the area of R. We now set

4

A, BIETSDY (c+2[bX(]1%) (3.30)

where \; is any lower bound for \;. Then from (3.16) we obtain (recalling (3.13))
A
LBzdxdy < lTll fﬁc [M(B)]3%ds (3.31)
From (3.3), (3.9), and (3.11) we have

MB)=M(V)—-D(1—o) [<;i_12/+1;%]

fB2dxdy< =4 {3@[ V) —D(1— )gf] ds+D(1—o )2§§ —(%) ds}. (3.32)

We assume that the radius of curvature is bounded away from zero on C, i.e.,

Thus

p:=B>0 (3.33)

on C.
In [2, 5] the inequality

o % <8H> ds < § [2f’ oH _ax —CH] ds+2 % (6H> ds
(6! (@!
< 3§ - 1[2f1 ﬂ/a—x —CV] ds+2 99 ¢ (ﬂ)zds (3.34)
C as

was derived. Here t, denotes the minimum value of ¢ on C, and c is given by (3.20). Inserting
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(3.34) into (3.32) we then obtain (using 3.33) the inequality

212
f B2dx(l)’$2A1{D“2§ [M(V)—D(l—(r)—a ﬂ ds
i ¢ as
(1—0)? L ox! aV_ ]2 ‘§ (81/)2 ~|}
+_,3!m [ﬁ l:f ——cV|ds+2 (,t a5 ds |- (3.35)

Again, for a star-shaped boundary, we may take fi=x! (x'=x, x>=y) and ¢=0, since x'n; >0 is just
the condition for star-shapedness.
It remains to determine a bound for f H2dxdy in (3.12). Such a bound, however, was given
R

in [1]; i.e.,
f H2dxdy < kz% H‘lds=kg§ V2ds (3.36)
R c c

where ks is given by

1

The symbol ( )y denotes the maximum value of the quantity in parentheses.
Combining (3.35) and (3.36) and inserting into (3.12) we obtain the inequality

94 Jop-2 _ 2l =@} Joxiol
J;VzdxdyS ZAI{ZD ﬁ [M(V) D(1 ] QA= Btm [ﬁ [ s 35 FV] ds

E)V 2 /f-)
- —= 2 3.38
+ﬁvt<6s> (ls]-l-Al ('Vds}. (3.38)

The insertion of (3.38) into (3.5), (3.6) or the similar expressions for higher derivatives yields an
expression which is not precisely in the form (3.4). However, (3.4) can be easily obtained if the
arithmetic-geometric mean inequality is used in (3.38). This completes the proof of theorem I.

In some cases it may be difficult to compute a particular solution ¢ and its derivatives in R and

on C. In that case we may approximate u by any sufficiently smooth function y and decompose
as follows:

u—p=V+W (3.39)
where
A2V =0 (3.40)
in R and
V=u—=y,M(V)=M(u—1) (3.41)
on C, while
AW = A*(u—1) (3.42)
in R and
W=0MW)=0 (3.43)
on C.

We have already established a bound (3.4) for V®(0). We seek now a bound for W (0).
Clearly,

W(P)zf G(P,P")A*(u—1)dxdy (3.44)
R

where G(P, P') is the Green’s function in the simply supported plate problem, i.e., G(P, P")

denotes the deflection of a simply supported plate at a point P’ in R due to a unit point load at P.*
We now approximate W (P) by

W(P) = j [T(P, P') + B1A(u— ) dxdy, (3.45)

4 For a discussion of G cf. S. Timoshenko, Theory of plates and shells, pp. 156-167 (McGraw-Hill, 1940).
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where

, 1
[(P,P) =g rip log =, (3.46)

rpp!

the singular part of G(P, P'), and E_denotes any biharmonic function (possibly zero). We approxi-
mate a pth derivative, W@ (P), by W»(P), where

Wr(P) = [ L r'(P, P’)Az(u—tb)dxdy](p)—l- L BrA2(u— ) dxdy. (3.47)

Here [ ]® denotes the pth derivative with respect to the variables of the point P, and B? is an
arbitrary biharmonic function, which may be taken identically zero. Clearly then at an interior
point P

ww (P) —Wwr(P)=| [G(P,P')—T(P,P)]PA(u—)dxdy— | BPA2(u—)dxdy. (3.48)
R R

The order of differentiation and integration is interchangeable in the first integral since G(P, P') —
I'(P,P') is biharmonic in R. For simplicity we adopt the convention that for a function of the two
points P and P’', e.g., I'(P, P'), the symbol I'® (P, P') is to denote differentiation with respect to
the variables of the first argument. Thus I'?(P, P’) denotes differentiation with respect to the
variables of the point P while I'® (P’, P) denotes differentiation with respect to the variables of the
point P’.

In view of (3.39) we obtain

[u®(0) —y®(0) — WP (0)| < [V (0) |+ |W®(0) —W»(0)]. (3.49)

The term W?(0) involves only known quantities and hence may be computed directly. If p <3
the differentiation indicated in the first term on the right of (3.47) may be taken under the integral
sign and placed on I'(P,P’). The resulting integral exists provided A*(z—y) =0 (r5p"') as
P — P’ for some positive €. If we wish to compute W?(0) for p = 3 we decompose WP(P) into

Wr(P)=W2(P) +Wg(P) (3.50)
where
We(P) = [ fR (P, P’)A2(u—d;)dxdy](p) 3.51)
and
We(P) = fR BPA2(u— ) dxdy. (3.52)

Since B? is biharmonic the last term presents no difficulty. In order to evaluate W{‘(P) it is neces-
sary to make some assumptions on the smoothness of A2(x—1). We assume for the moment that
A?(u—1) has a sufficient number of derivatives in some spherical neighborhood Ss of radius &
about the origin and that P lies on the interior of Ss. Then

W\P)= L TO(P, P')A2(u— ) dxdy

= l"(”(P,P’)Az(u-—llj)dxdy—fg IO, P)A2(u— ) dxdy. (3.53)
55

R-S
5
We now integrate by parts in S5 and obtain

Wi(P) = f TP A (u— ) dxdy

8

—J; n'T'(P, P’)Az(u—dj)ds-l"f L(P, P") [A%(u— ) | Vdxdy. (3.54)
5 S5
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Here we have used the fact that ['(P, P")=[(P', P). In(3.54) ;5 denotes the boundary of S5 and
n’ the component of the unit normal in the direction in which the differentiation is taken. Since
P lies interior to Ss any derivatives of I'(P, P') with respect to the variables of the point P are
bounded on 35 and in R —Ss. The last integral on the right of (3.54) may be differentiated 3
times with respect to the variables of P and the order of integration and differentiation interchanged
provided [A2(u—)]V=0(r%p ') for some positive € as P'— P in S;. Letting P —> O we thus
obtain the value of wW(0).

To define W?(0) for p >4 we differentiate (3.54), make use of the fact that 'V(P, P")=—
'M™(P", P), integrate the resulting final term by parts, and continue in this manner until we obtain
an integral over S; which has the desired number of derivatives. We see in this way that for
Wr(0) to remain finite, it is sufficient that A?(u—) have p—4 derivatives in S5 and that the deriva-
tives of order p—3 be O(R<;;") for some € > 0 as P’ — P in Ss.

We need now only a bound for the last expression on the right of (3.49). To this end we use
Schwarz’s inequality in (3.48) to obtain

[(W®(0)—Wr(0)]? SL{[G(O,P’) —F(O,P')]‘l”—EP}dxdyL [A%(u—1) |2dxdy. (3.55)

Since the differentiations in (3.55) are with respect to the variable of P (before evaluation at O)
the quantity {G(O, P') —I'(O, P') ]” — BP} is just another function V,i.e., A2V’ =0 in R, with " and
M (V) given on C. Thus (3.38)is valid with ¥ replaced by {[G(O, P") —T'(O, P')]"”— B?} through-
out. Since G®(O,P’) and M(G®(O,P')) vanish on C only the quantity [I'®(O, P’)+ Br]
appears for ¥ on the right. We note that the right hand side of (3.55) may be made small by
choosing B? to approximate the data of —I'®)(0, P') and/or by choosing § to approximate the

data of u.
Let us denote the right hand side of (3.38) by I(V) and designate the constant in the mean value
inequality for [F®(0)| as C,, i.e.,

[V (0)] < C,,f V2dxdy. (3.56)
R

Then our bound may be expressed in the simple form

[u®(0) =42 (0) = WP (0)| < Cyl (w—) +1(I'P(0, P')+§”)f[ [A*(u—) J*dxdy. (3.57)

4. Third Boundary Value Problem for Elastic Plates

In this section we determine a priori bounds for a function V, assuming A?V (the loading) is
prescribed throughout a simply connected region R and that the boundary values of M (V) and Q (V)
are prescribed on C. Here M (V) is equal to —M (V)/D where D is given by (2.1) and M (V) is given

by (3.3). Also
— ) T ?*V a9 (laV
O(V)—a—n (AV) — (1 —o) [8328n (pas)]' 4.1)

The quantities M(V) and Q(V), are proportional to the bending moment and the reaction. We
prove in this section the following theorem.
THEOREM 11. Let V be any function with piecewise continuous fourth derivatives in R which

satisfies the conditions
35 Vds—fﬁ W 4= 35—(1 -
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Then at any point O in R,

[V@(0)]? < ki ﬁ [M(V)]zdﬁszﬁc [U(V)]st+k3j; n(A%W)2dxdy 4.2)

where the constants k; are explicitly determined, p < 3, and m is a known nonnegative function in R.

Here, as before, V®(x,y) denotes any pth order derivative of V. As indicated in the previous
section once an a priori inequality of the type (4.2) has been derived it may be used to obtain point-

wise bounds in the indicated boundary value problem.
Before proceeding further we define quantities p» and g» in terms of which the constants in

(4.2) will be expressed. These quantities are defined as follows:

LXa iX,idxdy
pz= min ————

, (4.3)
o ¢ va
@

where the minimum is taken over all piecewise continuously differentiable functions x which satisfy

2
g, (5
@@= min (4.4)
ﬁ""b:o 3§¢12ds
c

the condition ¢ xds= 0;
g

where the minimum is taken among all functions ¥ continuously differentiable on C and satisfying

Pds=0. The eigenvalues corresponding to the Rayleigh quotient in (4:3) are commonly referred
c
to as Stekloff eigenvalues. They are the eigenvalues of the following problem

Ah=0 (4.5)
in R and
oh

g—ph =0 (4.6)

on C. In general, p» will not be known explicitly. However, for our purposes any positive lower

bound p, for p» will suffice. We indicate later how this lower bound is obtained. The eigenvalues

corresponding to the Rayleigh quotient of (4.4) are the Wirtinger eigenvalues. They satisfy
d*u

Q-Fqu:o 4.7)

on C and the proper continuity condition. The eq (4.7) is of course the equation of the vibrating
string of length equal to the perimeter L of C. Thus
_4a?,

©="; (4.8)

We proceed now to the proof of theorem II. Let us again denote by I'(P, P’) the fundamental
solution of the biharmonic equation.

P | 1
F(PaP )_g r}%pl IOg <_)' (4.9)

rpp’
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(We could add any biharmonic function B to I" without altering the following results.) In terms of
I'(P,P") we have

V(P)=§>C V()(F)ds—ﬁj—iﬁ(l‘)ds+£ﬂ(m%ds—ﬁO(V)Fdsﬁ-LFAszxdy. 4.10)

For P on the interior or R we may differentiate (4.10) with respect to the variables of the point P
and interchange order of differentiation and integration on the right. Thus we obtain for p <3,

yw(0) = fc VQ(I'®)ds —ﬁg”l—/ M(I'®)ds + ﬁM(V) %rwds—?gc Q(V)I®ds

+f I'®A2V dxdy. (4.11)
R

Here again as in the previous section we could add to I'® any biharmonic function BP. The last
three terms of (4.11) involve only the known function I' and the data of /. Hence we define

- (p) —
D@ (0)=VP(0) — j{;c M) ag‘np ds +§ Q(V)Ireds —fk I'®A2V dxdy. (4.12)
"

and obtain by Schwarz’s inequality

oo <[ () § ras+$ (32) as|{(52) '$, 0w s+ f [0 Jras). a3

Since 9(; Vds= 0 it follows from (4.4) and (4.8) that
c

3§st\(§>2§( " s, (4.14)
D) (0) |2 < [350 (%)izﬁﬁ (g:{)zds]{(i—)zi [G(F(P’)]zderﬁ [M(W)]st}- 4.15)

6 2 a 2 . a_ 2 a_ 2
g, (5o Vg, (5 V=g, | (52 + (55 ) Jo (4.16)
In view of (4.3) and the fact that é <6—V> dssz (ﬂ) ds=0 we have
c \0x ¢ \dy

1A CIA% 1 1
ﬁ [(bé/) -1-(—(9%/) ]dssp—z y V2V, 2itV, yilV, yi)dxdy——;zJ; V, iV, idxdy. (4.17)

Thus

Now

Thus from (4.14), (4.16), (4.17) and the definition of E(V, V) we have for o > O

[(277) 3€ V2d5+§ (5n V)] < i=gy BV V). .18)

(For =% < o < O the factor (1 — o) is replaced by (1+20).) From the divergence theorem we then

obtain
(214_77-)2%0 V2d8+§ ( V>ds DP2(12_0') {é V)ds—§ VQ V)ds} G
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An application of Schwarz’s inequality yields

() § s+ 6 (&Y s < by | 19, DT T a5+ (&), @ as)- - 0200

Insertion of (4.20) back into (4.13) then gives the desired bound

o= s (4 s
{$ rw) as+() § O Fas). @

This is equivalent to the desired inequality (4.1), since instead of (4.12) we could have used
Schwarz’s inequality on the last three terms, being careful to use

f F(P)AZdedysf rep [[®)] dedyf rob A2V dxdy for p=3.
R R

It remains now to derive a bound for p; (i.e., find a p»). We denote by u» the eigenfunction
corresponding to p., i.e., (see (4.4) and (4.5))

Au,=0 (4.22)
in R and

ou

8_712_ pauz=0 (4.23)

on C. From (4.4) and (4.8) we have

15\ dus\?
2 = ek 5
iuzds = (2 ) i(as ) ds. (4.24)

We consider again the identity (see [5])
duz\? ou . 0% dus Ju: ;
o (5o) =g (G ao 2§ 5 S G s+ [ Ut B2/t Jus ey 425

which was used in deriving (3.34). Setting

| U802t Jun i iy < [ s, dxdy (@.26)
we obtain from (4.25) (by making use of the arithmetic-geometric mean inequality)
tmi( s ) ds < ﬁt ( s ) ds < b?gc In ds+2c g Us, iUz, idxdy, (4.27)
where
{[ (‘—) +t2]/t} < 2{2bt;! — tm} (4.28)

max

with b given by (3.21). Inserting (4.28) into (4.24) and making use of (4.22) and (4.23) we obtain

§ uds < <2L ) ~Lp2b + 2cps) 3§ u2ds. (4.29)
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It follows then that

(Pz +zc;)2 = dmrtm (L)~ + [c/b]? (4.30)
or that
p2 = P = [472tm(BL2) 1+ (c/b)2] % — c/b. (4.31)

If the boundary C of R is star-shaped with respect to the origin (i.e., xin; > 0) then we may
choose fi=xi, in which case ¢=0, t=xin;, and b=2{2r? T ta

Thus far we have indicated how to obtain bounds for the function and its first, second, and
third derivatives. In physical problems this includes all derivatives for which we would normally
desire bounds. However, if we wish bounds for higher derivatives they may be obtained using
the techniques of the previous section. For interior bounds the only term which will cause diffi-
culty for p > 3 is the last term on the right of (4.12); but this is precisely the term which was evalu-
ated in the previous section.
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