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Methods are presented for obtaining upper and lower pointwise bounds for the deflec tion (and its 
derivatives) in certain physically interesting e lastic plate proble ms. 

1. Introduction 

In a recent paper [1] I the authors presented a new method for obtaining pointwise bounds 
in the first boundary value problem for elastic plates. The method is based on a mean value 
inequality and an a priori inequality for biharmonic functions. In this paper we use the same 
techniques to obtain pointwise bounds in terms of known data for the defl ec tion and its derivatives 
in the second boundary value problem for an elastic plate, i.e., the di s place ment and bending 
moment prescribed on the boundary of the plate. In addition we derive pointwise bounds for the 
solution (and its derivatives) of the third boundary value proble m, i. e ., the be nding mome nt and 
reaction prescribed on the plate boundary. In each of these proble ms bounds at an interior point 
for the deflection and any derivative up to and including the third are obtained in a straightforward 
manner. The inequalities obtained, bound an arbitrary (sufficiently smooth) function at a point 
in a region in terms of the data of the given problem. Thus if one applies the inequality to the 
difference between a desired solution (with known data) and an arbitrary trial function, it yields 
a bound for the error in the approximation of the unknown solution by the known trial fun ction. 
The trial functions need only possess piecewise continuous fourth derivatives and are not required 
to satisfy any differential equation or boundary conditions. If the applied loading is sufficiently 
smooth in a neighborhood of the point at which bounds are sought, it is possible to obtain in addi
tion to the above mentioned res ults, bounds for higher derivatives of the deflec tion in either of the 
two problems considered here. We note the somewhat unexpected fact that it is considerably 
easier to obtain bounds in the third boundary value problem than in either of the first two. 

. In a subsequent paper the authors wiL present methods for obtaining pointwise bounds in 
mixed boundary value problems for elastic plates. 

2 . Notation and Definitions 
Throughout this paper we assume the plate to occupy a two dime nsional bounded region R 

with boundary C. If R is not polygonal it is necessary (for our method) in the second boundary 
value problem to assume that C have bounded curvature. We make use of the summation con
vention throughout this paper and employ a comma to denote differentiation, e .g., W, i. = aW/axi . 

The symbol (J is used to denote Poisson's ratio and D to signify the plate rigidity. The symbol Ll 
denotes the Laplace operator and Ll2 the biharmonic operator. Additional notation will be de fined 
as need arises in the text. 

·Universi ty of Maryland, College Park, Md. ParI time al National Bureau of Standards. Washington, D.C. 
I figures in brackets indicate the literature refe rences at the end of thi s paper. 
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3. Second Boundary Value Problem for Elastic Plates 

The boundary value problem considered in this section may be stated as: 

in Rand 
t:J.2u=f 

u=g,M(u)=h 

on C. The quantities f, g, h are prescribed data and M(u) is the bending moment; i.e., 

M(u)=-D[t:J.u-(1-0') (a 2u+!au)1 ' 
as2 p an ~ 

(3.1) 

(3.2) 

(3.3) 

In (3.3) a2u2 denotes the second tangential derivative of u, au/an the normal derivative and p is the 
as 

radius of curvature on C. 
It is possible to obtain bounds for the strain energy, but since this quantity is not usually of 

physical interest we do not present a bound for it here. We indicate now a method for obtaining 
pointwise bounds for u and its derivatives. The result may be stated as follows: 

THEOREM I: For any biharmonic function V with piecewise continuous fourth derivatives in 
a domain R whose boundary C has bounded curvature, the following a priori bound holds for any 
pth order derivative of V at a point 0 in R: 

where the constants K\(p), ... , K4(P) are explicitly determined. 
Before proving this theorem we indicate how such an a priori inequality leads to pointwise 

bounds for u and its derivatives in R. If we denote by cp any particular solution of (3.1) and set 
V = u - cp - lJ, where B is biharmonic, then by choosing the data of B to approximate that of u - cp 
(the usual Rayleigh·Ritz technique 2) we obtain pointwise bounds for u and its derivatives . 

In proving theorem I we make use of mean value inequalities derived in [1J, i.e ., if Sr denotes 
the interior of a sphere contained in R and of radius r about 0, then 

IV(OW ~~ f Pdxdy~~ f Pdxdy 
rrr s,. rrl R 

(3.5) 

1V(1)(0)12 ~ ~ f Pdxdy ~ ~ f Pdxdy 
rrr Sr rrr II . 

(3.6) 

with similar expressions for the higher derivatives (see [1]). Thus in order to es tablish (3.4) it is 

sufficient to obtain a bound J ;dxdy in terms of the quantities on the right of (3.4) . 

To this end we decompose Vas 
V=B+H (3.7) 

where 
t:J.H=O (3.8) 

in Rand 
H=V (3.9) 

on C. Then 

(3.10) 
in Rand 

8=0 
(3.11) 

M(B) =M(V) -M(H) 

2 cr .. Handbuch clc r Phys ik . 1, Mathe matisc he ~!ll'lhnd{'n. Springer 13, 'rlin. p. 278 (1956). 
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o n C. C le a rl y 
r f!2dx dy ~ 2{ r B2dxdy + r H2dxdy } . 
JH JH JH 

(3.12) 

We firs t de r ive a bo un d fo r r 8 2dx dy . To do thi s we in trodu ce a n a ux ili ary fun c ti o n W sa ti s fying 
JH 

(3.13) 

in R a nd 

W= O,M (W ) = 0 (3. 14 ) 

on C. Th e n us ing the dive rge nce theore m we obt a in 

r B2dxdy= r B6.2 W dxdY=--D1 1 M(B) aaW ds. 
JH JH t · n 

(3 . ] 5) 

Thus by Schw ar z's inequalit y 

(3.16) 

whe re ' is a n y pos iti ve fun c ti o n o n C. 
In o rd e r to bo u n d th e las t integ ra l in (3. 16) we introd uce a vec tor fi e ld with com po ne nt s p s uc h 

th a t pni > 0 o n C. Th e n se tting 

t = P ni (3. 17) 

we have 

2 r p W , i6. W dxdy= 1, (aaW ) 2ds + r (j~ ~: 8 ~ - 2/, D fl1, iW " dxdy . 
JH Jr 11 JII 

(3 .1 8) 

T hi s is o ne form of a n id e ntit y d ue to Hcllich (c f. [5 ] ). 

If th e de r iva ti ves ofP a re bo un de d in R, we oht a in by applying th e a rithm eti c -geo me t ri c me a n 
ine q ua lit y to (3. 18) 

1, ( aa~ 2 ds ~ (c + Q.) r w, iW , idx dy+ a r (/l W) 2 dxdy . Jr 17 ) a JH JH 

He re c is jus t so me bound fo r the larges t e ige nvalue of th e ma tr ix 2j~ j- f,',, 8L I. e ., 

r (21, i - J;,,8DW. iW, ldxdy ~ c r w, iW, idxdy, 
JII JII 

a nd 

b = Max (f jl) . 

(3. 19) 

(3 .20) 

(3.21) 

In (3. 19), a is a ny po s iti ve co ns ta nt. Fo r a s ta r s ha ped boun dary we may c hoose p =xi in w hi c h 

case we may ta ke c= O. Now , s ince W va ni s hes on C , it is cl ear th a t 

r IP dxdy ~ ? r w, iW , idx dy ~ \12 r (6.Wfdxdy 
JII 1\ 1 JH 1\1 JII 

(3 .22) 

where 'AI is the firs t e ige nva lue of th e fi xed me mbra ne pro b le m for R.:! 
The s tra in e ne rgy E(W, W) is give n by 

E(W, W) =~ {L[CT( 6. W)2dxdy+ (l - CT)W, ij W , ij ]dxdy} . (3.23) 

:! For a di scuss ion of t he fixed me mbrane pro ble m see for instance Courant, R., and Hilbe rt, D., Me t h ud ~ of Mat he matical Phys ics 1, In lc rsc ie nce (1953). 
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It follows easily, since W, ijW, ij ~ ~ (ilW)2, that 

L (ilW)2dxdy ~ 11 a- [i E(W, W) J, 

and, since Wand M(W) vanish on C, ~ E(W, W)= LWil2Wdxdy. Hence 

IR (ilW)2dxdy ~ (1 ~ a-) IR Wil2W dxdy. 

From (3.22) 

We thus obtain, using Schwarz's inequality on (3.25) and inserting (3.26), 

L (ilW)2dxdy ~ [(1 +2a-)AJ L (il2W)2dxdy. 

Combining (3.19), (3.22) and (3.26) we now have (choosing C\' = [b/AI]\i,), 

fc t (aa~rds ~ (l +~)2A~ (e+ 2[bAI] \i,) L (il2W)2dxdy. 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

In (3.28) we may use any lower bound for At, e.g., that obtained from the isoperimetric inequality 
of Faber [3] and Krahn [4] 

AI ~ 7TiMA. (3.29) 

Here jo is the first zero of the Bessel function 10 and A denotes the area of R. We now set 

where XI is any lower bound for AI. Then from (3.16) we obtain (recalling (3.13)) 

L B2dxdy ~ ~~ fc [M(B) )2ds 

From (3.3), (3.9), and (3.11) we have 

M(B) =M(V) - D(l-a-) [a2V +! aHJ. 
as2 pan 

Thus 

1 B2dxdy ~ 2A 1{1 [M (V) - D( 1- a-) a2!::12 ds + D2(l- a)2 1 1.- (aH)2 ds}. 
R D2 jc as2 J jc p2 an 

We assume that the radius of curvature is bounded away from zero on C, i.e., 

on C. 
In [2, 5] the inequality 

fc (aH)2 fc [ . aH axi J2 fc (aH)2 tm - ds ~ t - 1 2ji - - - eH ds + 2 t - ds 
c an c as as c as 

~ t - 1 2ji----eV ds+2 t - ds fc [ av axi J2 fc (a~2 
e as as c as 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

was derived. Here tm denotes the minimum value of t on C, and e is given by (3.20). Inserting 
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(3.34) into (3.32) we the n obtain (using 3.33) the inequality 

L 8 2dxdy ~ 2A 1 {D-2 fc [ M(V) - D(l - cr) ~:~2 ds 

(l- cr)2[f [ axiav ]2 f (a~2 ]} + t- 1 2Ji------cV ds+2 t - . ds . 
f3t m C as as c as 

(3.35) 

Again, for a star-shaped boundary, we may take Ji=x i (Xl=X,X2=y) and c=O, s ince xini>O is just 
the condition for star-shapedness. r 

It re mains to determine a bound for JR H2dxdy in (3.12). Such a bound, however, was given 

in [1] ; i.e. , 

where k2 is given by 

k2 = A~ [4AI Uii) M + c2 + 2c inf W ;ii IM2AI Uii] M I> } h . 
The symbol ( )M denotes the maximum value of the quantity in pare ntheses. 
Combining (3.35) and (3.36) and inse rting into (3. 12) we obtain the inequality 

2 L Pdxdy ~ 2AI{ 2D- 2 Tc [M(V) - D (l- cr) ~z:; r ds + 2(1f3~,~)2 [£.t-I [Jia;~ a: - CV] ds 

(3 .36) 

(3.37) 

+ fc t (a~y dS] + ;~ T/2ds }. (3 .38) 

The insertion of (3.38) into (3.5), (3.6) or the similar expressions for higher de rivatives yields an 
expression whic h is not precisely in the form (3.4). Howe ver, (3.4) can be eas ily obtained if the 
arithmeti c-geometric mean inequality is used in (3.38). This comple tes the proof of theore m I. 

In so me cases it may be diffi cult to compute a particular solution <p and its derivatives in Rand 
on C. In that case we may approximate u by any sufficiently s mooth function t/J and decompose 
as follows: 

where 

in Rand 

on C, while 

in Rand 

on C. 

u-t/J =V+ W 

V= u - t/J , M(V) = M(u - t/J) 

W=O,M(W) =0 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

We have already es tabli shed a bound (3 .4) for 0 p )( 0). We seek now a bound for W (p) (0). 
Clearly, 

W(P) = L G(P, P')fl2( U- t/J)dxdy (3.44) 

where G(P , P') is the Green's function in the simply supported plate proble m, i. e ., G(P, PI) 
denotes the defl ec tion of a s imply supported plate at a point P' in R due to a unit point load at P.4 
We now approximate W(P) by 

W(P) = L [r(p, PI) + BJfl2( U- t/J)dxdy, (3.45) 

4 For a disc ussion of G cf. S. Timos he nko, Theory of plates and shells, pp. 156-167 (McGraw-Hill, 1940). 
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where 

[(P P ') ---.L 2 I _1_ , - 8 r pp' og , (3.46) 
1T rpp' 

the singular part of G(P, P'), and Ii denotes any biharmonic function (possibly zero). We approxi· 
mate a pth derivative, W(p)(P), by WP(P), where 

WP(P) = [E r(P, P')~2(u-tjl)dxdYr) + E BP~2(U-tjl)dxdy. (3.47) 

Here [ Jp) denotes the pth derivative with respect to the variables of the point P, and Bp is an 
arbitrary biharmonic function, which may be taken identically zero. Clearly then at an interior 
point P 

The order of differentiation !'lnd integration is interchangeable in the first integral since G(P, P') -
f(P, P') is biharmonic in R. For simplicity we adopt the convention that for a function of the two 
points P and P', e.g., f(P, P'), the symbol [(p) (P, P') is to denote differentiation with respect to 
the variables of the first argument. Thus [(p)(P, P') denotes differentiation with respect to the 
variables of the point P while [(P)(P', P) denotes differentiation with respect to the variables of the 
point P'. 

In view of (3.39) we obtain 

(3.49) 

The term Wp( 0) involves only known quantities and hence may be computed directly. If p ,,;; 3 
the differentiation indicated in the first term on the right of (3 .47) may be taken under the integral 
sign and placed on f(P , P'). The resulting integral exists provided ~2,(u-tjl)=O(r<pp,l) as 

- -
P ~ P' for some positive E. If we wish to compute WP( 0) for p ~ 3 we decompose WP(P) into 

where 

and 

Wf(P) = [IR [(P, P')~2(U - tjI)dxdy r) 
W~(P) = E BP~2(U-tjl)dxdy. 

(3.50) 

(3.51) 

(3.52) 

Since Bp is biharmonic the last term presents no difficulty. "In order to evaluate Wf(P) it is neces· 

sary to make some assumptions on the smoothness of ~2 (u - tjI). We assume for the moment that 
~2(U-tjl) has a sufficient number of derivatives in some spherical neighborhood 58 of radius a 
about the origin and that P lies on the interior of 58. Then 

Wl(P) = Il(1)(P, P')~2(u-tjl)dxdy 

= r [(1)(P, P')~2(u-l/J)dxdy- r [(1)(P', P)~2(U - tjI)dxdy. 
h-% J% (3.53) 

We now integrate by parts in 58 and obtain 

Wl(P) = I [(1)(P,P') ~2(U- tjI)dxdy 
R - S 8 

- r nT(P,P')~2(u-tjl)ds+ r f(P,P')[~2(u-tjl)J(1)dxdy. JI.8 JS8 
(3.54) 
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Here we have used the fac t th a t f (P , Pi ) = f (Pi, P) . In (3.54) La denotes the boundary of Sa and 
n ' the component of the unit normal in the direction in which the differe ntiation is take n. Since 
P lies interior to Sa a ny derivati ves of f (P , Pi) with respect to the variables of the point Pare 
bounded on La a nd in R - Sa. The las t integral on the right of (3.54) may be differentiated 3 
I.i mes with respec t to the va ri ables of P a nd the order of integratio n and differe ntia tion interc ha nged 
provided [Ll2(U - t/lU( I)= 0 ( /"1>p, l ) for some positive e as P'~P in Sa. Le tting P ~ O we thus 
obta in t he valu~o f W4 (0). 

To define WP(O ) for p > 4 we differentiate (3.54), make use of the fac t that f (' )(P, Pi) =

fCl )( P I, P), integrate th e resulting fin al term by parts, and continue in thi s mann e r until we obta in 
an integral over Sa whic h has the desired number of deri va tives. We see in thi s way that for 
WP(O) to remain finite, it is sufficient that Ll2(U- t/l) have p- 4 de rivati ves in Sa and that the deriva
ti ves of order p-3 be O(R'pp,l) for some e > 0 as p i ~ P in So. 
We nee d now only a bound for the las t expression on th e right of (3 .49). To thi s e nd we use 
Schwarz's inequality in (3 .48) to obtain 

[W(P) (O ) - WP( O»)2 :;;; L { [G (O, Pi) - f( O, Pi) J (p)-SP}dxdy L [Ll2(U - t/I) )2dxdy. (3 .55) 

Since th e differentia tions in (3.55) are with respect to the variable of P (before evaluation at 0 ) 
the quantity {G (O, Pi ) - f (O, P' )JCp) - BP} is just anotherfunction V, i.e. , Ll2V = 0 in R , with Vand 
M (V) given on C. Thus (3.38) is valid with Vreplaced by { [G(O , Pi) -f(O, PI)J (PLHP} through
out. Since GU»(O , Pi) and M (Op)(O,P' » vanish on C only the quantity [fCp)( O, Pi) + HpJ 
appears for V on the right. We note that the right hand side of (3.55) may be made s mall by 
c hoosing Hp to approximate the data of - fCp)(O, Pi) and/or by c hoosing t/I to approximate the 
data of u . 

Let us denote the right hand side of (3.38) by I (V) and des igna te the co nstan t in the mea n value 
inequali ty for 10p )(0 ) I as Cp , i.e ., 

10P)(0) 1:;;; CP i V2 dxdy . 
/I. 

(3 .56) 

Then our bound may be expressed in the simple form 

4. Third Boundary Value Problem for Elastic Plates 

In thi s section we de termine a priori bounds for a function V, ass um ing Ll2V (the loading) is 

prescribed throughout a simply connec ted region R a nd that the boundary values of M (V) a nd 7} (V) 
are prescribed on C. Here M (V) is equal to -M(V)/D where D is give n by (2 .1) a nd M(V) is give n 
by (3.3). Also 

Q(V) = -(LlV) - (l - cr) - -- -- . - a [ aw a ~ a~J 
an as2an as as (4. 1) 

The quantiti es M (V) and Q(V), are proportional to the be nding moment and the reac ti on. We 
prove in thi s section the following theore m. 

THEOREM II. Let V be any function with piecewise continuous fourth derivatives in R which 
satisfies the conditions 

1 1 av 1 av 
)c V ds = ) c ax ds = )c ay ds = 0 -
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Then at any point 0 in R, 

(4.2) 

where the constants ki are explicitly determined, p ,;;; 3, and YJ is a known nonnegative/unction in R. 

Here, as before, 0P)(x, y) denotes any pth order derivative of V. As indicated in the previous 
section once an a priori inequality of the type (4.2) has been derived it may be used to obtain point
wise bounds in the indicated boundary value problem. 

Before proceeding further we define quantities P2 and q2 in terms of which the constants in 
(4.2) will be expressed. These quantities are defined as follows: 

L X, iX, idxdy 

fcX 2ds 

(4.3) 

where the minimum is taken over all piecewise continuously differentiable functions X which satisfy 

the condition fc Xds = 0; 

1c (~rds 
1c t/J2ds 

(4.4) 

where the minimum is taken among all functions t/J continuously differentiable on C and satisfying 

fc t/Jds = O. The eigenvalues corresponding to the Rayleigh quotient in (4:3) are commonly referred 

to as Stekloff eigenvalues. They are the eigenvalues of the following problem 

in Rand 
tJ.h=O 

ah --ph=O an 

(4. 5) 

(4.6) 

on C. In general, P2 will not be known explicitly. However, for our purposes any positive lower 
bound P2 for P2 will suffice. We indicate later how this lower bound is obtained. The eigenvalues 
corresponding to the Rayleigh quotient of (4.4) are the Wirtinger eigenvalues. They satisfy 

(4.7) 

on C and the proper continuity condition. The eq (4.7) is of course the equation of the vibrating 
string of length equal to the perimeter L of C. Thus 

(4.8) 

We proceed now to the proof of theore m II. Let us again denote by rep, P') the fundamental 
solution of the biharmonic equation. 

rep, P') =..1. r~p, log (_1_). 
87T rpp' (4.9) 
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(We could add any biharmonic function B to [without altering the following results.) In terms of 
f(P, Pi) we have 

V(P) =1 VQ(f)ds- 1 aaV M(f)ds+ 1 M(V) a[ ds- 1 "Q(V)[ds+ r [Ll2Vdxdy. (4.10) k Jc n Jc an Jc In 
For P on the interior or R we may differentiate (4. 10) with respect to the variables of the point P 
and interchange order of differentiation and integration on the right. Thus we obtain for p ~ 3, 

VU»(O) =1 VQ([(P»)ds- 1 av M(PP»)ds+ 1 M(V)..i.PP)ds- 1 Q(V)Pp)ds 
)c )c an Jc an )c 

+ In [(p)Ll2Vdxdy. (4.11) 

Here again as in the previous section we could add to Pp) any biharmonic function Bp. The las t 
three terms of (4.11) involve only the known function [ and the data of V. Hence we define 

<t>(P)(O) = Vlp)(O) _1 M(V) a[(P) ds+ 1 Q(V)PP)ds - r Pp)Ll2Vdxdy. (4 .12) 
Jc an Jc In 

and obtain by Schwarz's inequality 

Since fc V ds = 0 it follows from (4.4) and (4.8) that 

Thus 

Now 

(4.16) 

In view of (4.3) and the fact that f c (:B ds = f c (:~ ds = 0 we have 

£ [(:B2 + (:~2]ds ~ ~2 In (V, xiV, :1'i + V, yr, yi)dxdy= ~2 Lv, ijV, ijdxdy. (4 .17) 

Thus from (4. 14), (4.16), (4.17) and the defi nition of E(V, V) we have for rr > 0 

(4. 18) 

(For -JA! < rr < 0 the factor (1- rr) is replaced by (1 + 2rr).) From the divergence theorem we the n 
obtain 
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,-------------

An application of Schwarz's inequality yields 

Insertion of (4.20) back into (4.13) then gives the desired bound 

1<t>(P) (0) 12 ~ [DP2(l2_ 0") r He [Mev) Fds + (2~r re [Q(V) Fds} 

{re [M(PP»))2ds+(2:Y re (Q(f(P»)]2ds }. (4.21) 

This is equivalent to the desired inequality (4.1), since instead of (4.12) we could have used 
Schwarz's inequality on the last three terms, being careful to use 

It remains now to derive a bound for P2 (i.e., find a JJz). We denote by U2 the eigenfunction 
corresponding to P2, i.e., (see (4.4) and (4.5)) 

t:.U2 = 0 (4.22) 
in Rand 

dU2 0 a;;-P2U2= (4.23) 

on C. From (4.4) and (4.8) we have 

1. ( L )2 1. (dU?)2 
Jc u~ds ~ 211" Je dS- ds. (4.24) 

We consider again the identity (see [5]) 

1. (dU2)2 _ 1. (aU2)2 1. i dXi dU2 dU2 1 k . 
Je t as ds - Je t a;; ds + 2 Je l as a;; a; ds + R [f, k, 0il- 2/: I] U2, iU2, Idxdy (4.25) 

which was used in deriving (3.34). Setting 

In [f~ k, 0 il- 2/: I] U2, iU2, Idxdy ~ e In U2,iU2, idxdy (4.26) 

we obtain from (4.25) (by making use of the arithmetic-geometric mean inequality) 

1. (dU2)2 1. (aU2)2 - 1. (dU2)2 1 tm Jc as ds ~ Je t as ds ~ b Je a;; ds + 2c R U2, iU2, ;dxdy, (4.27) 

where 

(4.28) 

with b given by (3.21). Inserting (4.28) into (4.24) and making use of (4.22) and (4.23) we obtain 

reu2ds ~ (2:rt;;,I{p~b+2cP2} £u2ds. (4.29) 
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It follows then that 

(4.30) 

or that 

(4.31) 

If the boundary C of R is star·shaped with respect to the origin (i.e., XiTli > 0) then we may 
choose Ji = Xi, in which case c = 0, t = xini' and b = 2{ 2r2 Mt;/ - tm }. 

Thus far we have indicated how to obtain bounds for the function and its first, second, and 
third derivatives. In physical problems this includes all derivatives for which we would normally 
desire bounds. However, if we wish bounds for higher derivatives they may be obtained using 
the techniques of the previous section. For interior bounds the only term which will cause diffi
culty for p > 3 is the last term on the right of (4.12); but this is precisely the term which was evalu
ated in the previous section. 
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