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Calculations have been made covering the predictions of a model representing the vis
coelastic behavior of rubberlike polymers for molecular weights greater than 1\11., M. being 
the lower limit of t he range in which the viscosity is proportional to 1\113.4. A pronounced 
difference in the character of G" is predicted for polymers with molecu lar we ights between 
five and ten times 111. as compared with those whose molecular weights are outside this range. 

In a recent publication [1]1 we presented the steady 
state and transient behavior predicted by a model 
designed to repl'~sent the mechani~al behav:ior, in 
shear, of rubberhke polymers . ThIs model IS very 
similar to the molecular theor:v of Rouse [2], except 
that it includes directly the effect of entanglements 
found in long polymer chains. 

Our model assumes an entropy-type elasticity as 
the origin of the relaxing force observed in it stress
relaxation experiment. It involves a resistance 
coefficient per unit segment of a polymer chain 
which is evaluated from the steady state viscous be
havior, and the molecular weight of the polymer, 
expressed as the ratio of molecular weight to critical 
molecular weight, Me, defined as the lower limit 
of the range in which the viscosity is proportional 
to M 3.4. 

For the particular example we presented in 
reference 1 this ratio was 60, and at the time we 
prepared this previous paper we did not have system
atic calculations showing the predictions of the 
model for a range of molecular weights. I'Ve made 
an effort (sec. 3, p . 176 of reference (1)) to relate the 
extrema of G" and J" to the molecular weight 
through the use of various approximate relationships, 
since the full expressions can only be treated numeri-

l cally. We have now carried out further numerical 
calculations covering a range of molecular weights, 
and find that our previous approximate relations 
were completely inadequate to represent the posi
tions of these extrema as functions of molecular 
weight. In addition, we have found certain quite 
unexpected qualitative features of the predicted 
curves when the molecular weight is varied between 
one and ten times the critical molecular weight. 

I Since these quabtative features ma~T present the 
possibility of a rather critical test of the validity 
of this model, we pres en t the results here in some 

I detail. 
The results of our previous paper may be rep

rf'sentf'd in terms of normalized functions. the 

I Figures in brackets indicate the literature references at tile end of til is paper. 

normalized modulus, 

®*('Y) = C2G*=®' (0) + i(W' (0) 

and the normalized compliance, 

3'*('Y) =1:. J *=3" (0) -i3' '' (0). 
C2 

C2 is a parameter equal to the kinetic theory equi
librium compliance of a vulcanized rubber with 
molecular weight 1vle/2 between cross links. Obvi
ously, these are reduced functions since the ordinary 
temperature and density dependence are included in 
C2. 'Y and 0 are reduced frequencies, defined by 

'Y= 0(1 +i) =.bWC2r=~w~r (1 + i) 

where w is the actual radian frequency and l' the 
viscosity of a polymer of molecular weight Me. In 
these terms, 

61*( ) = tanh 'Y + L tanh K 'Y =~, (1) 
. 'Y 'Yl + Ltanh'Ytanh K'Y 3'* 

where 
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L = (l3.4_1)1 /2, 
l - 1 

K = L(l - I ). 

Equation (1) represents the predictions of our model 
up to frequencies where the modulus is within one or 
two decades of the limiting high frequency modulus. 
This range includes n,ll the extrema which depend on 
molecular weight. The maximum in Gil occurring 
just before G' reaches its limiting or glassy value is 
independent of molecular weight. Its position and 
magnitude can b e calculated easily as given in the 
previous paper [1] . 

The calculated values of the normalized modulus 
and compliance as a function of the normalized 
frequency, 0, are shown for several values of l, used 
here as a measure of molecular weight, in figures 
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FIGU RE 1. R eal pw't oj dynamic mod1ilus for various molecular 
weights. 

Parameters are values of log l= log (Jl/Jl,) , 
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FIG U RE 2. 1 maginw'y part of dynamic modu lus jor various 
molecular weights. 

P arameters are values oflog l = log (Jvl /Nf ,) , 
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FIGU R E 3. 
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R eal part of dynamic compli ance j or various mo
lecular weights. 

Parameters are values oflog 1= log (111/"'1,) , 
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FIG U R E 4. Imaginary part oJ dynamic compliance fo r various 
m olecular weights. 

P arameters arc values of log l =log (.IIf/l\I , ) , 
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FIG U RE 5. Reduced fre quencies of the extrema as a function of 

l=-l\!. 
Me 

1 to 4. vVe see that @" and .3''' do not show any 
extrema for certain values of l , and that for other 
values of l there are two minima and two maxima 
in @" below the glassy range. 

This OCCUlTence of two sets of extrema was cer
tainly unexpected. To illustrate this behavior more 
clearly, we show in figure 5 a plot of 0 ext" the fre
quencies at which the extrema occur, as a function 
of land L. We distinguish four separate curvep 
A and C belonging to .3''' (0 ), Band D belonging to 
@"(O). The lower branches of A and C represent 
at the minimum of .3''' , the upper branches 0 at the 
maximum of that function. The lower branches of 
the curves Band D represent 0 at the maximum of 
@" and the upper branches give 0 at the minimum 
of that function . 



The points with vertical tangents (fig. 5) corre
spond to inflection points of ®" or S" with ahorizontal 
tangent. This follows imm.ediately, once we realize 
that they represent points where a maximum and 
minimum have coalesced. 

It is interesting to examine the asymptotic behavior 
of the branches of C and D, for l---7 "" , since h er e these 
curves apparently become straight lines and we ex
pect simple power laws for the functional relation 
b etween 0 and l (or L ). IVe observe from fi gure 5 
that a common lower bound for all four branches of 
the curves a and D is given by 

as indicated by the dotted line in figure 5. Hence 

K l - 1 
Re (Ky) = KO> 2L=-2- > 4.5 

in the region l'2. 10, L ?:.1 6.5. 
This inequality shows that tanh (Ky ) in the ex

pressions for ®" and S " can be put equal to unity and 
therefore do es not influence the location of any of the 
extrema for large l. Our functions simplify then as 

follows, if we introduce x = tanh- 1 (I) 
®" (0) = Im { coth ( + x) } = 0 sinh 2(0+ x) - sin 20 

'Y 'Y cosh 2(0+ x)-cos 20 

S" (o) =-rm{~ ta nh (y + x) } 

1 sinh 2(0+ x) - sin 20 
20 cosh 2(0+ x) + cos 20 

(2) 

(3) 

We turn now to the determination of the 
asymptotic behavior of the branches I, II, III, IV. 
On both branches I and II of curve D, 0 and X approach 
zero as L increases. We can thus use Taylor's 
expansion to obtain: 

The derivative of the first term (with respect to 0) pre

dicts a maximum at emax=-v~=2~L (x ""' ~ for large L) 

with @::.x= O.207. This is the only extremum pre
dicted by the first term alone. To find a condition 
for the minimum we re-write the above as : 

this expression b eing permitted because on branch 
II X« 02. This latter relation justifies our taking, 
for large L, 
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From which we predict a minimum at 

with a magnitude 

An expression for the asymptote of the minim.um 
in 3" represented b:\T branch [H (curve a ) may b e 
obtained from a similar expansion of tanh ('Y + x) , 
again retaining two terms and using the fa,ct t hat 
X< 02. It yields, as is apparent from figure 5, t he 
same value as the asymptote for branch II : 

0: " X +2 2 
~S ""' 20 "3 .0 , 

from which 

( 3 )1/3 
Omln= 8L ' 

and 

The maximum in S", branch IV of curve a, 
appears to be nearly independent of l . If it were 
strictly independent, it would b e the maximum of: 

1 sinh 20-sin 20 
20· cosh 20+ cos 20' 

the asymptotic expression corresponding to eq (3) 
for large l. This function has a maximum value of 

at 
Omax= 1.127. 

The following t abulation shows that these maxima 
of our calculated S" functions depend only very 
slightly on l: 

for l = 5.012: S;: •• = 0.4325, Omax= 1.0l9 

for l = 100.00: S.:,'.,=0.4178, Omax= 1.122. 

It is difficult to do more than point out the exist
ence of curves A and B (fig. 5), which was not even 
susp ected prior to these detailed numerical calcula
tions. Since in t his region tanh K'Y cannot be taken 
as unity, the analytic expres ions for ®" and S" 
are very cornplicated. There is no reason to expect 
that expressions for curves A and B would be simple 
enough to be useful. Therefore we leave them with 
the presentation of the numerical results. These 
computations have now been carried out in sufficient 
detail that we are essentially certain we have found 
all the extrema predicted by the model for both 
@/I and S/I . 



The behavior of @' and @" calculated here as a 
function of molecular weight should provide a 
critical test of our model if appropriate experimental 
data could be found for comparison. In the molecu
lar 'weight range of about 5 to 10 times M e this model 
predicts an essentially constant value of G" over two 
to three decades of frequency, with G' increasing 
fairly steadily over the same range. For higher 
molecular weights the G" curve should show a pro
nounced maximum and minimum, their separation 
becoming greater on both the frequency and modulus 
scales with increasing molecular weight. In the 
vicinity of the minimum of G", G' should remain 
fairly constant. Since we do not know how a 
distribution of molecular weights should be intro
duced into our model, it would be preferable to 
make the comparison with experimental measure
ments on fractionated materials, but lacking such 
data it seems most reasonable to use a weight 
average molecular weight. 

While we do not know of any dynamic measure
ments which can be used to check these predictions 
directly, the stress relaxation measurements and 
calculated relaxation spectra reported by Tobolsky 
and Murakami [3] for a series of polystyrene samples 
with weight average molecular weights ranging from 
4.25 X I04(= 1.l M e) to 3.15 X I0 5(=8 .3 M e) (their 

sample numbers 6 to 15) and M ",/Z'v1n = 1.5 represent 
a reasonable check on the predictions summarized 
above. The stress relaxation modulus is approxi
mately the mirror image of G', and the spectrum 
H(T) is, to a zero order approximation, equal to 
(2/7r) G" (liT). 

The graphs of H shown in figure 4 of reference 3 
show no plateau region for molecular weights between 
M e and 2.4 Me (samples 6 to 11). Distinct plateau 
regions are seen for samples with molecular weights 
between 3.2 M e and 8.3 M e (samples 12 to 15). For 
all these samples the GCt) curves are monotonically 
decreasing, with no h int of a plateau region. For 
higher molecular weights , of course, we normally find 
a r egion where G(t) or G'(w) are changing so slowly 
as to suggest strongly a plateau . This type of be
havior is observed in OUl' calculated curves for l> 15. 
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