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I. A Boolean function of n variables, considered as a subset of t he discl'cLe uni t n-cube 
Bn> is called cellular if each of its connected components is a face of Bn. Hammin g'~ determi­
nation of optimal binary single-error-detectin g codes is generalized to a characteri zation of 
all propel' cellular functions with the greatest possible number of clements . II. An analysis 
is made of a class of Gray codes (H amiltonian circuits on Bn) with certain special propcrti es, 
e.g., ad mi tting for O:Sd:Sn a parti tion in to 2n - d subpaths eac h formin g a d-c1 imensional 
face of Bn. 

1. Introduction 

Let B n be t.he set of vertices of the unit cube in 
n-dimensional space; equivalently, B n is t he set of 
all I binary seq Llences 2 of length n. A Boolean junc­
tion of n variables is simply a subset 3 of B n. 
r.. ',Call two vertices of B n neighbors if they differ in 
precisely one position. A Boolean functionj is called 
connected if, given any two vertices X, X' in f, 
there exists a sequence 

of members ofj such that Xi and X i+1 are neighbors 
for l :;'i:;' k-- l. It is easy to show th at ifj is not 
connected, then it JUtS a unique partition into maxi­
mal connected subset called its components; 4 if j is 
co nnected, the unique component consists of j itself. 

The relevance of these concepts to the simplifica­
tio n of Boolean functions is a follows. By a cell 
of a Boolean function j, we mean a face 5 of B n 
which lies wholly in j. A cover or j is a collection 
C of cells of j such that each vertex of j lies in at 
least one cell from C. Each cell of j is assigned a 

) cost in a manner which need not be described here, 
and the cost of a cover C is defined to be the sum of 
the costs of the cells of C. The problem of findin g a 
minimum-cost cover of j is then identical with the 
" Problem of Quine" 6 of finding a simplest "normal 
disjunctive form" for f, a problem of practical 
interest (for example) in the design of switching 
circuits. From the fact that each cell is connected 

I Supported in part by the National Science Fonndation, Grant No. G-7579. 
, A seqnence is binary if each of its terms is either 0 or 1. 
3 The eqnivalence of this definition with alternative ones is lI'ell-known in tbe 

field and will not be discnssed here. 
• Define a binary relation on f; XRX' holds if X and X' are in a connected 

subset of f. 'rhen R is an equivalence relation and the components off are tbe 
corresponding eq ni valence classes. 

' A d-dimensional face of the "discrete cube" B. is obtained by fixing the 
(binary) values of n-d of the n coordinates. 

6 W. V. Qnine, The P roblem of Simplifying T rutb F unctions, Amer. M ath . 
Monthly 59 (1952), pp. 521-531. 'l'here is no reason here to cite the extensive 
literature on this topiC. 
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an d therefore lies in a single component of j, it 
follow that any cover of j is a disjoint union of 
covers of the componen ts of j and conversely;. in 
particular any minimum-cost covel' of j is a dis­
joint union of minimum-cost covers of the com­
ponents of j, and conversely. That is, the Boolean 
simplification problem for a fun cLion f which is not 
connected, can be split into independent "smaller" 
subproblems by splitting j into its components. 
Such a decomposition is clearly likely to be helpful 
in attacking the simplification problem. 7 

In this context it is natural to ask how many 
components a Boolean function of n variables can 
possibly have. This question will be answered 
in section 2, in which we also investigate the struc­
ture of the maximum disconnected functions of n 
variables, i.e., those with the greatest possible num­
ber of components. 

The discus ion above also makes it natural to 
focus attention on classes of Boolean functionsj such 
that the simplification problem for each component 
of j is especially easy. One s Llch class is that of 
isolated functions, those with only single vertices of 
B n as components. An isolated Boolean function 
can be identified with a single-elTor-detecting binary 
code, and our characterization in section 2 of maxi­
mum isolated fw.lctions (those with as many vertices 
as possible), which verifies a conj ecture of Chi tten­
den/ is essentially the same as an "opt imal code" 
characterization due to Hamming.9 

For all methods of "cost" assignment suggested 
for the Problem of Quine, the faces F of B n have the 
property that {F } is the unique Ininimu~-cost covel' 
of F. Thus the class of Boolean functIOns j, such 
that each component of j is a cell of j, is one of the 

1 Of course the labor required to determine the components should be taken 
into account. 

S E. W. Chittenden, On the minimal representation of Boolean functions, 
Transactions of the Third Conference of Arsenal M athematiCians, U.S. Army 
Office of Ordnance Re·search Rept. No. 58-2, p. 134. 

I R . W. Hamming, Error detecting and error correctin g codes, Bell System 
'l'ech . J . 29 (1950), pp. 147-160. Our proof by induction is quite different from 
Hamming's, and this approach may be of independent interest. 



classes mentioned in the last paragraph. Such 
functions will be called cellular , and in section 3 we 
determine the structure of maximum cellular func­
tions (those other than B n , with as many vertices as 
possible) . This generalization of Hamming's theo­
rem from isolated functions to cellular functions , is 
the main new result of the paper. 

A Gray code onBn , in the language of gTaph theory, 
is a Hamiltonian circuit of the graph formed from 
B n by the "neighbor" relation.9& In section 4, the 
inductive approach introduced earlier (in sec. 2) is 
employed to establish the existence of Gray codes 
with certain special properties, e.g., admitting a 
partition into 2u - d subpaths each forming a d-di­
mensional face of B n. These "perfect" Gray codes 
turn out to coincide with what were called the 
"conventional" Gray codes by Gilbert,9b who de­
scribed them in different notation using essentially 
the same recursive construction. The treatment in 
section 4, besides giving additional detail on the 
structure of these Hamiltonian circuits, highlights 
their geometric aspects in a way which may be better 
suited to some readers' mathematical intuition than 
is the strictly arithmetic treatment associated in this 
context with the phrase "reflected binary."ge It 
may be of interest that this material was developed 
from purely geometric considerations, in ignorance 
of "reflected binary." 

2. Maximum Disconnected and Isolated 
Functions 

We begin with a simple lemma: 
LEMMA 1. There is at least one maximum discon­

nected junction oj n variables which is isolated. 
For the proof, observe first that because the 

number of Boolean functions of n variables is finite, 
a maximum disconnected function j must exist. 

ow form a function j' by deleting all but one 
member from every component of J. Clearly j' is 
isolated, and it must be maximum disconnected 
since it has the same number of components as doesJ. 

In what follows, it will be convenient to associate 
to each Boolean function j of k + 1 variables, two 
Boolean functions j o and j l of k variables each, 
called the projections 9d of j. jo is obtained by drop­
ping the final 0 from each member of j which ends in 
0, while jl is obtained by dropping the final 1 from 
each member of j which ends in 1. Note that 

Ij l = /io 1+ If I I , (1) 

where Ij l denotes the number of members of J. 
LEMMA 2. Ij Mn is the maximum number oj 

components oj a Boolean junch'on oj n variables, then 
Mn ~ 2u-l . 

to Some authors use" Gray code" to mean any path or circuit in the linear 
graph formed by R •. 

ib E. C. Gilbert, Gray codes and patbs on the N·cube, Bell System Tech. J . 
37 (1958). 

to See for example 1. Flores, Refl ected number systems, Traus. Inst. Radio 
Eng. Vol. EC-5 (1956). 

'd In the switching·circuit literature fo and fl would be called the residues of! 
with respect to tbo " last" of t he k+1 Boolean variables. 

This is clear for n = 1; assume it true for n = k and 
consider the case n = k+ 1. Lemma 1 guarantees 
the existence of a maximum disconnected function f 
of k + 1 variables which is isolated ; then eq (1) shows 
that M k+J = /fo l + /il l. It is easy to see thatjo andjl are 
also isolated, so that for i = O and i= l , Ij il is the 
number of components ofji' Therefore Ij il ~Mk' and 
so we have M k+1 ~2Mk' But Mk~ 2k- l by the in­
duction hypothesis, so that M HI ~ 2k and the induc­
tion proof is complete. 

We now define two special Boolean functions of n 
variables ; j (n ) consists of those members of B n with 
an even number (possibly zero) of l 's among their 
entries,ge while g(n) consists of those members of B n 
with an odd number of 1 's among their entries . 

THEOREM 1. The junctions fen) and g(n), which 
jorm a partition oj Bu, are the only maximum isolated 
Booleanjunctions oj n variables . Mu = 2n-l. 

Part of the proof is trivial; it is clear that j (n) 
and g(n) are isolated, and that they form a partition 
of B n. Since j(n) and g(n) each have 2 n- 1 members 
and thus the same number of components, we have 
M n ~ 2n-1 and the equality follows by lemma 2. 

It only remains to show that if h is any maximum 
isolated function of n variables, then h is either j (n) 
or g(n). This is clear for n = 1; suppose it true for 
n = k and consider the case n = k + 1. As in the proof 
of lemma 2, 

where we have used the fact that ho and hi are isolated 
because h is. Since equality holds throughout the 
last display, ho and hi each have exactly M k com­
ponents. The induction hypothesis leads to four 
possibilities: 

ho-j(k) and hl - }(k) , 

ho= g(k) and hl = g(k), 

ho=j(k) and hl = g(k), 

ho= g(k) and hi j(k). 

The first two possibilities are incompatible with the 
fact that h is isolated, the third yields h j(k+ 1) , 
and the fourth yields h= g(k + 1); these conclusions 
follow from the identity 10 

h= (hoX {O}) U (hi X {1}) (2) 

valid for Boolean functions of k + 1 variables. Thus 
the induction proof is complete. 

[Jack Edmonds (NBS Operations Research Sec­
tion) has observed that B n can be regarded as a 
bipartite graph , and has given the following (un­
published) generalization of theorem 1: For a con­
nected bipartite graph which has a connected regular 
subgraph containing all its vertices, the sets of the 

n 
i'That is, a vertex X=(XI, x" • • •• x.) of B . Is in !(n) if and only it 1; x;is 

i=1 
even. 

10 hoX (0) is obtained by adjoining a 0 at the end of each membor of ho. The 
multiplication Sign refers to the Cartesian-product representation of BHI as 
B. X(O, I ). 
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unique bipartition are the only maximum isolated 
sets of vertices.] 

One might conjecture that a maximum di con­
nected Boolel1n function is necessarily isolated. A 
counter-example for n = 1 is provided by BI itself. 
The next theorem shows that this is the only counter­
example. 

THEOREU 2. For n> l , every maximum discon­
nected junction oj n variables is isolated. 

To prove this, let j be a maximum disconnected 
function of n> 1 variables. As in the proof of 
lemma 1, form jf by deleting all but one member 
from each component of f. Since f' is isolated and 
has the same number of components as j , it follows 
from theorem 1 that j' is either jen) or g(n) . With­
out loss of generality assume f' = j(n) . If j~j' , 
then j includes at least one vertex Y of g(n) . 

l One neighbor XI of Y is obtained by changing 
just the fil'st entry of Y, while a second neighbor 
X 2 is obtained by changing just the second entry of 
Y. Since XI and X 2 are in j (n ) - }' and thus in j , 
and both are neighbors of the same vertex Y of j, 

I it follows that the elements XI and X 2 of j' lie in 
. the same component of f. This however contradicts 

the construction of f'; we conclude that j - j' , so 
that j is isolated. 

3 . Maximum Cellular Functions 

I Recall that a Boolean function j is called cellular 
if each component of j is a cell of j; different com­
ponents may be cells of difJ'erent dimensions. Cel-
lular functions are a natural generalization of isolated 
functions. 

TH E OREM 3. L et Fd be ad-dimen sional jace oj 
Bn , 0 ~ d<n. There exists a Boolean f unction fen; Fd ) 

oj n varia ble8 with F d as a component, 2u- d - I components 
in all, and every component a d-dimensional cell . 
I The complement g(n ; F d ) ojJ(n; F d ) in Bn also has 
;2n- d - 1 components, each a o-d~menswnal cell . 
o These functions fen ; Fa) and g(n; Fd ) can be re­
garded as the analogs, tor cellular functions , of the 

I functions jen) and g(n) (defined before theorem 1) 
for isolated functions. For example our later 
results will imply as a special case that these func­

I tions (for various Fa) give the only solutions to the 
I,problem of constructing a cellular function with as 
many components as possible under the restriction 
tha t every corn ponen t. is ad-dimension al cell ; 
theorem 1 is the particular instance d= O. 

We prove the theorem by explicitly constructing 
If (n ; Fa) and verifying its properties. For sim­
Iplicity assume Fa consists of all members (XI, X2 , . .. , 
xn) of B n such that Xj= O for d+ 1 ~i ~n; any other 

Id-dimensional face can be treated similarly. The 
cube B n can be wri tten as a Cartesian product 
B aX B n - d , i.e. , a binary sequence of length n is 
uniquely expressible as a sequence of leng th d 
followed by one of length n- d. With this notation , 
we use the functions introduced before theorem 1 
to define 
1 

j (n; Fa) = U {B aX {Z }: Z€j(n - d) } = B aX j (n-d). 

79 

Each set B aX {Z } is easily shown to be a d­
dimensional face of B n and is therefore connected; 
Fd itself is obtained as B aX {On-d } where On-d is a 
seq uence of n - d zeros. Since j (n - d) has 2n- a- I 

members (see theoreml) , there are2 n - a- l sets B aX {Z }. 
To see that these sets are the components of j (n ; Fa), 
it suffices to 0 bserve that any two members Z, Z ' of the 
isolated functionj(n - d) differ in at least two positions, 
so that no member of B aX {Z } can be a neighbor of 
any member of B aX{ Z' }. . 

The complement of f (n -d) in B n - a is the isolated 
set g(n - d) which has 2n - a- I members. Therefore 
the complement of j (n ; Fd ) in En is 

whose components are the 2n - d - 1 d-dimensional faces 
B aX {Z } of B n with Z€g(n-d) . Thus theorem 3 is 
proved. 

Before proving the next theorem, it is convenient 
to collect several elementary facts as a lemma. 

LEMMA 3. L et Io and fl be the projections of a 
cellular j unction I oj k+ 1 variables. Then 

(a) if h is a component of f, then either ho= <1> 
or h!= ct> or ho= hl' 

(b) jor i= O and i = l , the componenfs ~f fl ate 
the nonvoid pTojections hi of the components h oj f, 

(c) fo and II are cellv.lar if nonempty, and 
(d) ~f component p oj fo meets component q oj fl' 

then p = q = ho= hIfor some component hoff. 
To bE'gin the proof, let 11, be any component of j. 

Since j is cellular, for some d there exist S" c { 1,2, .. . , 
k, k + l} with k + I - dmembers , and a binary sequence 
{ Ci : i €S,, }, such that h consists of all membeJ s 
(XI , . .. ,Xk+l) of B H I obeying 

X t= Ct fo r all i €S". 

If k+ l€S" and CHI = 0, then hI = <1> and ho consists of 
all members (X I, . . . , xk ) of Bk such that 

If k + l€S" and CHI = l , then ho= <1> and:hl consists of 
all members (X I, ... , xk) of Bk such that 

Xj = Ci for all i€S,,- {lc+l}. 

If k+ ldl , . . . , k+ 1}- Sh' then h is the disjoint 
union of the set of members of B H I such that 

and the set of member of BH I such that 

thus ho= hl consists of all members of B" such that 

Xj=Cj for all i€S". 

This proves (a) of the lemma, and also shows that 
ho and hi are faces of Bk and therefore cells of f o 
andj! respectively. 



To pro ve (b) of the lemma for i = O (th e proof for 
i= 1 is similar), it now suffices to show that if 71,0 
and hri are nonempty proj ections of distinct com­
ponents 71, and 71, * of j, then no member X of 71,0 is a 
neighbor of any member X* of ht. If such a 
"n eighboring" occurred, however, then the member 
x x {O} of h would b e a neighbor of the member 
X* X {O} of h *, which is impossible. Th us (b) holds ; 
(c) follows from (b) and the fact (proved incidentally 
in the last paragraph) that the projections of a face 
are again faces . 

Now suppose a component p ofj~ and a component 
q of fl have a member X in common. By (b), there 
exist components hp and hq of j such that (hp)o=p 
and (hq)1 = q. Thus xx {O} is in hp and its neighbor 
X x {l } is in hq, so that. hp= hq= h, say. It follows 
fro m (a) that p = q, so (d) is prov ed. 

T HEOREM 4. The maxunum number of membe1s in 
a cellular Boolean function of n variables (other than 
B n) is 20 - 1. For 0 :::; d< n and each d-dimen sional 
face Fd of Bn , f en; F d ) is the only cellular function with 
2n - 1 members which has F d as a component. 

This is clear for n = 1; assume it true for n = k 
and consider the case n=k + 1. Let V k+l be the 
maximum number of members in a cellular function, 
other than B Hl, of k + 1 variables; V k is defined 
similarly. It follows from th eorem 3 that V k+I2:2k . 
To prove the opposite inequality, let j be a cellular 
function of k + 1 variables with V k+l members. If 
either of jo or jl is B k th en by (d) of lemma 3 the 
other must be empty, since oth erwise w.e would 
have jo fl = B k and thus j = B k+l' Thus ]f fo = B k 
thenfl = cf> and f = BkX {O}, while if jl = B k th en fo = 4> 
an d j = B kX{ l } ; in either case V k+l=ljl=2k. If 
both fo and jl are proper s ubsets of Bk then by the 
inductive hypothesis and (c) of lemma 3 we h ave 

completing the proof that V n = 2n - 1 for all n . 
Now let Fd b e a d-dimensional face of B k+1, where 

O:::; d< k + l , and letf be a cellular Boolean function 
of k + 1 variables with 2k m embers and Fd as a compo­
nent. For simplicity we again use the representation 
B k+1 = B d x B k+1- d and assume Fa= B aX {Ok+l-a}, 
where 0 k+I-a is a sequence of k + l - d zeros. lOa 

If jO= B k then (see the last paragraph) 

where the last equation holds since Fa is to b e a 
component and B kX{ O} has Fk as sole component. 
If jl = B k then (see the last paragraph) fo = 4>, which 
is impossible since fo contains the nonempty set 11 

(Fd)o= B aX {Ok-a}. So we can assume jo and jl are 
proper cellular functions of k variables; by (3), fo and 
jl each have 2k- 1 members, so that by inductive 

10. For consistency it is important that this representation and assumption 
match the corresponding ones in tbe proof of theorem 3, so that the explicit 
formula lor f(n: Fd) introd uced in t hat prool can validly be used below. 

11 For k= d , the Cartesian product reduces to Bk . 

hypothesis and (b) and (c) of lemma 3, 

In the next paragraph we will show thatjl = Bk-jo; 
it follows that 

fl = g(k; (Fa)o) 

and thus by eq (2) that 

f = (j(lc; (Fd) o) x {O}) U (g(lc; (Fd) 0) x {I }) . 

From the explicit formulas for fen; Fa) and g(n; F a) 
given in the proof of theorem 3, we have 

f(k; (F d)o)X{ O}= [U {B aX{ Z }: Zfj(k - d) }]X{ O} 

= U{B aX{ Z X{ O}} :Zff(k - d) } 

= B aX (j(k - d) X {O}) , 

where we have used the fact (Fd)o = B aX{ Ok-d}, and 
similarly 

Thus 

f= B aX [(j(k - d) X {OJ) U (g(k - d) X {I })] 

= B aX j(k+ l -d)=j(k+ l; Fa), 

as was to b e proved. 
It remains to prove that fl = B k-jo. Since jo and 

jl each h ave 2k - 1 members, it suffices to prove 
flcBk-jo, i.e., that no component p of j o meets any 
component q of jl ' If such a meeting occurred, then 
by (d) of lemma 3 we h ave p = q= ho= hl for some 
componen t 71, of f , and by (b) of lemma 3 p is a 
componen t of jl as well as fo. By (c) of lemma 3, 
fo and jl are both cellular, and by induction 
hypothesis there js only one cellular function of k 
variables with 2k - 1 members having p as a compo­
nent. Therefore jl = jo, so that (F a)o is a component 
offl as well as offo= j(k; (Fd)o). Thus 
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B dX {Ok-a} X B 1 

= [B a X { 0 k- d} X { 0 } ] U [B d X { 0 k - a} X { 1 } ] 1 

= [(F d)oX {O}]U [(F a)oX {I }] 

c[jo X {O}] U[jlX {l }]= j ; 

since the first set is a face of B k+1 which properly 
contains Fa= B dX {Ok+l-a}, we have a contradiction . 
to the hypothesis that Fd is a component of j. This 
completes the proof of theorem 4 . 

The last two theorems yield the following state­
ment : 

COROLLARY. A cellular Boolean junction oj n 
variables (other than B n) 1vith the maximum number of I 

members has all i ts component cells oj the same dimen- I 

sion, el , and i ts complem ent is again such a junction 
(with the same "d"). There are 2 (;D such functions i 



jor each d< n , and thus i?1 all th~re are 2(2." - 1) 
cellular junctions oj n var~ables '/lAth the max~mum 
number of members. . . . 

The number 2 (:;) is obtained by dlVJdll1g the 
number 2n- d (3) of d-dimensional fa.ces .of Bn by the 
number 2n - d - 1 of these faces appeanng m a maXImum 
cellular function . 

4. Perfed Gray Codes 

An even simpler proof of lemma 2 and theorem 1, 
in section 2 can be given if we take as known the 
existence of a Gray code, i.e., an enumeration 
{X i : 1 ::;i::; 2n } of the members of Bn such that X i 
and X i +l are neighbors for 1 ::;.i $2~=N, . and X N 

and Xl are neighbors. From thIS It IS ObVIOUS that 
an isolated set cannot contain both X i and X i+l, or 
both X N and Xl, and so has at most 2n- 1 members . 
It is also clear that the sets 

F(n) = {X i :i iseven }, G(n) = {X i : iis odd }, 

ij they are isolated, are the unique maximum isolated 
func tions of n variables. But the defimn g property 
of a Gray code shows that the parity of the number 
of l's in X i is opposite to that for X i+l, so that the 
number of 1 's in every member of F (n) has the same 
parity, while the opposite parity holds for all members 
of G(n). Thus either F (n) = j(n) and G(n) = g(n), or 
F(n) = g(n) and G(nj = g(n) ; since j(n~ and g(n) are 
easily proved to be Isolated the. same IS true of F (n) 
and G(n) , so that the cOn?lUSIOnS of lemma 2 and 
theorem 1 have been established. 

The inductive technique used in section 2 to prove 
lemma 2 and theorem ] , and in section 3 to prove 
theorem 4, can also be employed to es tablish the 
existence of a Gray code on Bn for all n2: 1. We 
shall actually prove a stronger result, namely the 
exis tence of a class of Gray codes (to be called perject) 
with certain additional properties which have been 
found h elpful in aiding visualization. For example 
((a) of theorem 5), for each d w~th 1 ::; d ::;n such a 
code partitions into 2 n- d succeSSIVe subp.aths, .each 
essentially a perfect Gray code <;H~ some ~-dl.menswnal 
face of B n. Also a rather explIcIt descnptwn can be 

I given of the positions (in a perfect Gray codel ?f tJ:1.e 
n n eighbors of any member of Bn whose posItIOn 111 

the code is given; see corollary 1 to theoren: 7: 
For O::; d ::;n and1::;j::;2 n- d = N(n - d), It IS con­

venient to define 

S~= { i: (j-1)2d< i::;j2d }, 

a subset of {I , 2, 3, . .. , 2n = N(n) } . For any subset 
S of SgV - I, we call the subset 

S'={ i: (2v- 1)2d+l + l -i€S } 

of S2dv the reflection of S in (2v-l).2d , while f~~' any 
subset S of S fv the reflection S' of SIn (2v- l )2 lS the 
subset of sg - 1 defineel by the same formula . Here ° ::; d< n and l::; v ::;N(n-d- l ). Familiarity w~th 
the reflected binarv number system should provIde 
partial motivation 'for this definition . 

81 

For any enumeration {X i: 1 ::;i ::; 2n=N(n) } of the 
members of Bn , and any subset T of {I, 2, 3, ... , 
N (n ) }, let 

The enwneration will b e called a pe1:fect Gray code if, 
for each d with 0 ::; d< n, for each v with 1::; v ::; 
N (n- d - l ), and for each s ubset S of either Sgv- I or 
Sf such that X(S) is a a-dimensional face of Bn for 
so~e a < d the set X(S' ) corresponding to the 
reflection 8' of 8 in (2v- 1)2d is also a a-dimensional 
face, and furthermore X(S) UX(S') is a (15 + 1) ­
dimensional face. 

To indicate the implications of Lhis fairly compli­
cated definition we collect some proper t ies of perfect 
Gray codes in' the next theorem, in which the 
notation 

is employed. 
THEOREM 5. Ij {X I : 1 ::;i::;N(n) } is a pe7:fect 

Gmy code on Bn , then 
(a) F1 i.s a d-dimensionaljace, 
(b) F1UFj'+1 is a (d+ l) -dimensi~nalja:ce, 
(c) Fj' UF~(" _dHI-j is a (d+ 1)-d~mensw.nal jace. 

First (a) will be proved for O::;d::;n. It lS clearly 
true for d= O; assume it true for d = lc< n, and con­
sider the case d= lc + 1. Observe that 

8 7+1 =S~j-l U S~j 

anel that each disjunct is the other's reflection in 
(2j - 1)2d • Since by induction, hypothesis F~j-:-I is a 
lc-climensional face it follows from the defLm tIOn of 
" perfectness" that 'F 7+1 is a (lc + I )-dimensional face. 
This completes the inductive proof of (a), 

To prove (c), it now suffices .to observe that 
S!J(n-dHI -J is the reflection of 81 111 N(n - 1). T o 
prove (b), factor j as 

j=2ab< N(n-d) (a2: 0, b odd) 

and observe that 81 is a subset of S~+d whose reflection 
in b2aH is 81+1' . . 

By setting d= O in (b) of theorem 5, and a~s~ ll1 (c) 
with j = 1, we see that a perfect Gray code IS mdeed 
a Gray code. An inlperfect Gray code on B3 , where 
for example Fi is not a face, is given by 

(0,0, 0) , 
(1, 1,0), 

(1, 0,0), 
(0,1, 0), 

(1,0,1), 
(0,1,1), 

(1,1,1) 
(0, 0,1). 

Next we prove tbe existence of a ~erfe~t <;3T3;y code 
on B . in analoay with theorem 3 It W lll 111 fact be 

n ' b. h " b . " shown that such a code can be c osen to egm 
with any preassigned face F of B n. Beca~se .the 
formal proof which follows ~s ~omewhat forb~ddlllg, 
we summarize the geometnc Idea first: Bn IS con­
sidered as made up of two copies of B n- l (for 
simplicity, B n-IX {O} and B n_IX {I }), the firs.t copy 
containina F; the perfect Gray code on Bn IS con­
structed b V choosing an appropriate perfect G~ay 
code on B n--1 (which exists by induction ~yp?thesls), 
tracing it ou tin B n- l X {O} and then tracmg It out ~n 



reverse order in B n-l X { 1 } . When F = tjJ this con­
struction agrees with one given by Gilbert (op. cit. 
in footnote 9b), and if iterated for n > 1 it gives the 
particular perfect Gray codes which Gilbert termed 
the "conventional" ones.12 

THEOREM 6. L et F be a d(O)-dimensional jace oj 
Bn , '1Jiith 0:::; d(O) :::;n. There exists a perject Gray code 
on Bn jor which F1 (0) = F. 

This is clearly true for n= 1; assume it true for 
n = k and consider the case n = k + 1. If d(O )=7c+ l , 
so that F = B k+I, then we are simply to prove the 
existence of a perfect Gray code on B k+I, which will 
follow from the analysis for d(O ) :::;k. So suppose 
d(O) :::;k; to simplify notation we can assume 
FcBkX{ O}, so that F is given in terms of its 
projection Fo as F = FoX{ O}. 

It is easy to prove that Fo is a d(O)-dimensional 
face of Bk • By inductive hypothesis, there is a 
perfect Gray code {Yj:l:::;i:::;N(k)} on B k for which 

Fo= { Y j : l:::;i :::;2cl(0) } . 

Now define an enumeration {X i : 1 :::;i:::;N(k+l) } of 
B k+1 by 

Xj= Yi X{ O} if 1 :::;i:::;N(k) , 

X ;= Y N (k+I)+I-tX {I } jf N (k) <i :::;N(k + 1) . 

We shall show that this enumeration is the desired 

The first of these equations shows that YeS) is a 
o-dimensional face of B k • so that YeS') is a o-dimen­
sional face and Y (S )UY(S' ) a (o+l)-dimensional 
face; the second and third equations then yield the 
same results for XeS) and XeS) UX(S') . 

Next suppose v>N(k-d- l) and d< k . Then 

X i= Y N(k+!)+I-iX {I } 

for each i eSUS'. Let Rand R' be the respective 
reflections of Sand S' in N(k), so that 

X(S) = Y(R) X {I }, X(S') = Y(R') X {I } 
X(S)UX(S') = (Y (R ) U Y (R'» X {I }. 

The first of these equations shows that Y(R) is a 
o-dimensional face of B k • It is readily verified that 
R' is the reflect,ion of R in 

so that Y(R' ) is a o-dimensional face and 
Y(R)UY(R' ) a (o + l)-dimensional face; the second 
and third equations then yield the same results for ~ 
XeS') and X(S)UX(S' ) . 

The final situation is d= k, so that v=l. H ere 

perfect Gray code. The following notation will be so that 
used: 

X t= Y iX {OJ for ieS, 
X t= Y N(k+1l+1- iX {I } for ieS' 

X eS ) = {X i : ieS}, 

Y(R) = { Y j : ieR}, 

S 1={ i: (j-1)2d < i:::;j2d } (O:::;d:::;k + l , 
l :::;j:::;N(k+ l - d», 

R1={i: (j- l )2d<i :::;j2 cl } (O:::;d :::;k, 

F 1= X(S1), 

G1=Y(R1) · 

First, it is clear that 

l:::;j :::;N(k - d» , 

F = FoX {O} = G1 (O) X {O} = Ff (O), 

as desired. Second, consider any d with O:::;d:::;k , 
any v with 1:::; v :::;N(k-d) , and any subset S of 
either S ;,-1 or S:, such that XeS) is a o-dimensional 
face of B k+1 for some 0 :::;d. Let S' be the reflection 
of S in (2v- l )2d. The proof will be completed by 
showing that XeS' ) is a o-dimensional face, and 
X(S)UX(S' ) a (o+l)-dimensional face. It will be 
assumed that S is a subset of 8:,_1 rather than 8~, ; 
the details for the other case are analogous . 

Suppose first that v :::;N(k-d-l). Then X ;= 
Y i X { O} for each i eSU S' . Therefore 

X(S) = Y (S) X {OJ, X(S' )= Y(S' ) X {O}, 
X eS ) UX(8')= (Y(S) UY(S'» X {O}. 

----
12 In thcorem 6 below wc write d(O) instead of do for typographical con ,'cnienee. 
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XeS) = YeS) X {O} X(8') = Y(S) X {I }, 
XeS) U XeS') = YeS) X {O, I }, 

and the result follows . 
The next theorem gives more detail on the 

structure of perfect Gray codes. 
THEOREM 7. L et {Xt:l:::;i:::;N(n)} be a pelject 

Gray code on Bn , and T a set of 2 6+1 elements oj 
{1, 2, .. . , N(n)} . JjX(T )isa (o + l)-dimensional 
jace of Bn , then there exists d with 0 :::;d< n, v with 
1 :::;v:::;N(n - d - l ), and a partition T = SUS' such 
that S is a subset oj either sg ,-I or S~ v, S' is the reflection 
ofS in (2v-l)2d , and XeS) is a o-dimensionaljace. 

This is clear for n = 1; assume it true for n = k, and 
consider the case n = k + 1. By (a) of Theorem 5, 
F f is a k-dimensional face of B k+l, and to simplify 
notation we may assume F~ = B kX{ O}. Thus 
F~=BkX {I }. If we define Y t to be the projection 
(Xi)o for 1:::; i :::;N(k) , thon by (c) of theorem 5 
X N(W)+l-ieB k X { I } is a neighbor of X ,eB k X { 0 }, 
which implies that Yj=(XN(k+ll+l-i) I' That is, 

X j= YtX{ O} for l:::;i:::;N(k) 
X i= YN (lc+l)+I-tX{ l } for N(k) <i :::;N(k+ l). 

That {Y i : l:::;i :::;N(k) } is a perfect Gray code on B k 
follows easily from the corresponding fact for 
{X t :l:::;i:::;N(k+ l) } and the first of the last two 
equations. 

Suppose first that TeSt. Then 

X (T )= Y ( T)X{ O} 



and so Y eT ) is a (0+ I) -dimensional face of B k • By 
induction hypothesis tbere exist d wiLh 0 ~d<k, 
/I with l ~v~N(lc- d- I) , and a palt itio n T= SUS' 
such that S is a subset of either S~ '- l or S g2, S' is the 
reflection of S in (2v- I )2d , and Y eS) is a o-dimen­
sional face of B k • Thus 

X(S) = Y (S) X{ O} 

is a o-dimensional face of B k+ l, as des ired. 
Next suppose TcS~. Let T' be the r eflection of 

For, suppose a member X t of F~\l) and a member 
X t of F~(2) were neighbors, so that 

(j( I ) -1)2°+ 1 ~i ~j ( I ) 2 °, 

(j(2) -1)2°+ 1 ~ lc ~j(2)'],o , 

and by corollary 1 there ex ist d with 0 ~d<n, and 
/I = v(d), sucb that 

Tin N(k) ; then and 

X(T) = Y(T' ) X{ l } 

and so YeT' ) is a (0+ I )-dimensional face of B k . By 
induction hypothesis there exist d with 0 ~ d< k, 
/I with 1 ~/I~N(k-d- 1 ), and a partition T' = SUS' 
such that S is a subset of either S~V-l or S~ V' S' is the 
reflection of S in (2/1-I)2 d , and Y (S) is a o-dimen­
sional face of B k • Let R and R' be the respective 
reflections of Sand S' in N(k) , so that we have a 
partition T= RUR', and 

X(R) = Y (S) X {I } 

is a o-dimensional face of B k+I' Since R is a subset 
of either S g"_1 or S~" where 

and R' is the reflection of R in (2 J.L - I )'2 d , again 
matters are as desired . 

Finally, suppose T meets both S~ and S ~. Then 
X(T) , as a (o+ I)-dimensional face of E k+1 which 
meets both Bk X {O} and B"X {I }, can easily be 
shown to have the form 

X(T) = F X{ O,l} 

where F is a o-dimensional face of E k • Say F = Y eS) 
where ScS~. It follows that 

where S' is the reflection of S in N(k) . Since 
XeS) = F X {O} is a o-dimensional face of E"-H, the 
proof is complete. 

COROLLARY 1. L et {XI: 1 ~ i ~N (n) } be a perfect 
Gray code on Bo. Then the n neighbors oj X I are the 
{X k(d) :O ~ d<n } defined by 

k ed ) = (2v(d) - I )2d+1+ I - i 

where v(d) i defined by 

(2p(d) - 2)2d < i ~2/1(d) 2d. 

This follows from theorem 7 with 0= 0. 

COROLL ARY 2 . L et {XI: 1 ~ i ~N (n)} be a pel:fect 
Gray code on En. If j (1) and j (2) are distinct but have 
the same parity, then no member oj F~ ( I ) is a n eighbor 
oj a member oj F~ (2). 

(v- I)2d+I+l ~i~/l2{1+r, 

which imply that 

(v- I)2d+1+ 1 ~k ~ v2d+l. 

On the one hand, we have 

(j (2) - 1)2°+ I - j (1)2° ~ k-i 

SO that 

and therefore 

=(i+k) -2i 

~[(2v- I) 2 d+l+ I ] 

-2[(v- I)2d+l+ 1], 

On the other hand by interchanging i with lc and j(I) 
with j(2 ) in this argument, we obtain 

j(I) - j (2) < 2d+l-O+ 1. 

Since the hy potheses on j (I ) and j(2) imply 
Ij(2) -j ( 1 ) 1~2, the last two displays imply that 
d+ 1-o> 0. But then we would have 

[(j (I ) - 1)2°+ 1] + [(j (2) - 1)2°+ 1] ~i+ lc 

=(2v-1)2d+l+ I 

= i+lc 

~j(1) 2°+j(2) 2 °, 
so that 

[j (l ) + j(2 ) -2]2°+ 2 ~ (2v- I )2d+l+ 1 ~ Li( I ) + j(2) ]2°, 

[jCI ) + j (2) - 2]2'< (2v - I)2d+I< Li (I ) + j (2) ]2°, 

j (l ) + j(2 ) - 2 « 2v - 1)2d+H <j(1) + j(2 ), 

with the hypotheses implying that the middle term 
(which lies between the consecutive even integers 
constituting the extreme terms) is an even integer. 
Since this is impossible, the corollary is proved. 

Just as the existence of ordinary Gray codes pro­
vides an alternative approach to the material of 
section 2 (see the beginning of the present section), 
so the existence and properties of perfect Gray codes 
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provide an alternative approach to the material of 
section 3. Suppose for example that Fa is a d-dimen­
sional face of B n, with 0 -::;'d< n. Then by theorem 6 
there is a perfect Gray code on Bn with Fa=F f, and 
theorem 3 can be quickly proved by setting 

j(n; Fit) = U {F 1: I-::;'j -::;'N(n-d) , j is odd }, 

g(n; F a) = U {F 1: I-::;'j -::;'N(n-d) , j is even } 

and invoking the last corollary (with d as 0) together 
with (a) of theorem 5. 

We conclude by showing that "essentially" there 
is only one perfect Gray code on B n, which must 
therefore be the "conventional" one mentioned 
earlier. To make this precise, observe that as a 
" discrete cube," B n has as its natural group of 
symmetries the hyperoctahedral group ttl" whose 
(n!)2n elements can be represented as the ordered 
pairs (cr, 11") where cris aSllbset of {I, 2, 3, ... , n } and 
11" is a permutation of {I , 2,3, ... , n }. The opera­
tion of (cr, 11") on a member X = (XI, ... , Xn) of B n is 
the member X' defined by 

x;= I-xr(J) if jeIT, 

x; = x1r ( j) if je{I, 2, 3, ... , n } -IT. 

If {X j :I-::;'i-::;'N(n)} and {X;:I-::;.i-::;.N(n) } are per­
fect Gray codes on B n, we call them equivalent in 
case (with an obvious notation) 

for some (IT, 11") in 0;.. 
THEOREM 8. Any two perject Gray codes on Bn are 

equivalent. 
This is clear for n= 1; assume it true for n = k, and 

consider the casen=k+ 1. Let {X j: I-::;' i-::;'N(k+ I) } 
and {X;:I-::;'i-::;'N(k+ I) } be perfect Gray codes on 
B HI . By theorem 5 X(ST) and X'(Sf) are k-dimen­
sio.1al faces of BHI , so that there exist elements l' 

and t of {I , 2, ... , k + l }, and numbers c and c' 
each either zero or one, for which 

X(SD = {X:XeBk+l' XT = c}, 

X' (Sf) = {X:XeBHI , X t = c' }. 

Therefore one-to-one correspondences between B k , 

and each of X (Sf) and X' (Sf), are set up by the 
functions 

defined by 

g(X) = (Xp(I), Xp (2), ••• , XP(k») ' 

g'(A) =(Xr (I ), Xr (2 ), ••. , Xr(k») 

where X = (x1, ••• , XHI) and the permutations fJ 

and r of {I, 2, ... , k + l } are given by 

p(j) = j if j < 1', p(j) = j + 1 if l' -::;'j -::;'k, p(k+ 1) = 1', 
r(j) = j if j < t , r(j) = j + 1 if t -::;'j -::;'k, r (k + 1) =t. 

It is trivial to verify that g transforms each 
d-dimensional face of B Hl which lies wholly in 
X(Sf) into a d-dimensional face of B k , while g' does 
the same for those faces of B H l which lie wholly in 
X' (Sf) . Therefore 

{g(X j) :I-::;' i-::;'N(k) } and {g'(X;):I-::;'i-::;'N(k) } 

are perfect Gray codes on Bk , so by induction 
hypothesis there exist a subset IT of {I, 2, ... , k } 
and a permutation 11" of {I , 2, ... , k } such that 

(CT, 1I")(g(Xi))=g'(X;) for I-::;' i-::;'N(k). 

If Xij and X;j denote the jth entries of Xi and X; 
respectively, then this can be written as 

, 
Xi, r(j) =Xj, P1r(j) if je{1, 2, . . 0' k } -IT 

for I-::;'j -::;' k and l-::;'i-::;'N(lc) . 
Now form the permutation 11"' of {I , 2, ' , ., k + l } 

defined by 11"' (t) = 1' and 

11"' (j) = P7rT- 1(j) for j -,t-t, 

as well as the subset CT' of {I, 2, .. "k + 1 } defined by 

IT' = r (CT) U {t} if c -,t- c' , 

IT' = r (CT) if c= c', 

Then it follows easily that 

( IT' , 11"' ) (Xi) = x; for I-::;' i-::;'N(lc), 

and this remains true for N(k)<i-::;'N(k+ l) because 

XNCk+l )+l -i, ,= I -XiT, 

x' N (k+O+l-.i,j = X;j if j -,t-t, 

x' NU+O+l -i, t= I -X;t 

for I-::;' i-::;'N(k) . Thus the two given perfect Gray 
codes on B"'+l are equivalent. 
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