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I. A Boolean function of n variables, considered as a subset of the discrete unit n-cube

B,, is called cellular if each of its connected components is a face of B,,.

Hamming’s determi-

nation of optimal binary single-error-detecting codes is generalized to a characterization of

all proper cellular functions with the greatest possible number of elements.

II. An analysis

is made of a class of Gray codes (Hamiltonian circuits on B,) with certain special properties,
e.g., admitting for 0 <d <n a partition into 274 subpaths each forming a d-dimensional

face of B,.

1. Introduction

Let B, be the set of vertices of the unit cube in
n-dimensional space; equivalently, B, is the set of
all 'binary sequences ? of length n. A Boolean func-
tion of n variables is simply a subset ° of B,,.

s Call two vertices of B, neighbors if they differ in
precisely one position. A Boolean function fis called
connected if, given any two vertices X, X’ in f,
there exists a sequence

X:4Y1,.<Y2,‘ 73’ ey ‘Yk—l, Xk:z”

of members of f such that X; and X, are neighbors
for 1<i<k--1. 1Tt is easy to show that if 7 is not
connected, then it has a unique partition into maxi-
mal connected subsets called its components; * if f is
connected, the unique component consists of f itself.

The relevance of these concepts to the simplifica-
tion of Boolean functions is as follows. By a cell
of a Boolean function f, we mean a face® of B,
which lies wholly in f. A cover of fis a collection
C of cells of f such that each vertex of f lies in at
least one cell from €. Each cell of f is assigned a
cost in a manner which need not be described here,
and the cost of a cover C is defined to be the sum of
the costs of the cells of €. The problem of finding a
minimum-cost cover of f is then identical with the
“Problem of Quine” ¢ of finding a simplest ‘“normal
disjunctive form’ for f, a problem of practical
interest (for example) in the design of switching
circuits. From the fact that each cell is connected

1 Supported in part by the National Science Foundation, Grant No. G-7579.

2 A sequence is binary if each of its terms is either 0 or 1.

3 The equivalence of this definition with alternative ones is well-known in the
field and will not be discussed here.

4 Define a binary relation on f; XRX’ holds if X and X"’ are in a connected
subset of f. Then R is an equivalence relation and the components of f are the
corresponding equivalence classes.

5 A d-dimensional face of the ‘“discrete cube” B, is obtained by fixing the
(binary) values of n—d of the n coordinates.

6 W. V., Quine, The Problem of Simplifying Truth Functions, Amer. Math.
Monthly 59 (1952), pp. 521-531. There is no reason here to cite the extensive
literature on this topic.
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and therefore lies in a single component of f, it
follows that any cover of f is a disjoint union of
covers of the components of f and conversely; in
particular any minimum-cost cover of f is a dis-
joint union of minimum-cost covers of the com-
ponents of f, and conversely. That is, the Boolean
simplification problem for a function f which is not
connected, can be split into independent ‘“‘smaller”
subproblems by splitting f into its components.
Such a decomposition is clearly likely to be helpful
in attacking the simplification problem.”

In this context it is natural to ask how many
components a Boolean function of n variables can
possibly have. This question will be answered
in section 2, in which we also investigate the struc-
ture of the maximum disconnected functions of n
rariables, i.e., those with the greatest possible num-
ber of components.

The discussion above also makes it natural to
focus attention on classes of Boolean functions f such
that the simplification problem for each component
of f is especially easy. One such class is that of
isolated functions, those with only single vertices of
B, as components. An isolated Boolean function
can be identified with a single-error-detecting binary
code, and our characterization in section 2 of mai-
mum isolated functions (those with as many vertices
as possible), which verifies a conjecture of Chitten-
den® is essentially the same as an “optimal code”
characterization due to Hamming.’

For all methods of “cost” assignment suggested
for the Problem of Quine, the faces /7 of B3, have the
property that { '} is the unique minimum-cost cover
of /. Thus the class of Boolean functions f, such
that each component of fis a cell of 7, is one of the

7 Of course the labor required to determine the components should be taken
into account.

8 §. W. Chittenden, On the minimal representation of Boolean functions,
Transactions of the Third Conference of Arsenal Mathematicians, U.S. Army
Office of Ordnance Research Rept. No. 58-2, p. 134,

9 R. W. Hamming, Error detecting and error correcting codes, Bell System
Tech. J. 29 (1950), pp. 147-160. Our proof by induction is quite different from
Hamming’s, and this approach may be of independent interest.



classes mentioned in the last paragraph. Such
functions will be called cellular, and in section 3 we
determine the structure of maximum cellular func-
tions (those other than B,, with as many vertices as
possible). This generalization of Hamming’s theo-
rem from isolated functions to cellular functions, is
the main new result of the paper.

A Gray code on B,, in the language of graph theory,
is a Hamiltonian circuit of the graph formed from
B, by the “neighbor’ relation.®® In section 4, the
inductive approach introduced earlier (in sec. 2) is
employed to establish the existence of Gray codes
with certain special properties, e.g., admitting a
partitien into 2°~¢ subpaths each forming a d-di-
mensional face of B,. These “perfect’” Gray codes
turn out to coincide with what were called the
“conventional” Gray codes by Gilbert,” who de-
scribed them in different notation using essentially
the same recursive construction. The treatment in
section 4, besides giving additional detail on the
structure of these Hamiltonian circuits, highlights
their geometric aspects in a way which may be better
suited to some readers’ mathematical intuition than
is the strictly arithmetic treatment associated in this
context with the phrase “reflected binary.”c It
may be of interest that this material was developed
from purely geometric considerations, in ignorance
of “reflected binary.”

2. Maximum Disconnected and Isolated
Functions

We begin with a simple lemma:

Lemma 1. There is at least one mazvmum discon-
nected function of n variables which is isolated.

For the proof, observe first that because the
number of Boolean functions of n variables is finite,
a maximum disconnected function f must exist.
Now form a function f’ by deleting all but one
member from every component of f. Clearly f is
isolated, and it must be maximum disconnected
since it has the same number of components as does f.

In what follows, it will be convenient to associate
to each Boolean function f of k-1 variables, two
Boolean functions f, and f; of % wvariables each,
called the projections * of f.  f; is obtained by drop-
ping the final 0 from each member of f which ends mn
0, while f, is obtained by dropping the final 1 from
each member of f which ends in 1. Note that

Ifl=1fl+1Al,

where |f| denotes the number of members of f.

Lemma 2. If M, s the maxzimum number of
componmltts of @ Boolean function of n variables, then
M, <21,

(1)

92 Some authors use ‘“Gray code” to mean any path or circuit in the linear
graph formed by Bjy.
37“(7 gg)(‘ Gilbert, Gray codes and paths on the N-cube, Bell System Tech. J.

1958).

9o See for example I. Flores, Reflected number systems, Trans. Inst. Radio
Eng. Vol. EC-5 (1956).

%d In the switching-circuit literature fo and fi would be called the residues of f
with respect to the ‘“last’’ of the k-1 Boolean variables.

This is clear for n=1; assume it true for n==F and
consider the case n=Fk-1. Lemma 1 guarantees
the existence of a maximum disconnected function f
of k-1 variables which is isolated; then eq (1) shows
that M., =|fo|+|fi|. Itiseasy tosee thatf, and £, are
also isolated, so that for i=0 and i=1, |f,| is the
number of components of f;. Therefore | f,| <M, and
so we have M, <2M,. But M,;<2*! by the in-
duction hypothesis, so that M, <2* and the induc-
tion proof is complete.

We now define two special Boolean functions of n
variables; f(n) consists of those members of B, with
an even number (possibly zero) of 1’s among their
entries,’® while g(n) consists of those members of B,
with an odd number of 1’s among their entries.

TaeorEM 1. The functions f(n) and g(n), which
Jorm a partition of By, are the only mazimum isolated
Boolean functions of n variables. M,=2""1,

Part of the proof is trivial; it is clear that f(n)
and g(n) are isolated, and that they form a partition
of B,. Since f(n) and g(n) each have 2"~! members
and thus the same number of components, we have
M, >2"" and the equality follows by lemma 2.

It only remains to show that if A is any maximum
isolated function of n variables, then % is either f(n)
or g(n). This is clear for n=1; suppose it true for
n=Fk and consider the case n=k-1. Asin the proof
of lemma 2,

2k=Mk+1:|h|:|hol+lh1l SMk+Mk:2k;

where we have used the fact that 4, and %, are isolated
because £ is. Since equality holds throughout the
last display, A, and &, each have exactly M, com-
ponents. The induction hypothesis leads to four
possibilities:

ho=f(k) and h=f(k),
ho=g(k) and hy=g(k),
ho=f(k) and hi=g(k),
ho=g(k) and hy=f(k).

The first two possibilities are incompatible with the
fact that % is isolated, the third yields A=f(k+1),
and the fourth yields h=g(k-+1); these conclusions
follow from the identity

h=(hoX{0})U (A X {1})

@
valid for Boolean functions of -1 variables. Thus
the induction proof is complete.

[Jack Edmonds (NBS Operations Research Sec-
tion) has observed that B, can be regarded as a
bipartite graph, and has given the following (un-
published) generalization of theorem 1: For a con-
nected bipartite graph which has a connected regular
subgraph containing all its vertices, the sets of the

n
e That is, a vertex X=(z1, 23, . +» «Za) of Bp is in f(n) if and only if Z ziis

i=1

even.

10 /X {0} is obtained by adjoining a 0 at the end of each member of ho,. The

nBlulti(plic}ation sign refers to the Cartesian-product representation of B4 as
¥ X {0, 1}.
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unique bipartition are the only maximum isolated
sets of vertices.]

One might conjecture that a maximum discon-
nected Boolean function is necessarily isolated. A
counter-example for n=1 is provided by B, itself.
The next theorem shows that this is the only counter-
example.

Turorem 2. For n>1, every maximum discon-
nected function of n variables is isolated.

To prove this, let f be a maximum disconnected
function of n_>1 variables. As in the proof of
lemma 1, form f” by deleting all but one member
from each component of f. Since f” is isolated and
has the same number of components as f, it follows
from theorem 1 that f is either f(n) or g(n). With-
out loss of generality assume f'=f(n). If f=f,
then f includes at least one vertex Y of g(n).

One neighbor X; of Y is obtained by changing
just the first entry of Y, while a second neighbor
X, is obtained by changing just the second entry of
Y. Since X; and X, are in f(n)=f" and thus in f,
and both are neighbors of the same vertex 1 of f,
it follows that the elements X; and X, of f lie in
the same component of f.  This however contradicts
the construction of f’; we conclude that f=/’, so
that f is isolated.

3. Maximum Cellular Functions

Recall that a Boolean function f is called cellular
if each component of fis a cell of f; different com-
ponents may be cells of different dimensions. Cel-

lular functions are a natural generalization of isolated
functions.

Trrorem 3. Let Fy be a d-dimensional face of
B, 0<d<n. There exists a Boolean function {(n; Fy)
of n variables with Fq as a component, 2°~9~! components
lin all, and every component a d-dimensional cell.
The complement g(n; Ky) of f(n; Fy) in B, also has
L2074 components, each a d-dimensional cell.

These functions f(n; F;) and g(n; F,;) can be re-
‘garded as the analogs, tor cellular functions, of the
functions f(n) and ¢g(n) (defined before theorem 1)
for isolated functions. For example our later
results will imply as a special case that these func-
tions (for various #,) give the only solutions to the
problem of constructing a cellular function with as
'many components as possible under the restriction
that every component is a d-dimensional cell;
‘theorem 1 is the particular instance d=0.

We prove the theorem by explicitly constructing
f(n; F,) and verifying its properties. For sim-
plicity assume F; consists of all members (z;, 25, . . .,
z,) of B, such that z;=0for d+1<i¢<n; any other
d-dimensional face can be treated similarly. The
cube B, can be written as a Cartesian product
B;XB,_, i.e., a binary sequence of length = is
uniquely expressible as a sequence of length d
followed by one of length n—d. With this notation,
we use the functions introduced before theorem 1
to define

Sfn; F) =U{B,X{Z}: Zef(n—d) } =BuX f(n—d).

Each set B, X{Z! is easily shown to be a d-
dimensional face of B, and is therefore connected;
I, itself is obtained as B,<{0,_,} where 0,_,1s a
sequence of n—d zeros. Since f(n—d) has 2741
members (see theorem1), there are2" =~ !sets B, <X { Z}.
To see that these sets are the components of f(n; F,),
it suffices to observe that any two members Z, Z of the
isolated function f(n—d) differ in atvleast two positions,
so that no member of B,X{Z} can be a neighbor of
any member of B, X {Z'}.

The complement of f(n—d) in B,_,is the isolated
set g(n—d) which has 2"7%"! members. Therefore
the complement of f(n; F,) in B, is

gn; Fp)=U{B,X{Z} : Zeg(n—d) } =B, X g(n—d)

whose components are the 2779=! d-dimensional faces
B, X {Z} of B, with Zey(n—d). Thus theorem 3 is
proved.

Before proving the next theorem, it is convenient
to collect several elementary facts as a lemma.

Levmma 3. Let f, and f, be the projections of a
cellular function t of k41 variables. Then

(a) of h is a component of {, then either hy=¢
or hy=¢ or hy=h,,
(b) for 1=0 and 1=1, the components of f; are

the nonvoid projections hy of the components h of f,

(¢c) fo and f, are cellular if nonempty, and
(d) of component p of £, meets component q of fi,

then p=q=hy=h, for some component h of f.

To begin the proof, let 4 be any component of f.
Since f is cellular, for some d there exist S, {1,2, . . .,
k,k+41} with k+1—dmembers, and a binary sequence
{c;:1€Sy}, such that % consists of all members
(@1, . . ., 2541) of Byyy obeying

z,=c; for all 7eS5;.

If k+41eS), and ¢,.,=0, then h;=¢ and A, consists of
all members (z, . . ., 2;) of B, such that

z;=c, for all 1eS;,— {k+1}.

If £+1eS, and ¢;4,=1, then hy=¢ and’h; consists of
all members (2, . . ., 2;) of By such that

Ti=—Cy fOI‘ all ?:GS],—{k+1}.

If k+1e{1, . . ., k+1}—S,, then A is the disjoint
union of the set of members of B, such that

Zr+1=0, x;=c; for all ieS,
and the set of members of B,.; such that
Trr1=1, 2,=c; for all ieS,;
thus hy=h, consists of all members of B, such that
z;=c; for all 7¢S,,.
This proves (a) of the lemma, and also shows that

ho and &, are faces of B, and therefore cells of f,
and f; respectively.
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To prove (b) of the lemma for i=0 (the proof for
7=1 is similar), it now suffices to show that if A,
and A¥ are nmonempty projections of distinet com-
ponents & and A* of f, then no member X of A is a
neichbor of any member X* of Af. If such a
“neighboring” occurred, however, then the member
X x{0} of h would be a neighbor of the member
X#5{0} of *, which is impossible. Thus (b) holds;
(¢) follows from (b) and the fact (proved incidentally
in the last paragraph) that the projections of a face
are again faces.

Now suppose a component p of f, and a component
q of f; have a member X in common. By (b), there
exist components f, and h, of f such that (f,),=p
and (h,);=¢q. Thus X< {0} is in %, and its neighbor
X {1} is in h,, so that h,=h,=h, say. It follows
from (a) that p=g¢, so (d) is proved.

TrrorEM 4.  The maxvmum number of members in
a cellular Boolean function of n variables (other than
B, is 2271 For 0<d<n and each d-dimensional
face Fq of By, t(n; ¥a) is the only cellular function with
28~ members which has ¥q as a component.

This is clear for n=1; assume it true for n==£Fk
and consider the case n=Fk-+1. Let V. be the
maximum number of members in a cellular function,
other than By, of k-+1 variables; V; is defined
similarly. It follows from theorem 3 that Vi, >2%
To prove the opposite inequality, let f be a cellular
function of k-1 variables with V.., members. If
either of f, or f, is By then by (d) of lemma 3 the
other must be empty, since otherwise we would
have fo=fi=B; and thus f=B,y,. Thus if f,=B;
then f,=¢ and f=B, < {0}, while if /=B, then fy=¢
and =B, <{1}; in either case Vi =|f|=2" If
both f, and f, are proper subsets of B then by the
inductive hypothesis and (¢) of lemma 3 we have

Vk+1: !f' :IfOl + leI <Vit Vk:Qk_l‘FEk—I:Zk, (3)
completing the proof that V,=2""" for all n.

Now let F; be a d-dimensional face of B,.;, where
0<d<k-1, and let f be a cellular Boolean function
of k-1 variables with 2 members and F; as a compo-
nent. For simplicity we again use the representation
Bk+1:Bd><Bk+l—d and assume Fd:BdX{OIH—l—d};
where 0;.4,_4 18 a sequence of £+1—d zeros."*

If fo= B, then (see the last paragraph)

f=BX{0}=f(k+1; F=f(k+1; Fo)

where the last equation holds since Fj is to be a
component and B, < {0} has F; as sole component.
If f,= B, then (see the last paragraph) fy=¢, which
is impossible since f, contains the nonempty set !
(Fp)o=ByX{0;_4}. So we can assume f, and f; are
proper cellular functions of k variables; by (3), f, and
f, each have 2! members, so that by inductive

10a For consistency it is important that this representation and assumption
match the corresponding ones in the proof of theorem 3, so that the explicit
formula for f(n: Fa) introduced in that proof can validly be used below.

11 For k=d, the Cartesian product reduces to Bx.

hypothesis and (b) and (c¢) of lemma 3,

Jo=fk; (Fq)o).
In the next paragraph we will show that f,=B,—f;
it follows that

fi=glk; (Fa)o)

and thus by eq (2) that

S=Uk; (Fa)o) X{0DU (glk; (Fa)o) X {1}).

From the explicit formulas for f(n; F,) and g(n; F,)
given in the proof of theorem 3, we have

Sle; (Fa)o) X{0}=[U{B,X{Z} : Zef(k—d)}]X {0}
=U{BX{ZX{0}}: Zef(k—d) }
=B, X (f(k—d) X{0}),

where we have used the fact (F,),=B,X{0;_,}, and
similarly

g(k; (Fa)o) X {1}=BaX (glk—d) X {1}).
Thus
S=BaX[(f(k—d) X{0H U (glk—d) X {1})]
=B, X fk+1—d)=f(k+1; F)),

as was to be proved.

It remains to prove that fi=B8,—f,. Since f, and
fi each have 2! members, it suffices to prove
<€ Bi—f,, 1.e., that no component p of f, meets any
component ¢ of f;. If such a meeting occurred, then
by (d) of lemma 3 we have p=q=hy=~h, for some
component i of f, and by (b) of lemma 3 p is a
component of f; as well as ;. By (c¢) of lemma 3,
fo and f; are both cellular, and by induction |
hypothesis there is only one cellular function of &
variables with 27! members having p as a compo-
nent. Therefore f,=f,, so that (F,), 1s a component
of f; as well as of fy=f(k; (Fy),). Thus

BiX{0x_a} X By
=[BsX{0x-a} X {0}JU[BsX {0z_a} X {1}1°
=[(Fa)oX {0}U[(Fa)o X {1}]
ClfX{0HULAX{1}=f;

since the first set is a face of B,,, which properly
contains F,=B;X {014}, we have a contradiction |
to the hypothesis that F;is a component of f. This
completes the proof of theorem 4.

The last two theorems yield the following state-
ment:

CoroLLary. A cellular Boolean function of n
variables (other than B,) with the mazimum number of
members has all its component cells of the same dimen-
sion, d, and its complement is again such a function
(with the same “d”).  There are 2(3) such functions
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for each d<n, and thus in all there are 2(2"—1)
cellular functions of n variables with the maximum
number of members.

The number 2(}) is obtained by dividing the
number 27~9(%) of d-dimensional faces of B, bx the
number 2741 of these faces appearing in a maximum
cellular function.

4. Pertect Gray Codes

An even simpler proof of lemma 2 and theorem 1,
in section 2, can be given if we take as known the
existence of a Gray code, i.e., an enumeration
{X,:1<i<2"} of the members of B, such that X;
and le are neighbors for 1<1 <2"=N, and Xy
and X, are nelghbors From this it is obvious that
an isolated set cannot contain both X; and X, or
both Xy and X, and so has at most 2”‘1 members.
It is also clear that the sets

Fn)={X, :iiseven}, Gn)={X;:4is odd},
of they are isolated, are the unique maximum isolated
functions of n variables. But the defining property
of a Gray code shows that the parity of the number
of 1’s in X is opposite to that for X, so that the
number of 1’s in every member of F(n) has the same
parity, while the opposite parity holds for all members
of G(n). Thus either F(n)=f(n) and G(n)=g(n), or
F(n)=g(n) and G(n)=g(n); since f(n) and g(n) are
easily proved to be isolated the same is true of F(n)
and @(n), so that the conclusions of lemma 2 and
theorem 1 have been established.

The inductive technique used in section 2 to prove
lemma 2 and theorem 1, and in section 3 to prove
theorem 4, can also be employed to establish the
existence of a Gray code on B, for all n>1. We
shall actually prove a stronger result, namely the
existence of a class of Gray codes (to be called perfect)
with certain additional properties which have been
found helpful in aiding visualization. For example
((a) of theorem 5), for each d with 1 <d<n such a
code partitions into 2" successive subpaths, each
essentially a perfect Gray code on some d-dimensional
face of B,. Also a rather explicit description can be
given of the positions (in a perfect Gray code) of the
n neighbors of any member of B, whose position in
the code is given; see corollary 1 to theorem 7.

For 0<d<n and 1<j<2"*=N(n—d), it is con-
venient to define

S4={i : (—DP<i <2,

asubset of {1,2,3,...,2"=N(n)}.
S of S¢_,, we call the subset

S'={1:(@2v—1)2"4+1—1eS}

of S¢ the reflection of S in (2v—1)2% while for any
subset S of 8¢, the reflection S” of S'in (2v—1)2%1s the
subset of S¢,_, defined by the same formula. Here
0<d<n and 1<v<N(n—d—1). Familiarity with
the reflected binary number system should provide !
partial motivation for this definition.

For any subset

For any enumeration {X,:1<:<2"=N(n)} of the
members of B,, and any subset 7" of {1,2,3, ...,
N(n)}, let

X(T) =X, ieT5,

The enumeration will be called a perfect Gray code if,
for each d with 0<d<m, for each » with 1<»<
N(mn—d—1), and for each subset S of either SY%,_, or
S¢ such that X(S) is a 6-dimensional face of B, for
some 6<d, the set X(S’) corresponding to the
reflection S” of S in (2v—1)27 is also a §-dimensional
face, and furthermore X(S)UX(S’) is a (6-+1)-
dimensional face.

To indicate the implications of this fairly compli-
cated definition, we collect some properties of perfect
Gray codes in the next theorem, in which the

notation
Fi=X(S9)
is employed.

Tarorem 5. If (X :
Gray code on By, then
(a) F{as a d-dimensional face,
(b) KUK, is a (d-+1)-dimensional face,
(¢) F{UFS w_ay1; 18 @ (d41)-dimensional face.
First (a) will be proved for 0 <d<n. It is clearly
true for d=0; assume it true for d=~k<n, and con-
sider the case d=Fk-+1. Observe that

Sit1=8%,,US%,

1<i<N(n)} is a perfect

and that each disjunct is the other’s reflection in
(2j—1)2¢. Since by induction hypothesis F%;_; is a
k-dimensional face, it follows from the definition of
“perfectness” that F’”rI is a (k-+1)-dimensional face.
This completes the inductive proof of (a).

To prove (c), it now suffices to observe that
Sgn—a+1-, 1s the reflection of S¢ in N(n—1). To
prove (b), factor j as

=29<_N(n—d) (a>0, b odd)

and observe that S¢ is a subset of S§* whose reflection
in b2*t% 15 SY,,.

By setting d=0 in (b) of theorem 5, and also in (c)
with 7=1, we see that a perfect Gray code is indeed
a Gray code. An imperfect Gray code on B;, where
for example F7 is not a face, is given by

(O’ 070) )

(1,0,0), (1,0,1), (1,1,1)
(171)0)7 y )

(0,1,0), (0,1,1), 0,0,1

Next we prove the existence of a perfect Gray code
on B,;in analogy with theorem 3 it will in fact be
shown that such a code can be chosen to “begin”
with any preassigned face F' of B,. Because the
formal proof which follows is somewhat forbidding,
we summarize the geometric idea first: B, is con-
sidered as made up of two copies of B, (for
simplicity, B, X {0} and B, X {1}), the first copy
containing F; the perfect Gray code on B, is con-
structed by choosing an appropriate perfect Gray
code on B,_, (which exists by induction hypothesis),
| tracing it out in B, ;< {0} and then tracing it out in
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reverse order in B, ;X {1}. When F=¢ this con-
struction agrees with one given by Gilbert (op. cit.
in footnote 9b), and if iterated for n>>1 it gives the
particular perfect Gray codes which Gilbert termed
the “conventional’” ones.'?

Turorem 6. Let ¥ be a d(0)-dimensional face of
B, with 0<d(0) <n. There exists a perfect Gray code
on B, for which F$© =F.

This is clearly true for n=1; assume it true for
n=F and consider the case n=*~%-+1. If d(0)=k+1,
so that F=B,,,, then we are simply to prove the
existence of a perfect Gray code on B, which will
follow from the analysis for d(0) <k. So suppose
d(0) <k; to simplify notation we can assume
FcB,<{0}, so that F is given in terms of its
projection Fy as F=F;x<{0}.

It is easy to prove that Fj is a d(0)-dimensional
face of B,. By inductive hypothesis, there is a
perfect Gray code {Y,:1 <1< N(k)} on B, for which

F():{ Yi:l Siﬁ,‘zd(m}.

Now define an enumeration {X,:1<i<N(k+1)} of
Bk+1 by

Xt:YfX{O} if ISiSN(k):
Xi=Yywinr-X{1} if NB)<i<N(EH+1).

We shall show that this enumeration is the desired
perfect Gray code. The following notation will be
used :

X(S)={ X, : 58S},
Y(R)={Y,: iR},

Sj={i: —1D2°<i<52% (0<d<k+1,
1<j<N{E+1-d),

Ri={i: (j—1)2°<i<j2} 0<d<k,
1<j<N(e—d)),
Fi=X(S9),

G =¥ ().
First, it is clear that
=I5 = SO =/ ),

as desired. Second, consider any d with 0<d<F,
any » with 1<y <N(k—d), and any subset S of
either S;,_; or S;, such that X(8) is a é-dimensional
face of By for some §<d. Let S’ be the reflection
of S'in (2r—1)2% The proof will be completed by
showing that X(S”) is a é-dimensional face, and
X(S)UX(S”) a (6-+1)-dimensional face. It will be
assumed that S is a subset of Si,_; rather than SZ,;
the details for the other case are analogous.

Suppose first that »<N(k—d—1). Then X,=
Y <{0} for each 7 eSUS’. Therefore

X(S)=Y(S)x{0}, X(8")=Y(8")x{0},
X(SUX(S) =X (SUY(8") x{0}.

12 In theorem 6 below we write d(0) instead of do for typographical convenience.
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The first of these equations shows that Y(S) is a
6-dimensional face of B,. so that ¥'(S’) is a é-dimen-
sional face and Y(S)UY(S’) a (64 1)-dimensional
face; the second and third equations then yield the
same results for X(S) and X(S)UX(S").

Next suppose »> N(k—d—1) and d<k. Then

Xi=Ynisn1-1X{1}

for each 7eSUS’. Let R and R’ be the respective |
reflections of S and S’ in N(k), so that

X)) =Y RB)x{1}, X(S§)=Y(R")X{1}
X@OUX(E)=T(R)UY(R")) X{1}.

The first of these equations shows that Y (R) is a
6-dimensional face of By. It is readily verified that
R’ is the reflection of R in

22— (—1))—1]27,

so that Y(R’) is a é-dimensional face and
Y(R)UY (R’) a (6-+1)-dimensional face; the second
and third equations then yield the same results for
X(8”) and X(S)UX(S).

The final situation is d=Fk, so that v=1. Here

X«[: Y1>< {O} fOI' 'iGS,
Xi=Y yinu-1X{1} for 2eS’

so that

X(8)=Y(S)X{0} X(8)=Y(S)X {1},
X(S)UX(SH=Y(S)x{o0, 1},

and the result follows.

The next theorem gives more detail on the
structure of perfect Gray codes.

Taeorem 7. Let {X;:1<i<N(n)} be a perfect
Gray code on By, and T a set of 2°%' elements of
{1,2, ..., N(n)}. If X(T)isa (6+1)-dimensional
face of By, then there exists d with 6 <d<n, v with
1<v<Nmn—d—1), and a partition T=SUS’" such
that S is a subset of either S§, ., or S%,, S’ is the reflection
of Sin (2v—1)2% and X(S) is a s-dimenstonal face.

This 1s clear for n=1; assume it true for n=Fk, and
consider the case n=Fk+1. By (a) of Theorem 5,
F% is a k-dimensional face of B, and to simplify
notation we may assume F? =B,x<{0}. Thus
Ft=B,x{1}. If we define Y; to be the projection
(Xy)o for 1<2<N(k), then by (¢) of theorem 5
XN(k+I)+1—iGBk><{1} IS a Ileig‘thI‘ 01’ AY;GB]‘-X{O},
which implies that ¥;=(Xyuin-:):. That is,

Xi:YN(k+l)+1—i><{1} for N(]C) <7SAY<IC+])

That {Y;:1<i<N(k)} is a perfect Gray code on B,
follows easily from the corresponding fact for
{X;11<i<N(k+1)! and the first of the last two

equations.
Suppose first that 7'<S}.  Then

X(T)=Y(T) X {0}



and so Y (7) is a (6-+1)-dimensional face of B,. By
induction hypothesis there exist d with §<d<k,
v with 1<y <N(k—d—1), and a partition T=8US’
such that S is a subset of either 8%, ; or 8%, S’ is the
reflection of S in (2r—1)2% and Y(S) is a é-dimen-
sional face of B,. Thus

X(S)=Y(S) X {0)

is a 6-dimensional face of B,,,, as desired.
Next suppose T'cS%.  Let T be the reflection of
T in N(k); then

(=TT L

and so Y'(7") is a (§41)-dimensional face of B;. By
induction hypothesis there exist d with 6<d<k,
v with 1 <y<N(k—d—1), and a partition 7'=SUS’
such that S is a subset of either S%,_; or 8%,, S” is the
reflection of S in (2»—1)2% and Y (S) is a §-dimen-
sional face of B;. let R and R’ be the respective
reflections of S and S’ in N(k), so that we have a
partition 7'=RUR’, and

X(R)=Y(S)X{1}

is a é-dimensional face of B,,;. Since R is a subset

of either S4,_; or 8%, where
pu=2Fd—y+1,
and R’ is the reflection of R in (2u—1)2% again
matters are as desired.
Finally, suppose 7" meets both S% and S%.  Then
X(T), as a (6-+1)-dimensional face of B, which

meets both B, x{0} and B;x<{1}, can easily be
shown to have the form

X(T)=Fx{0,1}

where F'is a §-dimensional face of B,.
where S=S8%. It follows that

Thst=8, TNst=8"

where §” is the reflection of § in N(k). Since
X(8)=Fx{0} is a é-dimensional face of B, the

proof is complete.
Let {X:1<i<N(m)} be a perfect

CoOROLLARY 1.
Gray code on B,. Then the n neighbors of X, are the

{ Xy :0<d<n} defined by
k(d)=(2»(d)—1)20+1+1—i
where v(d) is defined by
(2v(d) —2)29<i<2»(d)2¢.

Say F=Y(S)

This follows from theorem 7 with 6=0.

Cororiary 2. Let {X:1<i<N()} be a perfect
Gray code on B,. If (1) and j(2) are distinct but have
the same parity, then no member of ¥3q) is a neighbor
of a member of F .

For, suppose a member X; of F¢;, and a member
X, of I were neighbors, so that

(7(1)—1)2°+1 <1 <j(1)2°,
(J(2)—1)2°+1<k<j(2)2°,

and by corollary 1 there exist d with 0 <d<n, and
v=y(d), such that

itk=2v—1)20+141
and
(r—1)20H1 41 < <2041

which imply that
(v—1)2%1 41 <k <»29H,

On the one hand, we have
(j(2) —1)204+1—4(1)2° <k—1

=(1+k)—21

<[@v—1)207141]

—2[(p—1)2¢114-1],
so that
[5(2) —j(1) —1]2°4-1 <2971 —1

and therefore

7(2)—j(1) <2170+ 1.

On the other hand by interchanging + with £ and 7(1)
with 7(2) in this argument, we obtain

J()—j@) <241,

Since the hypotheses on j(1) and 7(2) imply
[7(2)—7(1)|>2, the last two displays 1mply that
d+1—6>0. But then we would have

[G() =121+ —D2+1] S+
= (2r—1)20+141
=i+k
<7(1)28+7(2)28,

so that

(1) +5(2) —2]28+2 < (2v—1)291+1 <[5(1) +5(2)]2%,

) +5@2) —212°<@2v—1)2* 1 [5(1) +5(2) 12°,
J(U)+352) —2<(2v—1)2971735(1) +4(2),

with the hypotheses implying that the middle term
(which lies between the consecutive even integers
constituting the extreme terms) is an even integer.
Since this is impossible, the corollary is proved.

Just as the existence of ordinary Gray codes pro-
vides an alternative approach to the material of
section 2 (see the beginning of the present section),
so the existence and properties of perfect Gray codes
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provide an alternative approach to the material of
section 3. Suppose for example that F,is a d-dimen-
sional face of B,, with 0 <d<'n. Then by theorem 6
there is a perfect Gray code on B, with F,=F{, and
theorem 3 can be quickly proved by setting

fn; Fy =U{F$:1<j<N(n—d), j is odd},
g(n; Fa)=U{F$:1<j <N(n—d), j is even}

and invoking the last corollary (with d as é) together
with (a) of theorem 5.

We conclude by showing that ‘“‘essentially’” there
is only one perfect Gray code on B,, which must
therefore be the ‘“‘conventional’” one mentioned
earlier. To make this precise, observe that as a
“discrete cube,” B, has as its natural group of
symmetries the hyperoctahedral group ¢, whose
(n!)2* elements can be represented as the ordered
pairs (o, 7) where ¢is asubset of {1,2,3, . . ., n} and
7 is a permutation of {1,2,3, . . ., n}. Theopera-
tion of (o, w) on a member X=(z;, . . ., x,) of B,is
the member X’ defined by

ﬁ;: 1 —Zx(j) lf jéﬂ‘,

Tj=xr if je{1,2,3, . . ., n}—o.

If {X;:1<i<N(n)} and {X;:1<i<N(n)} are per-
fect Gray codes on B,, we call them equivalent in
case (with an obvious notation)

(0, m) (X)) =X for 1 <e<N(n)

for some (o, 7) in O,

TarEOREM 8. Anytwo perfect Gray codes on B, are
equivalent.

This is clear for n=1; assume it true for n=F, and
consider the case n=Fk+1. Let {X;:1<i<N(k+1)}
and {X;:1<i<N(k-+1)} be perfect Gray codes on
Bjiyi. By theorem 5 X(S%) and X’(S%) are k-dimen-
sional faces of By, so that there exist elements 7
and ¢ of {1,2, .. ., k+1}, and numbers ¢ and ¢’
each either zero or one, for which

X(S’f): X:XeBk-I-ly Ly :C},
X (SH)={X:XeBy11, v; =c’}.
Therefore one-to-one correspondences between By,

and each of X(S) and X’(S%), are set up by the

functions

g:X(S¥)—B;, ¢ :X'(S})—B;
defined by

9(X) = Toqy, Toyy - - - Towy),

9 (X)=@@q, Ty + - 5 Tray)

where X=(z,, . . ., ;4;) and the permutations p
and 7 of {1,2, .. ., k+1} are given by

p() =y if j<r,
() =7 if j<¢,

It is trivial to verify that ¢ transforms each
d-dimensional face of By, which lies wholly in
X(S%) into a d-dimensional face of Bj, while ¢’ does

the same for those faces of B;.; which lie wholly in
X’(S%). Therefore

{g(X) 11 <i<N(k)} and {g"(Xy) 1 <i<N(k)}

p()) =j+1if r<j<k,
() =j+1if <5<k,

P(k+1>:r)
7(k+1)=t.

are perfect Gray codes on B, so by induction
hypothesis there exist a subset ¢ of {1,2, . . . k}
and a permutation 7 of {1, 2, . . ., k} such that

(o, ) (9(X2)) =g’ (X3) for 1 <i <N(k).

If z;; and zi; denote the jth entries of X; and X}
respectively, then this can be written as

, o
T2y =1—4, on () if Jeo

if je{1,2, . . ., k}—oc

T, 15 =24, pr(9)
for 1<j<k and 1 <t <N(k).
Now form the permutation =’ of {1,2, . . . k-+1}
defined by #’(tf) =r and
' (3)=pmr=1(j) for j#i,
. . ., k+1} defined by

as well as the subset ¢’ of {1, 2,
o =7(a)U{t} if e#c’,
o' =7(0) if c=c’.
Then 1t follows easily that
(", ') (X)) =X, for 1 <i<N(k),
and this remains true for N(k)<i<N(k-1) because
TN 1) +1-4, =i 1 ] #r,
TN ) 111, 1= 1 — a7,
& N 1-4,5 =215 1 j#E,
& NG +1-4,0= 1 =4,

for 1<i<N(k). Thus the two given perfect Gray
codes on B, are equivalent.

It is a pleasure to acknowledge helpful suggestions
by K. Goldberg and E. Johnson (NBS Numerical
Analysis Section) and R. Kirsch (NBS Components
and Techniques Section).
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