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The behavior of electrical currents in a gas discharge t ube including space cha rge effects 
is investigated b y numerical integration of the governing nonlinear partial differential 
equ ations. Both stationary solutions and the temporal development, under the inJ'luence 
of space charge effects, a re considered . It is found t hat t he t runcation error can be greatly 
reduced by comparison with form al solutions for constant fields. The discussion is essen
tially restricted to t he more mathematical quest ions. 

1. Introduction 

.~ The behavior of electron and ion CUlTents in a gas discharge tube as a function of time and 
the applied voltage has been investigated by several aut hors [1, 2, 3, 4)1. Most of t hese 
have omitted the effect of space charge, but h rwe estimated wh en the effect appears. Space 
charge, however , results in a temporally growing distortion of the electrical field and, therefore, 
in a severe nonlinearity of the equations governing th e behavior of electron and ion cmren ts 
in the tube. A. L. Ward (5) suggested the numerical integration of the nonlinear equations 
on an electronic computer for an essentially "one-dimensional" tube, i. e., a tube whose elec
trodes are parallel plates of dimensions large compared to their separation. 

This paper describes the mathematical treatmen t of the b asic equations necessary for the 
applicability of numerical methods. For the sake of completeness, a short derivation of the 
basic equations (sec. 2) and the form al treatment of the case of constant field (sec. 5) is given, 
although many of these consider ations can b e found in other papers too. The stationary case 
is treated extensively in section 3. The difference schemes used for the time-dependent case are 
discussed in section 4. The discussion of the results in section 6 is restricted to the more 
mathematical questions like the influence of truncation errors, and certain other errors occm
ring during the computations. A discussion of the physical signifi cance of the results is given 
by A. L. Ward [10, 11) . 

2 . Basic Equations 

vVe state the equations in an Eulerian coordin ate system, denoting the space coordinate 
by x and the time by t. The cathode is located at x= O, the anode at x= d. Let n+, n _, j+, j _, 
V+, v_ be the density of positive ions (number of par ticles per uni t of volume) , the density of 
electrons, the curren t density of ions (electric charge passing through a cross section of unit 
area per unit of time), the current density of electrons, the drift velocities of ions and electrons, 
respectively. The ion curren t density and th e ion velocity are coun ted positive if the ions 
are moving toward smaller x, the electron curren t density and the electron velocity are counted 
positi ve if t he electrons arc moving toward larger x . vVe denote the intensity of t he electrical 
field by E, co unting it positive if directed from the anode to the cathode. Let a = a(E) be 

' This work was SI)Onsored by the B a rry Dia mond Laboratories, U.S. Department of the Army. 
"Present address: Institut fiir Praktische M athematik, Teehnische Rochschulc Darmstadt, Germany. 
1 Figures in brackets indicate the li terature references at the end of this pa per. 
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the number of ionizations caused by each electron per unit length of its path, q+= en+ the 
charge density of positive ions, q_= en_ the charge density of electrons, counted positive all 
the time, e being the elementary charge. With EO denoting the dielectric constant, the processes 
in the tube can be described by the following equations: 

(a) Continuity (Townsend's equations) 

(2.1) 

(2.2) 

(b) The electrostatic Maxwell 's equation (Poisson's equation) 

(2 .3) 

The outer circuit supplying the voltage for the tube can be described by a capacitance 
a parallel to the tube and a resistance R in series to both the tube and the capacitance. The 
outer vol tage applied to this system as shown in figme 1 is called U. If V is the voltage across 
the gap of the tube and I the cmrent to and from the tube, then the equation 

(2.4) 

describes the behavior of the outer circuit. The cmrent I can be obtained from the mean 
cmrent in the tube and the change in time of the voltage across the gap by the following con
siderations. Let us introduce the abbreviations q= q_-q+ and j = j_+j+. Fmthermore let 
S denote the area of a cross section of the current in the tube, d the distance between cathode 
and anode, and Q the charge accumulated on a unit area of the cathode. Then the law of 
conservation of charge, applied to the cathode yields 

N ow the charge Q is connected with the voltage across the gap by 

Q= - EoE(O, t ) 

+- v -

c 
~----------~ ~(----------~ 

R u 

FIGURJ, 1. Dia(/ram of the electl'ic circuit. 
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and the equation 

(2.5) 

following from eq (2.3) by in tegra ting twice. If we differentiate eq (2.5) with respec t to time 

o o' and use -'1= -_'1, we obtain 
ot ox 

elE(O, t ) 
elt 

1 elV+ 1 f d.( ) l 1.( ) 
Z-Zt -Z J x, t GX - - J 0, t . 
eGG EO 0 EO 

Now th e current I can be expressed as 

(
EO elV 1 ill. ) I = S --+-- Jdx· 
el ell el . 0 

(2.6) 

In troducing this in to eq (2.4) leads to the followin g ordinary differential equation for V : 

R ( 0+ S2y~;r = U- V- RSJ (2.7) 

wh ere 

is the m ean curren t density in th e gap . We write: J = qv, where v= v+v_/ (v_+ v+) is an average 
velocity. Ins tead of elimina ting oE(O,t) /ot one may elimina te d17/dt by using eq (2 .6). Then, 
ins tead of eq (2 .7) , one obtains an ordinary d ifferential equ ation in time [or E (O,l): 

(2.8) 

wh ere V follows from eq (2.5) . 
The differential equation (2.7) 01' (2.8) furnishes t he boundary condition corresponding 

t o eq (2.3). For eqs (2.1) and (2.2) separate boundary condi tions will have t o be established . 
They describe the electron curren t at the crtthode and the ion curren t at the rtnode respectively . 
The la t ter curren t is zero sin ce there rtre no ions coming out of the anode: 

(2.9) 

The electron CUTrent at the ca thode is given by 

(2.10) 

where j p deno tes the curren t density resulting from externally irradia ting the cathode wi th 
photons. The second term describes electron s produced by ions hitting the cathode, 'Y t being 
th e probabili ty that an incoming ion produces an outgoing elec tron. The last term comes 
from internrtlly produced photons hit ting the cathode. These " secondary" pho tons are as
sumed to b e emi tted from molecules which were excited by electron collisions. The number 
of excited molecules produced pel' unit of the path of a single elec tron is called cr= u(E ), 'Yv 
is the probability tha t a secondary photon produces an outgoing electron. It is assumed in 
eq (2.10) tha t th e emission of photons OCCUTS immediately after the excitation ; however , the 
computer program contains a provision for an arbitrary time delay, simulating a delayed 
photoemission. 
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Equations (2.1), (2.2), (2.3), (2.5), (2.7), (2.9), and (2.10) together with initial distribu
tions of q+ and q_ and the initial voltage V determine the solution of the problem completely 
for times greater than the initial time up to infinity or to a certain time limi t, provided the 
velocities v+ ftnd v_ and the ionization rates 0' and u are given quantities. 

:Measurements show that V+, V_ , and 0' can be approximated by the following types offunctions 
of E and the pressure p in the tube: 

0' = 

{
J.I+(l - BI IE I/P)!f 

'+~ (R,.jP/I EI-B,;IE')EIP 

v_=J.I_E/p 

OIP exp (-DIP/l E I) 

OzP exp (-D~p/IE I ) 

03P exp (-Dn/P/I E I) 

, 04P exp (- D4-Vp/I E I) 

if IE I<Wzp 

if I E I ~Wzp 

'1 J for molecular gases 

if lE I < Wzp '1 r for atomic gases 
if I E I ~W2P j 

(2.11) 

(2.12) 

(2.13) 

where J.I+, J.I- , the B i, Oi, D i, ftnd TVi are certftin constants. The quantity u is ftpproximated by 
the same type of function as 0' with possibly different constants. 

3 . Steady State Solutions 

The s teady state has been investigated by severftl authors. We report here on calcula
tions of space charge distributions in cold cathode discharge tubes, which have been conducted 
for a number of years at the National Bureau of Standards. A. L . Ward, who suggested this 
program, reported on the results in several publications [4], [10], [11], and we shall confine 
ourselves here to stating the equations and the method to solve them. 

3.1. Differential Equations and Boundary Conditions 

vVe ftssume a state of equilibrium, which means 

oq_ = 0 d oq+ = 0 ot an ot 

at all times, ftnd eq (2 .1 ) reduces to 

dj_ + (E)' . ) -= 0' 1 7- 'X dx '" \ (3.1) 

which is Townsend 's steady state equation. In order to take account of collisions between 
electrons and metastable molecules inside the tube, we add an extra term which is proportional 
to j~(x) : 

~1; =+O'(E)j _ (x) +(3 (E) .i~ (x). (3. 2) 

Here O'(E) is defined by eq (2.13) and (3 (E) is assumed to follow the same Iftw, with possibly 
different parameters Oi, D i, ftnd lIV2. 

For eq (2.2), which governs the ions, we assume that the total current density is constant: 

j - (x) + j+(x) = j = const. 
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Equation (2. 3) is tb en wri t ten as follows: 

.j(x)-J- (x) 
!.L+ (l - B IIE I/p) 

J(x)-J- (x) 
(3 .4) 

Equa tions (3.2) and (3 .4) are two ordinary first-order differentinJ eqlHttions for E(x) and 
J- (x), provided that we are given tbe total current density function j. 

Physically accessible are the currents at the electrodes, leading to the following boundary 
condi tions 

J-(d)=J at the anode. 

J-(O)= (jv+'YJ+(d» / (l + y) at the catbode. 

(3.5) 

(3.6) 

H ere Jp is a con tribution to the electron current densi ty caused by extern al r adiation and 
'Y is a secondary ioni zation coeffi cient assum ed to be a constan t. 

3.2. Integration of the System of Differential Equations 

We distinguish bere two cases: 

.) '1'1 . 11 h jdE I E 1 . fi (1 10 curren t is so sm a t at dx «([ evcryw lOre, 1. e., wc ass ume a const,lnt l cld. 

aCE) and (3 (E ) are th en constan t also and eq (3 .2) becom es a Bernoulli equation wi th constant 
coefficients, which can be integrated expli citly. The value of E is then determined from t he 
second boundary condi tion. 

(ii) Arbitrary large curren ts J(x) . The solution has to be found i tera ti vely : 
Star ting a t x= d with J- (d) =.7, a value of E(d) has to be assumed. (It seems most feasible 

to generate a whole family of solutions wi th increasing total curren t densi ties . The ini tial 
value E(d) is then taken to be the solution of the previous case. For suffi cien tly small j(x) 
assump tion (i) holds and no difficul ty arises in finding a star ting value.) 

Equations (3 .2) and (3 .4) are in tegrated simul taneously by means of a Runge-Ku tta 
scheme. Iteration on E(d) is perform ed un til J- (O) is in sufficient agreemen t wi th the pre
scribed boundary condi tion . 

As the total curren t densities increase, it becomes more and more difficul t to find t he 
proper E(d). At J- (d) "'" 1O -~ amp/cm 2 i t was impossible to find a solution , even by the in tervnl 
halving method. 

Fortuna tely this limit covers mos t of the experimen tal da ta as far as the basic equations 
are valid. For the results we refer to the aforementioned publication of A. L . Ward. 

4. Difference Equations 

4.1. Difference Equations With Respect to Both Time and Space. Stability Considerations 

In tbe most general case, i t is no t possible to give an exact solu tion of the system of equa
tions described in section 2. Therefore, one tries to find an approximate num erical solu tion. 
The most convenien t way to ob tain a "numerical solu tion" is to in troduce fini te differences 
in time and space and to solve numerically the fini te equations generated in this way for a 
certain set of values of th e differen t parameters of the problem. 

The way to t ransform the differen tial equations in to difference equa tions is largely deter
mined by requiring simplicity of the computa tional scheme and "stability" of t he difference 
scheme. For the sake of simplicity we ask for explicit schemes as far as possible. For the 
same reason we use difference opera tors of tbe same order as the corresponding differential 

45 



operators. This ensures that the special computu tions at the boundaries are kept to a mini
mum. By requiring stability we exclude certain difference schemes which would lead to 
large amplification of any small errors (as rounding errors) when the time increases, at least 
in the limit of vanishing meshwidth. We use here the concept of stabili ty as introduced by 
L ax and Richtmyer [8, 12]. 

Denoting by !:;.t and !:;.x the increments in time and space respectively, the difference equa
tions corresponding to eqs (2.1) and (2 .2) are 

q_(x, t + Llt)-q_(x, t) 
!:;'t 

( ) . ( ) .1-(x, t)-.1_(x-6.x, t) 
a x, t J- x, t !:;.x 

for x= 6.x , 26.x , ... , ]v[!:;.x= d; t= to, to + !:;.t, to+ 26.t, ... 

q+(x, t + !:;.t)-q+(x, t)= ( t).· ( t )+.1+(x+6.x, t)-.1+(x, t) 
!:;.t a x, J- x, !:;.x 

for x= O, 6.x , 26.x, ... , (M-1)!:;.x; t= to, to+ !:;.t , to+ 2Llt , .... 

(4.1 ) 

(4.2) 

The difference quotients with respect to x have been chosen unsymmetrically for the sake of 
stabili ty, see [8, 12]. In order to obtain stabiliLy in the sense of Richtmyer for !:;.t -?O, !:;. x---c:>O, 

. h!:;.t . h WIt !:;.x = const., we must reqUlre t at 

(4.3) 

and that both v_ and v+ are nonnegative. Since v_ is much larger than v+, this means that 
the timestep must not exceed the time an electron needs to go from one meshpoint in space 
to the next. This time is very short for many of the interesting developments in a gas discharge 
tube. Therefore, for many phenomena, it will be sufficient to assume that the electron density 
and current distribution will be in a quasi-equilibrium state, i.e., we replace the left hand side 
of eq (2 .1) by zero. Since a is rather large in the interesting cases, we do not use the difference 
scheme obtained from eq (4.1) by putting the leIt hand side equal to zero. We rather integrate 
eq (2.1) formally: 

.1_ (x, t) = j_ (0, t) . exp {i X a(x ', t)dx' } 

and replace the integral in the argument oJ the exponential function by a finite sum, 
the trapezoidal rule: 

{
m-l 1 } 

.i-(m. !:;.x, t )=.1_(O, t)· exp t;o 2' [a(k· 6.x, t)+a((k+ 1)6.x , t )]!:;.x 

for m= l, 2, ... M. 
The stability condition for the system eq (4.4), (4.2) is now 

USlllg 

(4.4) 

(4.5) 

and v+ ~ 0. Thus one can use much larger timesteps than for the original system, namely, the 
timestep must not exceed the time an ion needs to go from one meshpoint to the next. 

Equation (2.3) does not contain time derivatives. It shows that E, and therefore also a, 
are obtained by integrating q. Hence, stability is not affected, and the question how to choose 
a proper difference scheme replacing this equation can be separated from the question how to 
choose the timestep. 

Of course, the characteristic time of the outer circuit will provide another bound for the 
timestep. As long as the term containing J is unessential in eq (2.7), this characteristic time 
is apparently [R( O+SfO/d)] . If one uses instead of eq (2.7), the difference equation 
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R ( 0+ S;o)- V(t -t Ll~~ --V (t) U(t)-V (t)-RSJ(t ) , (4. 6) 

wh ere 
LlX m-l 1 

J (t) = ([ t; "2 Lj(kLlx, t ) -t j ((k -t l )M , t )], 

the tability condition for this scheme in the sense of Rutishauser [1 3} indeed is 

.Cit :::; 2[B (0-tSeo/d)], 

as long as the dependence of J on V is small enough to be disregarded. As soon as this 
dependence becomes important, we can no longer consider the outer circuit separately from 
what happens inside. Then we will have to treat the system as a whole. Even in the ca e 
wh ere E and a are independent of x, i.e., when space charge effects can be neglected, this leads 
to a nonlinear problem because of the product aj _ (a depends on V ). 

4.2. Difference Equation for the Electrical Field E 

The differential equation (2.3) is to be solved with the side condition (2.5) imposed on 
the integral over t he unknown function E . The most reasonable way seems to be t o replace 
eq (2.3) by 

E(x+ Llxt ) - E(x, t ) 
.Cix 

for x= O, LlX, 2LlX, . . . , (M - l )LlX. 
Using a trapezoidal rule on the lef t side of eq (2.5) would lead to a side condiLion 

M - l {LlX } V( t )= ~o 2 (E((m-t l )Llx, t )+E (mLlx, t )) . 

(4.7) 

(4.8) 

Equations (4.7) and (4. ) £orm1\1+ 1 equations for the M -t l unknowns E(mLlx, t) , m= O, 1, 
. . . , M . 

But i t turns out that th ese equations do not give the rigorous solutions even if q(x) is a 
linear function of x. For, take er; lq (x) = X and V = 0, then, according to eqs (2.3) and (2.5), 

X2 d2 x2 

E = "2- 6 ' But, eq (4.7) yields E = "2 -t e, wh ere e is a constan t to be determined from eq 

(4 .8) : 

0= r£-td(LlX) 2+ d 
6 12 e. 

H b . E x2 d2 (LlX) 2 h' h . . . h h . ence, we 0 tam { = 2 -6------:12' w IC IS not m agreement WIt t e n O'Ql'ou solution. 

By partial integration on the right hand side of eq (2.5) one gets 

V = cl. E (O, t )-t eo1id (cl- x) q(x, t )dx. 

If integrated by the trapezoidal rule this formula does no t give the rigorous solution for linear 

x2 d2 (.Cix) 2 
q ei ther. For the above example we obtain E=---+ --' Therefore, we have to search 

2 6 6 

for a different method of replacing eqs (2.3) and (2.5) by finite equations such tha t the results 
are correct at leas t for piecewise-linear functions q. For instance, one may expect that a 
weighted mean of the two formulas discussed might elimina te the term containing (LlX)2. 
Indeed, this way is successful if the weight ratio is 2:1. The resul ts are th en correct even for 
piecewise-linear functions q, as is shown below. 
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Let us put Er;lq = r for simplicity. A piecewise-linear function rex) is given by its values 
at the meshpoin ts rm = 1'(mfjx) for m = O, 1, ... , M: 

mfjx - x x-(m-I)fjx 
1' (x) = 1'm- l' ~x +1'", ~x 

for (m - l)ilx:=:;x:=:;milx (m = I ,2, ... ,M). 

Our task is to find a proper approximation for the integral 

I = .r.r 1'(x' )dx' dx = .r (d-x)1'(x)dx. 

For the sake of simpli city we take d= 1. The value of I follows by summation 

f m1llf (l -x)[1'm _ 1 (m- Mx) + 1'm(Mx- (m- I )) ]dx 
(m- l ) 

~ 

namely 

I = t 1'm (1- m)_~+rJlf-1'o. 
m~O M AI 2M 6111£2 

(4.9) 

The trapezoidal rule applied to the rightmost expression in eq (4.9) gives the approximation 

I ~ rm ( m) 1'0 
tr = ;i~o Xi[ 1-M - 2M' 

R epeated application of the trapezoidal rule to the middle expression in eq (4.9) glVes the 
different approximation 

Hence 

(4.10) 

is an approximation to eq (4.9) and leads to rigorous resul ts in the case of piecewise linear 
functions rex) with slopes changing at x = O, ~x, 2ilx,. . ., M~x=d= 1. 

Since the solu tion of eq (4 .7) requires the same summation as the inner sum in I Tep , we 
actually compute the finite approximation by repeated application of the trapezoidal rule and 
by adding a certain correction : 

For general d, we have to replace l' by rd2• 

The computation of E from V and the given values of q at the meshpoints can therefore 
be done by the following formulas: 

At first we compute the auxiliary quantities 

~x m 
E*(m~x, t )=2Eo {;( ( q(k~x, t) + q(k-l)ilx, t) 

(4.11) 

E*(O, t )= O. 
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Then we continue with 

E (O, t)=~ [ V(t)- ~x t (E*(m~x, t)+E*((m- 1 ) ~x, t» + (~x)2 q(M~x, t )-q(O, t)J (4.12) 
d 2 71, = 1 12~o 

E(m~x, t )= E*(mt>. x, t )+E(O, t) for m= l , 2, ... , M. (4.1 3) 

One may ask whether u ing E(O, t) instead of Vet) as the par ameter describing the outer 
circuit would not simplify t he computation formulas. Indeed this is t rue. One m ay compute 
E(O, t) from a difference approximation of eq (2.8), then compute E(m~x, t) for m = 1,2, .. . , M 
from eq (4.7) successively, and finally one computes V from those values by the trapezoidal 
rule. But it turns out that the truncation error in V is much larger in this case than if we use 
eqs (4.6), (4 .11), (4.12), and (4 .13). After a certain number of integration steps, Vmay even 
exceed U which is physically impossible, when U= const. and C is uncharged at time t= O. 

4 .3. Method of Computation 

If we use the trapezoidal rule in eq (2 .10), this boundary condi tion takes the form 

j - (0, t ) = .iV+Yi · j +(O, t ) + 'Yv t1 [~X [o- (mt>.x, t )j _ (m~x, t ) + 0' ((m- 1 ) ~ x, t ),i- ((m- 1 ) ~x, t)]J 
(4 .14) 

The eqs (4 .1), (4.2), (4.6), (4. 11), (4. 12), (4. 13), (2.9), and (4. 14) together with initial distribu
tions of q+ and q_ and the ini tial voltage V determine the finite problem completely, provided 
the velocities v+ and v_ and the ionization rates a and fJ are given func tions of E. Instead of 
the eq (4.1) one may use eq (4 .4) if the electron density is in a quasi-equilibrium state. 

The above system of finite equations is not completely explicit. In the case where eq (4. 1) 
is used, explicit formulas are achieved by taking some quantities of minor importance at an 
earlier tim e. Thus, in eq (4 .14) the last sum has been taken at the t ime t - M instead of t, 
and in eqs (4. 11) and (4. 12) , q_(O,t) has been replaced by q_(O,t - M ). Th ese two changes 
were sufficient to achieve explicit formulas for all quantities. 

In the electron quasi-equilibrium case the equations are even more implicit. Therefore 
one uses an i terative scheme in order to obtain a solution star ting from values of q_ at the pre
vious timestep as initial approximations. The only quantity not treated iteratively is the last 
sum in eq (4.14). It is taken from the previous timestep throughout , i.e., instead of eq (4. 14) 
one always uses: 

,i- (0, t + M ) = .iv+'Yd+ (0, t + t>.t ) + 'YP tl~x [O'(mt>.x, t )j_(m t>.x, t) + 0' ((m- 1 )~x, t ),i_((m- 1)t>. x, t ) ]. 

( 4.15) 

4.4. Convergence of the Iteration 

It will be shown below that the proposed iteration scheme leads to convergent sequences 
for all quantities involved, if the electron density is small enough in the sense that it causes 
no distor tions of the electric fi eld comparable with the field i tself. 

For the sake of simplicity we consider the limit case M ---'7 en only. The quan tities ch anging 
during the iteration are q_(x), E(x), v_ex), a(x) andj_(x) for O::::;x::::; d, and furthermore, v+(O) 
and j +(O). All other quantities are fixed throughout the iteration. Since q_(x) is the only 
result of a previous iteration which enters the following iteration step, and since all other 
quantities depend on q_(x) con tinuously, it is sufficient to prove that the sequence of functions 
q_ (x) converges . 

According to [7], one has to consider the change oq'!..ew(x) of the result of one iteration 
step, caused by a certain change oqo}d (x) of the initial approximation. When measured by a 
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certain norm, the ratio of the changes has to be smaller than unity in a certain neighborhood 
of th e true solution q_ (x). 

The following formulas describe the connection between oq?.ew (x) and oq<>}.d (x). They are 
derived from the continuous analogs of the eqs (4.4), (4.11) , (4.12) , (4.13) , from (4.15) and 
from the relations between V_, V+, a and E, and those between q±, V± and j ±. 

oq~ew (x) = q,:ew(x) [0./_(0) _ ov_(x) + ( Xoa(U)dU] 
1-(0) v_ ex) Jo 

of- (0) =(1.- dV+) [ . [1 _~P+ r] oE(O) 
.7 - (0) v+ dE x=o J - (0) 

and r is the last term on the right-hand side of eq (2.10). 

where 

OV_ (x) =1.- clv_ oE(x) 
v_ (x) v_ dE 

cla 
oa(x) = dEdE(x) 

OE(X)=fO! ( dK(X, u)oq~ld (u)du Jo 
r I u/d 

K(x, u) = i 
L u/d- l 

if u< x 

if u> x. 

We restrict ourselves to the case for which not only v_ but also v+ is proportional to E. Then 

Furthermore, we write 

1 dv+ 1 dv_ 1 
v+ dE = v_ dE = JI;' 

da a dOn a) 
dE Ed(lnE) 

since the latter differential quotient varies more slowly in the interesting range of E. We 
introduce the norm 

Ill ll=.r Il(x)ldx 

for any function l(x). Then, the following estimates can easily be derived: 

where 

10E(x) I ~ f O! max {~, l-~} ' 1I oq~d l l 

fO! ( a1q?.ew(x) Idx 
Il oq~.w ll ~K J ~ ' 1I oq~d ll 

mll1 IE(x) I 
x 

The condition for convergence is that 

fOl f l q?.ew (x) Idx 

K ~in IE(x) 1 Q< 1 
x 
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which can be interpreted the followin g way: The field distortions produced by the electrons 
and amplified by the numerical factor [{ must not exceed the minimum field strength in the gap. 

From the rate of convergence given by eq e4.16) and the change of q- ex) between suc
cessive j Lerations, the corrections inLroduced by a further iterative step can be estimated. 
According to these consideration , Lhe iteration may be stopped after a prescribed accuracy 
has been reached. A criterion or lhis kind has been used in the code. 

5 . Formal Solutions for Constant Field 

5 .1. Genera l Considerations a nd Formulas 

The nonlinearities contained in the equations of section 2 and in the corresponding differ
ence equations disappear as soon as the quantities £x, (F , V+ 11- can be regarded as independent 
of the solution. If, moreover, these quanti ties are constant in space and time and if the vol tage 
V across the gap is constan t, the equations of section 2 and the corresponding difference 
equations can be solved explicitly. Then, of course, ther e is no room for eq e2.3), i. e., this 
treatment disregards space charge, and eq (2 .7) cannot be taken into account, i.e., the reactions 
in the outer circuit are disregarded, or, in other words, the extern al resistance R is so small 
that it can he neglected by putting R = O, which leads to U= V. Wor Ie in this direction has 
been done by several authors [1 , 2,3, 9] as far as the differential equations are concerned. These 
papers discuss what happens in lhe tube. H ere this special case will be considered again , but 
for a different purpose. We shall discuss the difference equations along with the differential 
equations in order to get insight into the effects of truncation errors. We hope that, to a 
certain extent, these effects carry over to the more general case, and therefore will allow 
us to correct t he results obtained with fini te steplengths t.t and t.x so that we obtain closer 
approximations to the case of infinitesimal steplengths. 

We mainly deal with the difference equations. The results for the differenlial equations 
will be obtained by letting t.t , t.x---?O. We restate t he equations of section 4 for our special 
case putt ing to= O: 

j - (x, t + t.t )-j_ ex, t ) 
v_ t.t 

j _ (x, t) 

for x= t.x, 2t.x, .. . l'1!lt.x= d ; t= O, t.l , 2t.t, ... 

.i-(x, t )-.i- (x- t.x, t) 
t. x 

In the electron quasi-equilibrium case, we shall use instead of this: 

for the same x and t as above. The ion currents behave according to 

for x= O, ~x, ... (M- I)t.x; t= O, t.t , 2~t, . 
There are two boundary conditions, namely 

for t= O, t.t , 2t.t , 
and 

j -(O, t )= jp + Y;.j+Co, t)+ 'Yp t;1 t.2x (F·[j _C mt.x, t - t.t ) +'i-CCm-I)t.x, t - t.t )] 

(5 .Ia) 

(5. Ib) 

(5 .3) 

for t = t.t , nt , . (5.4) 

In order to make the solution unique, we have to in troduce initial conditions, for instance by 
prescribing j -(x,O) and j+Cx, 0) for x= O, t.x, ... }.{t.x . Bnt we will be mainly concerned with 
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solutions which are proportional to eXt with a suitable A. For this type of solut ion, initial 
conditions do not have to be given. 

The above equations are linear and homogeneous with the single exception of (5.4) which 
contains the inhomogeneous term jp . Since j p is time independent and since time does not 
appear explicitly in any other term, there will exist, at leastingeneral, a time independent solution . 
More general solutions will be obtained by superposition of any solu tions of the corresponding 
homogeneous system with jp= O. The homogeneous system allows for time separation in the 
form of a factor eht • Then the stationary case results from putting A= O and from slight changes 
due to the inhomogeneous term. We introducej;: (x) andj; (x) by 

(5.5) 

Then, eq (5.la) can be solved by 

j l: (x) = jl: (0) . ea*tl", (5.6) 

where a* IS the solution of the transcendental equation 

ehtlt- l l -e-a*tlx 

v_ .!::J.t = a !::J.x (5.7) 

In the electron quasi-equilibrium case, i.e. , if we use eq (5.lb), all resul ts will be correct 
in the sequel if we replace a* by a, unless we distinguish explicitly between the two cases. 
Equation (5.2) now reduces to a single inhomogeneous equation for i t (x) , the inhomogeneous 
term being aj;:(x). The solution satisfying the boundary condition (5.3) is easily found to be 

(5.8) 

where 

A 
j l:(O) 

ea *..I X - I eAClt- 1 

a!::J.x v+a!::J.t 

and /3 IS determined by the equation 

(5. 9) 

The remaining unknowns arejl: (0) and A. In the homogeneous case the quantity j l: (0) remains 
free, whereas A follows from eq (5.4) with j p = 0, which transforms in to the transcendental 
equation 

5.2. Stationary Solution 

For the stationary solution of the inhomogeneous eq (5.4), we put A= O. 
leads to /3 = 0, and (5 .4) shows that 

.- (0)=: 1 {I _a!::J.x(ca*,t- I ).( .+ I!. l + ea*tlX), . 
.70)P ea*tlX_ I ,}" '}' p a 2 ~ 

) 
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II we use (5 .1 a), we may simplify our equations further . From eq (5.7) we obtain 0'* 
explicitly: 

a*=~ In _ 1_ . (5.12) 
LlX 1- aLlX 

Equation (5 .8) reduces to 
(5.13) 

and eq (5.l1) reduces to 

(5.14) 

In the electron quasi-equilibrium case, we use eq (5.1b) and obtain 

(5. 15) 

and 

'- (0) . / { aLlX (au ) ( + u 1+ea6X) } .70 = .7v 1-ea6T_ 1 e-1 "I i 'YV;';: --2- . (5.1 6) 

By letting LlX---70 we obtain the corresponding relations for the d ifferential equations ; 
namely 0'* = 0' and, furthermore, 

(5.17) 

(5.18) 

Wh en the respective denominators in eqs (5 .14), (5 .16), (5.18), become zero, no stationary 
solution is possible. The vol tage V for which this occurs is called th e breakdown voltage. 
If we assume that ula is a given constant independent of V (it is often assumed that u= a) then 
the three respective denominators are equal to 1 for 0' = 0 and decrease mono Lo nically in the 
interval 0 ::::;0' < OJ . Therefore, there exists one and only one positive real root a, corresponding 
to the breakdown vol tage. If the voltage V exceeds this value, the theoretical stationary 
solu tion shows negative values of j - , whi ch is physically impossible: No stable solutions exist 
beyond the breakdown vol tage. 

The physically interes ting things happen if V is near the breakdown voltage. Therefore 
we have to look into the dependence of the breakdown vol tage on the stepleng th LlX in order 
to establish a base for comparison of numerically obtained resul ts and the true theoretical solu
tions, or the experimental measurements in this case. 

In the infinitesimal case the value a = abr corresponding to breakdown can be expressed 
explicitly from (5.18), if ula is gIven: 

For the difference schemes, the corresponding transform ation will lead to a form of the equation 
sui table for itera tion. From eq (5. 16), i. e., for the elec tron quasi-equilibrium case, we get 

In case we use eq (5. 1a) instead, it follows from eqs (5.14) or (5. 11) t hat 

* _ 11 [ . (* )/ ( + (u) l +exp (a~,Ll x» J a br - (i n 1 + exp ab, LlX "Ii "1 11 ;,;: br 2 . 
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We shall see that these formulas are special cases of more general formulas for the homogeneous 
system. 

5 .3. Special Time-Dependent Solutions 

We turn now to a discussion of the homogeneous system, especially the transcendental 
eq (5.10). Let us first consider the infinitesimal analog of this equation, obtained by letting 
LlX---"?O and Llt---..?O. Equation (5.9) becomes then 

(5.19) 
and eq (5.7) transforms into 

(5.20 ) 

If we define v by l /v = 1/v++ 1/v_, then eq (5.10) becomes 

(5.21) 

in accordance with [9] . For the breakdown voltage, r.. = o is a solution. 
For vol tages near the breakdown voltage, there must be a solution r.. near zero for continuity 

reasons. For this special root, the equation may be transformed into an iterative scheme similar 
to the one for the computation of breakdown voltage itself. We show this for the case where 
a solution is wanted for A as a function of a. 

We put 
a-A/v= a(l-u) 

and rewrite eq (5.21): 

1= [ea Cl-uld_ 1]. ~+ "tv <T a . . [ ( / ) eXdIV+-e-a(l-uldJ 
l -u l - r../ (av_) 1-e a C1 uld 

According to the assumptions made above, only the first factor on the right changes rapidly 
with a. Therefore we solve the equation for this factor , obtaining 

a 
1 { IC"ti "tv (<T/a) eAdIV+_ e-ac1-Uld) ") 

-,----------,---, In 1 + 1 --+ . r · (l -u)cl l -u l -u·v/v_ l _e-aCl-ul d ) 
(5.22) 

This form is suitable for iteration since the right hand side is only slowly varying with a, par
ticularly, if we use u as an independent parameter. We describe the function r.. (a) by the 
parametric representation r.. = r..(u), a= a(u). From a first approximation of V and a we com
pute v+, V_ , v, <T, and 

r.. = avU. (5.23) 

Since all variables on the right hand side of eq (5.22) are known, a new approximation for a 
can be computed from eq (5 .22). Since the right hand side is slowly varying with a for suffi
ciently small u, we can hope for fast convergence of the iteration. 

A similar but slightly more complicated approach is possible for solving eq (5. 10), if eq 
(5.la) is used for the computation of electron current. Here, in addition, the relation between 
a* and a has to be established iteratively. Let us assume that we know a first approximation 
for a* for a given value of the independent parameter 

eAt.l-l 
u=---· 

aVLlt 

Then a can b e computed from (5 .7) if we assume in addition that v/v_ is at least approximately 
known: 
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a - - 1-- · _ 1-e -,,*ax/ ( UV) 
LlX v_ (5.24) 

If necessary, from the a thus obtained one may compute a new value of v/v_ and repeat the 
computation of a iteratively. 

From U and a one may compute 

(5. 25) 

and 

{3= -.l ln (1 + a .~ ULlX)' 
LlX v+ 

(5.26) 

Equation (5.10) may be written as 

[ 
'Y . 'Y ((}"!a)e- xat l +e,,*ax efJd-e-<"*-fJld] 1= [e <"*-fJld- 1]. ' + 11 • __ --;-_=__~ 

e,,*ax (l-U~)-U~ e,,*ax (I -U~) 2 l -e-<,,*-fJld 
v_ v+ v_ 

and is olved for the first factor: 

a* 1 [( 'Yi "(v((J/a)e -x t. t l +e,,* ax efJ(t_e-<,,*-fJld) - l] 
( (3/ *) lIn 1 + ( ) + ( ) . 2 ' ( • fJld 1- a C * ax 1 V V '.lx 1 v 1- e " e" - u - -u - e" -u -v_ v+ v_ 

(5.27) 

The computation of the breakdown voltage thus appears as a special case of these formulas, 
namely as the case U= A= O. 

In the equilibrium case the formula corresponding to eq (5.27) is 

This equation is used together with eqs (5.25) and (5.26) for solving eq (5 .10) iteratively. 
Because or the similarities between the eqs (5 .22) , (5 .27), and (5 .28) one can treat all 

three of these equations quite simply in a single computer program. 

5,4 General Time-Dependent Solution for Constant Field 

So far we have considered only a special root of eq (5.10). However, one can see that a 
transcendental equation of the type of eq (5.10) and its limit case eq (5 .21 ) has more roots A 
in general. For the case of finite Llt and LlX, the equation is rational in eMt . Therefore, there 
is a finite number of roots exat, each of which corresponds to a infinite set of roots A of the 
form A= Ao+2 rrilc/Llt (1c = O, ± I, ± 2, ... ). But all these roots describe the same function 
on the grid. Equation (5.21), however, has an infinity of roots A, whose asymptotic distribution 
is shown in [6]. It turns out that at most a finite number of them can have a real part larger 
than the real root discussed before. The root with the largest real part will become dominant 
in any solution as time goes on. Therefore, one is mainly interested in the root with the 
largest real part. If we knew that this root was the real root discussed in section 5.3, we 
could confine our considerations to this root essentially. Unfortunately, a proof is not avail
able at the time being. Therefore, it remains an open question whether or not the asymptotic 
behavior of the solution for larger t can be described by the formulas given in section 5.3. 
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For a complete formal solution of an arbitrary initial value problem, of course, one has to 
consider all of the solutions of eqs (5.10) and (5.21 ) and one has to develop the initial dis tri
bution in to a series of the corresponding functions after substracting the s tationary solution 
of the nonhomogeneous equation. No a t tempt has been made to go further in this direction, 
but see [1 ] for some r esults of this kind. 

6. Results 

The physical significance of the results obtained by the machine computations is discussed 
in [5 , 11] . Therefore, we restrict our discussion to the more mathematical questions. The 
main question is how large the truncation error is, i.e., the error introduced by using finite 
differences instead of derivatives . No a t tempts to es tablish rigorous errol' bounds have been 
made. Instead of this, experimen ts with different s tep lengths have been carried out for th e 
following set of p arameters: 

.71' = 10- 12 amp/cm 2, p = 722 torr, d = l cm, 8 = 1 cm 2, 

0 = 10- 11 amp sec/vol t, R = 106 vol t /amp , U = V = 25.6 kv for t ::S O. 

U foI' t> O, "( i, "( v and LlX are different for differen t curves . The time step Llt is given by the 
formula Llt= 0.8 ·Llx/m ax {v+} in the electron quasi-equilibrium case, Llt= 0.8· Llx/m ax {v_} in the 

x x 

general case, unless something else is sta ted explicitly. The constants used to describe the 
functions a and u are 0 1 = 0 2 = 8 cm- I torr- I, Dl = D 2= 247 volt cm- I torr- I, the mobili ties of 
electrons and ions are constan t : 1l_= 4 X I05 torr cm 2/ (sec volt), 1l+= 2 X 103 torr cm 2/ (sec volt), 
B1= 0, lV1= + ro. 

The calculations in section 5 show tha t in the most in teresting area near the breakdown 
vol tage the solution is very sensitive to changes in the vol tage. On the other hand, a fini te 
stepwidth of reasonable size, e.g. , wi th 20 subintervals, introduces a change of th e breakdown 
voltage of notable magnitude. Therefore, the differences between runs with different step
wid ths a,re m ainly due to the influence of the stepwidth on the breakdown vol tage. I t seems 
to be feasible to eliminate this influence by relating the applied vol tages to the breakdown 
voltage, as computed according to section 5.3, i .e., neglecting space charge, for the stepwidth 
used in each case. This method turned out to give very satisfac tory resul ts for the electron 
quasi-equilibrium case, as can be seen from figures 2 and 3. 

The reason why even the relatively large steplength Llx = 0.05 em (a Llx"" 0.5 to 0.6) gives 
a good approximation , can be seen from th e figures 4, 5, and 6, where the coefficien t of temporal 
growth A, as computed from the formul a,s of section 5.3, i. e., without space charge effec ts, is 
plo tted versus the voltage V across the gap a,nd the overvoltage V - Vbr • Figure 4 shows tha t 
the curves for the difference equation (quasi-equilibrium case, Llx = 0 .05 em) and for the differ
en tial equation go almost parallel over a long range. Therefore after r elating the vol tages 
to the breakdown vol tage, the curves almost coincide as can be seen from fi gure 5. This 
explains the good results ob tained wi th that approximation, at leas t as long as space charge 
effects have small influence. 

With the same va~ue of "( i+"(1)' but a portion of 10 and 20 percent "( p, the temporal devel
opmen t goes faster than for ,,(,,= 0, as one could expect from physical considerations. 

According to fi gure 6, the difference scheme should give an approximation almost as good 
as for "(1' = 0, even a better one in the 10 per cen t case, where the curves for the differentia,l 
equation and the difference solution nearly coincide. 

The influence of the time lag in the term describing the production of electrons by secondary 
pho tons (last term in eq (5. 10)) has been studied by in troducing an ar tificial factor exp ( - Mt) 
with "(" in to eq (5 .22) for the continuous case. Llt was assigned a fixed value approximately 
equal to th e ones used in the computation with Llx = 0.025, namely Llt= 6. 25 X lO - 7 sec. The 
deviations due to that factor exp ( - M t) can be seen from table 1 below. 
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FIG URE 2A. }\II ean CU1Tent density J across the gap versus 
time tJor 1'0 = 0,1', = 1. 5 10- 5• 

Llx[em] 
(a) 0. 05 
(b) .025 
(e) . 025 

U[kv] U- V b,[h ] 
28. 870 O. 233 
28.870 .295 
28.807 . 233 

o 2 4 6 8 
t, sec 

FiG URE 2B. M~ean clt1Tent dens'ity J across the gap 
l'ersus time t fo r 1'0 = 1.5 10- 6, 1', = 1.35 10- 5 • 

x[em] 
(d ) 0. 05 
(e) . 025 
(I) . 025 

U[kv] U- Vb,[kV] 
28. 854 0. 233 
28.854 . 287 
28.800 .233 

We conclude that the influence of that time lag is not very impor tan t, at least for the 
overvoltages and the small rates "il} of production of secondary electrons considered here. 
We see that the time lag slows down the speed of development by a few percent at most, even 
in the worst case. 

Th e electron quasi-equilibrium assumption oq_/ot= O in (2 .1) is equivalent to letting 
v_---c> oo in this equation . Therefore, the influence of that assumption in the differential equa
tion may be studied by replacing v_ by 00 and v by v+ in the eqs (5.22) and (5.23). If "iv = O, 
the result is obvious. For fixed voltage, i.e., fixed Ci, the introduction of that assumption 
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V, kv 

2B.5 

27.5 

MAXIMUM VAL UES OF V 
{a I 2B.B6Bkv 

{bl 2B.B66kv 

{el 2B.B05kv 

25.5 L_L--lL---l_.-.l_-L_-L_-L_--L_--L_...L_-'-_..L-i 

d {el 
- ---- -----------m-

MAXIMUM VALUES OF V 
{dl 2B.851 kv 

{el 2B.B50kv 

(f) 2B.797 kv 

25.5 LO-.....L-.....L--L--L----!- ---l- -'- -'L--L--,,:-::.OL':::,O:O. 5,---L----'----' 

1, sec 

FIGU RE SA. 11 oltage V across the gap versus ti m e t fo r param
eters of fig ure 2 A . 

FIGURE 313 11 oltage V across the gap vel'SUS time t f or param
eters of fig w'e 2 B. 

4"0' ,------r------,----------r-------,---------; 

~ ,se e-I 0 f--------------;'~---_,,~'---------1 

-I 

-2 

0/ 
/' 

- 3 
(O):::;:;-- V::;.-' 

v 
'" /' 

y-

/' 
Y 

/' 

-4 L-____ L-~ __ la_I _ _'_ ____ ~I _____ L-___ ~ 
25 26 27 2 8 29 30 

V,kv 

FIGUR E 4. Coefficient A of temporal growth for constant fi eld 
versus voltage V across the gap , fo r Ll.x = O.05 cm. 

(a) ,),.=0, ,),,= 1.5 10-' 
(b) ,),.= 1.5 10-' , ,),,=1.35 10-' (continuous case only) 
for electron qu asi-eqllilibrium case (dasbed) 
general case (dot ted) 
con tinuous case (solid). 
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Q 
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(a) . . . 
(b) •• 

-1.0 

-400 -300 -200 a 
V- Vbr' v 

100 200 300 4 00 500 

FIG U RE 5. Coefficient A of temporal growth fOl' constant field 
versu s overvoltage V- Vbr f or same parameters as fig1l1'e 4· 

1.0XI0 5 ,-,----,---,----,----,---,-----". 

. 5 

o 

-.5 

-300 -200 - 100 200 300 400 

F IGURE 6. Coe.fficient A of temporal growth for constant field 
versus overvoltage V- Vbr f or L'. x= O.05 cm. 

(a) ,),.=0, ,),,= 1.5 10-' 
(b) ,),.= 1.5 10-', -y,=1.35 10-' 
(continuous and qu asi
equilibrium case coin
cide) 
(c) ,),.=3.0 10-', ')"= 1.20 10-' 
for electron quasi-equilibrium case (dashed) 
continuous case (solid). 



TABLE 1. Influence oj the time lag t;./ JOI' secondary photons on the coefficient A oj temporal gl'owth 

...2!-=0.1 ...2!-=0.2 

V - 17br 
1';+)'p 1';+1'. 

t.t= O e.t =6.25 10- 7 t.t= O / = 6.25 10- 7 

Volt 
- 400 - 0. 8643 -0. 8624 -0. 929 1 -0.9248 
-aoo - . 6595 -. 6576 - . 7147 -.7105 
- 200 -.4479 - .4463 -. 4901 -. 4864 
- 100 - . 2285 -.2274 -.2532 -.2506 

0 0 0 0 0 
+ 100 + 0. 2396 +0.2377 +0.2746 + 0.2696 
+200 + . 4930 +.4878 +. 5802 +. 5651 
+ 300 +. 7605 +. 7538 +. 9317 +.8978 
+400 +1.0610 + 1.0'110 + 1. 3650 + 1. 2880 

amounts to no change in u, and therefore to a relative increase of A by about v+/v_. Hence 
the temporal development is speeded up by about 0.5 percent, which is small enough for the 
accuracy required in this problem. 

A detailed analysis of the effect of that assumption in the case 'Yp~O, which is elementary, 
but too lengthy to be reproduced here, show that this remains true a long as the relative 
influence of 'Yp as compared to 'Y i in eq (5.22) is small, i.e., roughly speaking, as long as'YJ!.eXdID+« 'Y t. 
This is in agreement with physical considerations, since, if the influence of secondary 
photons is dominant, the development is dominated by a process with feedback, all of whose 
components go infinitely fast. Quantitatively, as long as u « l , v+«v_, ad»l, the change 
OA of A effected by the equilibrium assumption is, with good approximation. 

The full difference equations, with eq (5.la) included, have not been usecP, for the follow
ing reasons. For the same LlX and the same time interval to be covered, the stabili ty conditions 
require 200 times as many time steps, if the electron-quasi-equilibrium condition is dropped. 
Furthermore, figures 3 and 4 show tlmt, for Llx= 0.05 em, the deviation from the limit case 
LlX= 0 is considerable, and cannot be diminished satisfactorily by a simple change in the outer 
voltage leading to the same overvoltage. It is estimated that a decrease of LlX to 0.01 cm is 
at least necessary in order to obtain results as good as the ones in the quasi_equilibrium case. 
Two trial runs were made, both leading to breakdown after a few ion transit times. The 
data for these runs were: 

(a) Llx= 0.05 , U 31.5 kv, Vbr = 28 .64 kv, 'Y i= 1.5 10- 5, 'Yp= O 
infinite current after 2 ion transit times. 

(b) Llx= 0.5, U = 28.87 lev, Vbr = 28.5l kv, 'Y i= O, 'Y p= 1.5 10- 5 

infinite current after 3 ion transit times. 

All the above considerations and the computations done so far are restricted to a domain 
where the temporal growth in one (natural) time-step (as indicated by the stability condition) 
is not too large. Near the actual breakdown, therefore, these arguments may not apply, 
and an investigation of the natlll'C and quantitative features of the breakdown singularity 
is not given in this paper. Since the time required for the space change to become significant 
is very large compared to the remaining time until completion of the breakdown, and since 
the assumption of one-dimensionality is doubted for high current densities, there was no 
point in trying to describe the details of the breakdown more precisely. 

The features discussed in th is section have been tested only for a few sets of parameters. 
Up to this time it has not been proved that the conclusions are general. Since the number of 

2 Several successful computer runs have been made since by Dr. A. L. Ward, using tbis option of the program. 
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parameters is quite large, it has not been attempted to explore the limits of the region where 
the conclusions are valid. But the methods of computing and of guessing the effect of trunca
tion errors as described here should be tried in other cases. 

The authors express their thanks to Dr. A. L. Ward of the Harry Diamond Laboratories, 
Department of the Army, for suggesting the problem, and to J. P. n/fenard and A. E . Beam, 
who did the eomputer programming. 
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