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Numerical Computation of the Temporal Develop-
ment of Currents in a Gas Discharge Tube*

W. Borsch-Supan** and H. Oser

(November 16, 1962)

The behavior of electrical currents in a gas discharge tube including space charge effects
is investigated by numerical integration of the governing nonlinear partial differential
equations. Both stationary solutions and the temporal development, under the influence
of space charge effects, are considered. It is found that the truncation error can be greatly
reduced by comparison with formal solutions for constant fields. The discussion is essen-
tially restricted to the more mathematical questions.

1. Introduction

The behavior of electron and ion currents in a gas discharge tube as a function of time and
the applied voltage has been investigated by several authors [1, 2, 3, 4]'. Most of these
have omitted the effect of space charge, but have estimated when the effect appears. Space
charge, however, results in a temporally growing distortion of the electrical field and, therefore,
in a severe nonlinearity of the equations governing the behavior of electron and ion currents
in the tube. A. L. Ward [5] suggested the numerical integration of the nonlinear equations
on an electronic computer for an essentially “one-dimensional” tube, i.e., a tube whose elec-
trodes are parallel plates of dimensions large compared to their separation.

This paper describes the mathematical treatment of the basic equations necessary for the
applicability of numerical methods. For the sake of completeness, a short derivation of the
basic equations (sec. 2) and the formal treatment of the case of constant field (sec. 5) is given,
although many of these considerations can be found in other papers too. The stationary case
is treated extensively in section 3. The difference schemes used for the time-dependent case are
discussed in section 4. The discussion of the results in section 6 is restricted to the more
mathematical questions like the influence of truncation errors, and certain other errors occur-
ring during the computations. A discussion of the physical significance of the results is given

by A. L. Ward [10, 11].

2. Basic Equations

We state the equations in an Eulerian coordinate system, denoting the space coordinate
by z and the time by #. The cathode islocated at z=0, the anode at z=d. Letn,, n_,j;, j-,
vy, v be the density of positive ions (number of particles per unit of volume), the density of
electrons, the current density of ions (electric charge passing through a cross section of unit
area per unit of time), the current density of electrons, the drift velocities of ions and electrons,
respectively. The ion current density and the ion velocity are counted positive if the ions
are moving toward smaller z, the electron current density and the electron velocity are counted
positive if the electrons are moving toward larger . We denote the intensity of the electrical
field by £, counting it positive if directed from the anode to the cathode. Let a=a(k) be

*This work was sponsored by the Harry Diamond Laboratories, U.S. Department of the Army.
**Present address: Institut fiir Praktische Mathematik, Technische Hochschule Darmstadt, Germany.
! Figures in brackets indicate the literature references at the end of this paper.
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the number of ionizations caused by each electron per unit length of its path, g .=en, the
charge density of positive ions, ¢_=en_ the charge density of electrons, counted positive all
the time, ¢ being the elementary charge. With ¢ denoting the dielectric constant, the processes
in the tube can be described by the following equations:

(a) Continuity (Townsend’s equations)

- _ . 0j-
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(b) The electrostatic Maxwell’s equation (Poisson’s equation)

)
€05, — -4+ (2.3)

The outer circuit supplying the voltage for the tube can be described by a capacitance
O parallel to the tube and a resistance £ in series to both the tube and the capacitance. The
outer voltage applied to this system as shown in figure 1 is called /. If V'is the voltage across
the gap of the tube and 7 the current to and from the tube, then the equation

U=R (I+C %)w (2.4)

describes the behavior of the outer circuit. The current / can be obtained from the mean
current in the tube and the change in time of the voltage across the gap by the following con-
siderations. Let us introduce the abbreviations ¢=¢_ —¢, and j=j_+j.. Furthermore let
S denote the area of a cross section of the current in the tube, d the distance between cathode
and anode, and @ the charge accumulated on a unit area of the cathode. Then the law of
conservation of charge, applied to the cathode yields

=8 [.7(0, o221

Now the charge @ is connected with the voltage across the gap by

Q=—ek(0,1)
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Frcure 1. Diagram of the electric circuit.
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and the equation

d e
V:f Edx=dE(0, t)+ ¢! f f q(&, t)dedx (2.5)
JO 0J0
following from eq (2.3) by integrating twice. If we differentiate eq (2.5) with respect to time
o9 0o .
and use gt-— 52 e obtain

dEO, ) 1dV 1 (4.1 N
At ddt +({e L g S (2.6)

Now the current / can be expressed as
dV 1
= (d at 7‘] ’”)

Introducing this into eq (2.4) leads to the following ordinary differential equation for V:

S o i
R((H— ;” “[; L VRS T (2.7)

1.,
J*(“[‘[O J(I.L'

is the mean current density in the gap. We write: J=qv, where v=v,2_/(v_-+0,) is an average
velocity. Instead of eliminating 0/7(0,#)/0t one may eliminate dV/dt by using eq (2.6). Then,
instead of eq (2.7), one obtains an ordinary differential equation in time for /£(0,):

J—A ((‘] S) 0, 1) (2.8)

where

(]F(() t)

R(Cd+Se) —I—T—{-

where V follows from eq (2.5).

The differential equation (2.7) or (2.8) furnishes the boundary condition corresponding
to eq (2.3). For eqs (2.1) and (2.2) separate boundary conditions will have to be established.
They describe the electron current at the cathode and the ion current at the anode respectively.
The latter current is zero since there are no ions coming out of the anode:

J+(d, t)=0. (2.9)

The electron current at the cathode is given by
. . . d .
J-0,0)=7,+7:7+(0,8) +, fo oj-dx (2.10)

where 7, denotes the current density resulting from externally irradiating the cathode with
photons. The second term describes electrons produced by ions hitting the cathode, v, being
the probability that an incoming ion produces an outgoing electron. The last term comes
from internally produced photons hitting the cathode. These “secondary” photons are as-
sumed to be emitted from molecules which were excited by electron collisions. The number
of excited molecules produced per unit of the path of a single electron is called o=o(£), v,
is the probability that a secondary photon produces an outgoing electron. It is assumed in
eq (2.10) that the emission of photons occurs immediately after the excitation; however, the
computer program contains a provision for an arbitrary time delay, simulating a delayed
photoemission.
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Equations (2.1), (2.2), (2.3), (2.5), (2.7), (2.9), and (2.10) together with mitial distribu-
tions of ¢, and ¢_ and the initial voltage V" determine the solution of the problem completely
for times greater than the initial time up to infinity or to a certain time limit, provided the
velocities v, and »_ and the ionization rates a and ¢ are given quantities.

Measurements show that v, ,»_, and a can beapproximated by the following types of functions
of £ and the pressure p in the tube:

ur(1— B EIp)E it |E|<Wip
o P (2.11)

(Bp/|El—B:pY/EDElp  if |[E|>W.p
v Ep (2.12)

(Cpexp (—Dip/|E|) i |E|<Wap )
. ?for molecular gases

Oyp exp (—Dep/|El) it [E|>Wyp )

a=- (2.13)

Cyp exp (—Dypl[E)) il [E[<Wap )
for atomic gases

 Csp exp (—=Dup/ L)) if [E]>W,p J

where py, pu_, the B, C,, D;, and W, are certain constants. The quantity ¢ is approximated by
the same type of function as « with possibly different constants.

3. Steady State Solutions

The steady state has been investigated by several authors. We report here on calcula-
tions of space charge distributions in cold cathode discharge tubes, which have been conducted
for a number of years at the National Bureau of Standards. A. .. Ward, who suggested this
program, reported on the results in several publications [4], [10], [11], and we shall confine
ourselves here to stating the equations and the method to solve them.

3.1. Differential Equations and Boundary Conditions
We assume a state of equilibrium, which means

99— ang 2%+ —
Y =0 and >t =0

at all times, and eq (2.1) reduces to

Yy a(B)j (@) (3.1)

which is Townsend’s steady state equation. In order to take account of collisions between
electrons and metastable molecules inside the tube, we add an extra term which is proportional
to 72 (z):
dj_ . - i
=ta(B)j-@)+8(E)f @). (3.2)
Here a(£) is defined by eq (2.13) and B(£) is assumed to follow the same law, with possibly
different parameters C;, D;, and W..
For eq (2.2), which governs the ions, we assume that the total current density is constant:

J—(x) +j4(x) =7 =const. (3.3)
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Equation (2.3) is then written as follows:

j(z)—J- (@) . ,
T RIT f|E|<W
ui (1= Bi[El/p) LAl
dE_p - : ) (3.4)
N A e e R

P - p (DY
By 15— (%)

Equations (3.2) and (3.4) are two ordinary first-order differential equations for £(z) and
j_(x), provided that we are given the total current density function j.
Physically accessible are the currents at the electrodes, leading to the following boundary
conditions:

j—(d)=yj at the anode. (B%5)
_(0)=(j,+v7+(d))/(147) at the cathode. (3.6)

Here 7, is a contribution to the electron current density caused by external radiation and
v is a secondary ionization coefficient assumed to be a constant.

3.2. Integration of the System of Differential Equations

We distinguish here two cases:

=

dE| E . .
dr <<—/ everywhere, i.e., we assume a constant field.
dx

a(l) and B(F) are then constant also and eq (3.2) becomes a Bernoulli equation with constant
coeflicients, which can be integrated explicitly. The value of /£ is then determined from the
second boundary condition.

(i1) Arbitrary large currents j(xz). The solution has to be found iteratively:

Starting at r=d with j_(d) =y, a value of F(d) has to be assumed. (It seems most [easible
to generate a whole family of solutions with increasing total current densities. The initial
value £Z(d) is then taken to be the solution of the previous case. For sufficiently small j(x)
assumption (i) holds and no difficulty arises in finding a starting value.)

Equations (3.2) and (3.4) are integrated simultaneously by means of a Runge-Kutta
scheme. Iteration on /(d) is performed until j_(0) is in sufficient agreement with the pre-
scribed boundary condition.

As the total current densities increase, it becomes more and more difficult to find the
proper £(d). At j (d) =10~*amp/em? it was impossible to find a solution, even by the interval
halving method.

Fortunately this limit covers most of the experimental data as far as the basic equations
are valid. For the results we refer to the aforementioned publication of A. .. Ward.

(1) The current is so small that

4. Difference Equations
4.1. Difference Equations With Respect to Both Time and Space. Stability Considerations

In the most general case, it is not possible to give an exact solution of the system of equa-
tions described in section 2. Therefore, one tries to find an approximate numerical solution.
The most convenient way to obtain a ‘numerical solution” is to introduce finite differences
in time and space and to solve numerically the finite equations generated in this way for a
certain set of values of the different parameters of the problem.

The way to transform the differential equations into difference equations is largely deter-
mined by requiring simplicity of the computational scheme and “stability” of the difference
scheme. For the sake of simplicity we ask for explicit schemes as far as possible. For the
same reason we use difference operators of the same order as the corresponding differential
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operators. This ensures that the special computations at the boundaries are kept to a mini-
mum. By requiring stability we exclude certain difference schemes which would lead to
large amplification of any small errors (as rounding errors) when the time increases, at least
in the limit of vanishing meshwidth. We use here the concept of stability as introduced by
Lax and Richtmyer [8, 12].

Denoting by At and Az the increments in time and space respectively, the difference equa-
tions corresponding to eqs (2.1) and (2.2) are

Q—(xy t+AAt)t_q- (x7 t>:a($, t)j_(ﬁ, t)___.?—(xy t)—i;;<w—Az; t) (41>

for x=Ax,2Az, . . ., MAx=d; t=1,, t,-+At, t,-+2AL, . . .

q+(x7 t+At)—Q+(x5 t)
At
for 2=0, Az, 2Az, . . ., (M—1)Ax; t=1,y, to+AL, to+248, . . . .
The difference quotients with respect to x have been chosen unsymmetrically for the sake of

+.j+ (x+A$, t) _j+ (xy t)

:a(x, t) c j—— (Z, t) Ax

(4.2)

stability, see [S, 12]. In order to obtain stability in the sense of Richtmyer for A7—0, Az—0,
.., At .
with Apconst., we must require that

Az
T )
max {v_,v}

At (4.3)

and that both »_ and », are nonnegative. Since »_ is much larger than v»,, this means that
the timestep must not exceed the time an electron needs to go from one meshpoint in space
to the next. This time is very short for many of the interesting developments in a gas discharge
tube. Therefore, for many phenomena, it will be sufficient to assume that the electron density
and current distribution will be in a quasi-equilibrium state, i.e., we replace the left hand side
of eq (2.1) by zero. Since « is rather large in the interesting cases, we do not use the difference
scheme obtained from eq (4.1) by putting the left hand side equal to zero. We rather integrate

eq (2.1) formally:
J_(x,t)=7_(0,¢) - exp{fx a(z’, t)(lx’}
0

and replace the integral in the argument of the exponential function by a finite sum, using
the trapezoidal rule:

j_(m Az, t)=j_(0,1) - exp{g % [a(k - Az, t)+a((k+1)Az, t) ]Ax} (4.4)

for m=1,2,. . .M.
The stability condition for the system eq (4.4), (4.2) is now

s (4.5)
vy

and v, >0. Thus one can use much larger timesteps than for the original system, namely, the
timestep must not exceed the time an ion needs to go from one meshpoint to the next.

Equation (2.3) does not contain time derivatives. It shows that /, and therefore also «,
are obtained by integrating ¢. Hence, stability is not affected, and the question how to choose
a proper difference scheme replacing this equation can be separated from the question how to
choose the timestep.

Of course, the characteristic time of the outer circuit will provide another bound for the
timestep. As long as the term containing o/ is unessential in eq (2.7), this characteristic time
is apparently [R(C+Se/d)]. 1f one uses instead of eq (2.7), the difference equation
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(O }‘SE”> ‘(t“"AAiZ 17() U(t) vr(t) BSJ(t), (46)

where

J(l‘)* Z [/(Mw ) +i((k+1)Az, )],

the stability condition for this scheme in the sense of Rutishauser [13] indeed is
At <2[R(C+Se/d)],

as long as the dependence of J on V is small enough to be disregarded. As soon as this
dependence becomes important, we can no longer consider the outer circuit separately from
what happens inside. Then we will have to treat the system as a whole. Even in the case
where I and « are independent of z, i.e., when space charge effects can be neglected, this leads
to a nonlinear problem because of the product @j_ (« depends on V).

4.2. Difference Equation for the Electrical Field E

The differential equation (2.3) is to be solved with the side condition (2.5) imposed on
the integral over the unknown function /. The most reasonable way seems to be to replace
eq (2.3) by

E@+Axt)—E(, t)
Ax o

e ' 2lq(z+Az, t)+q(z, )] (4.7)

for =0, Az, 2Az, . . ., (M—1)Ax.
Using a trapezoidal rule on the left side of eq (2.5) would lead to a side condition

M-1 Az
ZWZ:O 5 (E((m-+1)Az, t)+ E(mAx, t))}- (4.8)

Equations (4.7) and (4.8) form M1 equations for the M1 unknowns K(mAz, t), m=0, 1,
5 M.
But it turns out that these equations do not give the rigorous solutions even if ¢(z) is a
linear function of z. For, take ¢ '¢(x)=x and V=0, then, according to eqs (2.3) and (2.5),

2 12
:%—Eﬁ—. But, eq (4.7) yields E:% +¢, where ¢ is a constant to be determined from eq
(4.8)
3
():%Jr Zle

.ot d (Ax)?
Hence, we obtain E—§_E'— >

By partial integration on the right hand side of eq (2.5) one gets

» which is not in agreement with the rigorous solution.

a
V=d+ E(0, t)—{—eo“lf (d—a)q(x, t)dz.
0

If integrated by the trapezoidal rule this formula does not give the rigorous solution for linear

A .
o Therefore, we have to search

q either. For the above example we obtain E—;——E_l_
for a different method of replacing eqs (2.3) and (2.5) by finite equations such that the results
are correct at least for piecewise-linear functions ¢. For instance, one may expect that a
weighted mean of the two formulas discussed might eliminate the term containing (Az)2
Indeed, this way is successful if the weight ratio is 2:1.  The results are then correct even for
piecewise-linear functions ¢, as is shown below.
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Let us put ¢ '¢g=r for simplicity. A piecewise-linear function »(x) is given by its values

at the meshpoints 7,=r(maz) for m=0, 1, . . ., M:
A mAx x r—(m—1)Az
r(‘t)_’m—l + m Ax
for (m—1)Az<zx<mAx (m=1,2,...,M).

Our task is to find a proper approximation for the integral
d (x d
Ir—f f 7'(1’)(1@’(1x:f (d—x)r(x)dx. (4.9)
0 0 JO

For the sake of simplicity we take d=1. The value of / follows by summation

f(’"”‘f (1=2)[rp-r(m—Mz)+r,(Mz—(m—1))]dx

m—1)
1 1 m 1 1
[(1 M m—rw}”f” [(“17) zTﬁW]

M
Ty ru_"c

MM<1 ) e e

namely

The trapezoidal rule applied to the richtmost expression in eq (4.9) gives the approximation

M oy, m i

Fe=22 (=) ~aar

Repeated application of the trapezoidal rule to the middle expression in eq (4.9) gives the
different approximation

M-
rep 7§=:: 2M|: 27\1 (’k+’k+l)+2 oM (’L+'L+l)] < .7\4 <1_M> 4M20'

Hence

1/3L,+2/5I,ep—[2 s (1 LARUIRL = ]111 (4.10)

is an approximation to eq (4.9) and leads to rigorous results in the case of piecewise linear
functions 7(x) with slopes changing at =0, Az, 2Az, . . ., MAr=d=1.

Since the solution of eq (4.7) requires the same summation as the inner sum in 7,,, we
actually compute the finite approximation by repeated application of the trapezoidal rule and

by adding a certain correction:
I'ne—To

Itr+§ ]rep:[rep" 12M2

For general d, we have to replace » by rd>.
The computation of £ from V and the given values of ¢ at the meshpoints can therefore
be done by the following formulas:

At first we compute the auxiliary quantities

3

E*(mAz, t)— Z(q(kAar t)+qlk—1)Ax, t) for m=1,2,...,M.
(4.11)

E*(0, t)=0.
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Then we continue with

M A / —

/«:(o,f):}? [V(z)—%?”z (E*(mAz, ) +E*((m—1)Az, )+ (Az)? ‘l(‘”‘”’lge ‘1(0”)] (4.12)
m=1 0

E(mAx, t)=E*(mAz, t)+E(0, t) for m=1,2,... M. (4.13)

One may ask whether using 7£(0, ) instead of V(¢) as the parameter describing the outer
circuit would not simplify the computation formulas. Indeed this is true. One may compute
E(0, t) from a difference approximation of eq (2.8), then compute K(mAz, t) for m=1,2, ..., M
from eq (4.7) successively, and finally one computes V from those values by the trapezoidal
rule. But it turns out that the truncation error in V is much larger in this case than if we use
eqs (4.6), (4.11), (4.12), and (4.13). After a certain number of integration steps, V" may even
exceed U which is physically impossible, when /=const. and C'is uncharged at time t=0.

4.3. Method of Computation

If we use the trapezoidal rule in eq (2.10), this boundary condition takes the form

M
J-0,0=jti0 40, 04 25 | 5 lolmaz, 0j(maz, )+ (m—1)as, 0j-(m—1)x, 0] |
(4.14)

The eqs (4.1), (4.2), (4.6), (4.11), (4.12), (4.13), (2.9), and (4.14) together with initial distribu-
tions of ¢, and ¢_ and the initial voltage V determine the finite problem completely, provided
the velocities », and »_ and the ionization rates « and ¢ are given functions of /. Instead of
the eq (4.1) one may use eq (4.4) if the electron density is in a quasi-equilibrium state.

The above system of finite equations is not completely explicit. In the case where eq (4.1)
is used, explicit formulas are achieved by taking some quantities of minor importance at an
earlier time. Thus, in eq (4.14) the last sum has been taken at the time ¢—At instead of ¢,
and in eqs (4.11) and (4.12), ¢_(0,t) has been replaced by ¢_(0,t—Af). These two changes
were sufficient to achieve explicit formulas for all quantities.

In the electron quasi-equilibrium case the equations are even more implicit. Therefore
one uses an iterative scheme in order to obtain a solution starting from values of ¢_ at the pre-
vious timestep as initial approximations. The only quantity not treated iteratively is the last
sum in eq (4.14). It is taken from the previous timestep throughout, i.e., instead of eq (4.14)
one always uses:

M
-0, 1480 =j,+11j 0, (480 +3, 35 [o(mAs, Dj(mAs, )+ o((m—1)s, 1)j(m—1)Aa, O]

(4.15)
4.4, Convergence of the Iteration

It will be shown below that the proposed iteration scheme leads to convergent sequences
for all quantities involved, if the electron density is small enough in the sense that it causes
no distortions of the electric field comparable with the field itself.

For the sake of simplicity we consider the limit case //— o only. The quantities changing
during the iteration are ¢_(z), £(z), v_(z), a(z) and j_(x) for 0 <z<d, and furthermore, »,(0)
and 7,(0). All other quantities are fixed throughout the iteration. Since ¢_(z) is the only
result of a previous iteration which enters the following iteration step, and since all other
quantities depend on ¢_(x) continuously, it is sufficient to prove that the sequence of functions
¢-(x) converges.

According to [7], one has to consider the change d¢"¥(z) of the result of one iteration
step, caused by a certain change §¢°¢ (z) of the initial approximation. When measured by a
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certain norm, the ratio of the changes has to be smaller than unity in a certain neighborhood

of the true solution ¢_(z).
The following formulas describe the connection between dg (z) and ¢ (z). They are

derived from the continuous analogs of the eqs (4.4), (4.11), (4.12), (4.13), from (4.15) and
from the relations between »_, »,, @ and £, and those between ¢, v, and 7_.

¢ (2) =" () [5‘]7_—((00)) ov_ (I)J_f 6a(u)du:|

O

[y _gptT
. [1 RO

and T'is the last term on the right-hand side of eq (2.10).

6j-(0)_( 1 dvs
i (0) \v, dE

ov_(z) 1 dv_

) o dE @

ba(z)= (lE (x)

) =cg" f K(z,u)oq" (u)du

{u/(l it u<a
I&Gn, )=
wld—1 if uw >z,

where

We restrict ourselves to the case for which not only »_ but also », is proportional to . Then

Ldvoy 1dvo_ 1

v dE v dE E
Furthermore, we write
da o d(In a)

dE Ed(n E)

since the latter differential quotient varies more slowly in the interesting range of . We
introduce the norm

=" 1@l

for any function f(z). Then, the following estimates can easily be derived:

6K (z)| < €5 max {% 1—5} |16g2|

da
o)
new | | . . old
lagz| < B2 g2
where :
d(In «)
K—1+ ) —|—4 ad max (n E)l
The condition for convergence is that
d
eg‘f [q"~ (x)|dx
. =Q<1 (4.16)

‘l'nin |E (z)]
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which can be interpreted the following way: The field distortions produced by the electrons
and amplified by the numerical factor A must not exceed the minimum field strength in the gap.

From the rate of convergence given by eq (4.16) and the change of ¢_(x) between suc-
cessive iterations, the corrections introduced by a further iterative step can be estimated.
According to these considerations, the iteration may be stopped after a preseribed accuracy
has been reached. A criterion of this kind has been used in the code.

5. Formal Solutions for Constant Field

5.1. General Considerations and Formulas

The nonlinearities contained in the equations of section 2 and in the corresponding differ-
ence equations disappear as soon as the quantities a, o, v, v— can be regarded as independent
of the solution. If, moreover, these quantities are constant in space and time and if the voltage
V across the gap is constant, the equations of section 2 and the corresponding difference
equations can be solved explicitly. Then, of course, there is no room for eq (2.3), i.e., this
treatment disregards space charge, and eq (2.7) cannot be taken into account, i.e., the reactions
in the outer circuit are disregarded, or, in other words, the external resistance R is so small
that it can be neglected by putting =0, which leads to U=V. Work in this direction has
been done by several authors [1, 2, 3, 9] as far as the differential equations are concerned. These
papers discuss what happens in the tube. Here this special case will be considered again, but
for a different purpose. We shall discuss the difference equations along with the differential
equations in order to get insight into the effects of truncation errors. We hope that, to a
certain extent, these effects carry over to the more general case, and therefore will allow
us to correct the results obtained with finite steplengths A# and Az so that we obtain closer
approximations to the case of infinitesimal steplengths.

We mainly deal with the difference equations. The results for the differential equations
will be obtained by letting Af, Az—0. We restate the equations of section 4 for our special
case putting #,=0:

]‘ (.I', f) —-j, (.If—A.I’, f)

j— (J.'}__—{—At) _.j— (.IT, t):_]_ (.1', f>— e (31“)

v_At

for z=Azx, 2Ax, . . . MAz=d; t=0, Al, 2At, . . .
In the electron quasi-equilibrium case, we shall use instead of this:

J-(, )=5-(0,0) - e~ (5.1b)

for the same = and ¢ as above. The ion currents behave according to

J+ (@, t+A)—jy (2, 1) _ . J+(z+ Az, £)—34(z, ) =0
e =j_(z, 1)+ - (5.2)
for 2=0, Az, . . . (M—1)Az; t=0, At, 2A¢, . . .
There are two boundary conditions, namely
jod, =0  fort=0, At, 2At, . . . (5.3)
and
A . . 2ONT oo N
J-0, =0y +715+ 0, )+, 25 5 olj-(mAz, t—A) +]-((m—1)Az, t—At)]
for t=At,2At, . .. (5.4

In order to make the solution unique, we have to in troduce initial conditions, for instance by
prescribing j-(z,0) and j,(z, 0) for =0, Az, . . . MAz. But we will be mainly concerned with
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solutions which are proportional to ¢} with a suitable \. For this type of solution, initial
conditions do not have to be given.

The above equations are linear and homogeneous with the single exception of (5.4) which
contains the inhomogeneous term j,. Since j, is time independent and since time does not
appear explicitly in any other term, there will exist, atleastingeneral, a timeindependentsolution.
More general solutions will be obtained by superposition of any solutions of the corresponding
homogeneous system with 7,=0. The homogeneous system allows for time separation in the
form of a factor ¢". Then the stationary case results from putting A=0 and from slight changes
due to the inhomogeneous term. We introduce j" (z) and j; (z) by

J-(=, ) =75 (@) - e

(5.5)
J+(x, =7 (@) -
Then, eq (5.1a) can be solved by
Ix @)=y (0) - =™, (5.6)
where «* is the solution of the transcendental equation
oAz

In the electron quasi-equilibrium case, i.e., if we use eq (5.1b), all results will be correct
in the sequel if we replace a* by «, unless we distinguish explicitly between the two cases.
Equation (5.2) now reduces to a single inhomogeneous equation for ji (z), the inhomogeneous
term being «jy (z). The solution satisfying the boundary condition (5.3) is easily found to be

I (@)=AeP e M gla*=P3] (5.8)
where
(0

*e"*“—l M1

alAx viaAt

and g i1s determined by the equation

eMI—1 A
v At Az

(5.9)

The remaining unknowns are 75 (0) and X. In the homogeneous case the quantity 7; (0) remains
free, whereas \ follows from eq (5.4) with j, = 0, which transforms into the transcendental

equation

- ‘Yi[p(a*‘ﬂm_lj s 1_!,(;&*—\1 l)a*d_l
1_ea*A1_1 PN +v,0lze . 2 Teardr_q’
C(A.I' l‘+aAt

5.2. Stationary Solution

For the stationary solution of the inhomogeneous eq (5.4), we put A=0. Then (5.9)
leads to 3=0, and (5.4) shows that

. . Ar (e d— | feamar B
Jo (O):]xz/{l_ame_T)'<'Yi+7pgT>}' (5.11)

I
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If we use (5.1a), we may simplily our equations further. From eq (5.7) we obtain a*
explicitly:

1 1
o I, ~
e (5.12)
Equation (5.8) reduces to
Jd @) =75 (0) - 1—aAx)(ex"'—e*"), (5.13)

and eq (5.11) reduces to

ﬁﬂ»:ﬁ/{14WN~n[ma—wurmmgb—éaM)]}‘ (5.14)

In the electron quasi-equilibrium case, we use eq (5.1b) and obtain

alAx o o5 o
Jo (@) =735 (0) - Py ((’ ek (5.15)
and
. . alAx @ g 14 e2A* o
Jo (0):.17)/{1"(,,,_\‘,_1 (=) <7i+7p w2 >} (5.16)

By letting Az—>0 we obtain the corresponding relations for the differential equations;
namely o*=a and, furthermore,

Jo @)=7Jo (0) - (e*—e™), (5.17)

Jo (0)~.ip//{l—((/ad_l) (Wrw U)} (5.18)
/ @

When the respective denominators in eqs (5.14), (5.16), (5.18), become zero, no stationary
solution is possible. The voltage V for which this occurs is called the breakdown voltage.
If we assume that o/a is a given constant independent of V" (it is often assumed that ¢=a) then
the three respective denominators are equal to 1 for a=0 and decrease monotonically in the
interval 0 <a< . Therefore, there exists one and only one positive real root «, corresponding
to the breakdown voltage. If the voltage V exceeds this value, the theoretical stationary
solution shows negative values of 7=, which is physically impossible: No stable solutions exist
beyond the breakdown voltage.

The physically interesting things happen if V' is near the breakdown voltage. Therefore
we have to look into the dependence of the breakdown voltage on the steplength Az in order
to establish a base for comparison of numerically obtained results and the true theoretical solu-
tions, or the experimental measurements in this case.

In the infinitesimal case the value a=q,, corresponding to breakdown can be expressed
explicitly from (5.18), il ¢/a is given:

] ;
%r111<7+ﬁﬂﬁﬂm 1>

For the difference schemes, the corresponding transformation will lead to a form of the equation
suitable for iteration. From eq (5.16), i.e., for the electron quasi-equilibrium case, we get

exp (apAr) — a\ 1+4exp (ay A;v)) I
e h l—l + abrA-r /<7i+71) (a,)br 2

In case we use eq (5.1a) instead, it follows from eqs (5.14) or (5.11) that

[1,, I:I—H\p (o, Ar)/(vz+7,,< )br 1+e\p (ad Ar))]
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We shall see that these formulas are special cases of more general formulas for the homogeneous
system.

5.3. Special Time-Dependent Solutions

We turn now to a discussion of the homogeneous system, especially the transcendental
eq (5.10). Let us first consider the infinitesimal analog of this equation, obtained by letting
Az—0 and At—0. Equation (5.9) becomes then

B=M\vy, (5.19)
and eq (5.7) transforms into
a¥*=a—\fv_- (5.20)

If we define » by 1/v = 1/v,.+1/v_, then eq (5.10) becomes

Vi —\/7 Yo a—N0v_)d
=L eV 1] 2 [tevee], (5.21)

in accordance with [9]. For the breakdown voltage, A=0 is a solution.

For voltages near the breakdown voltage, there must be a solution X near zero for continuity
reasons. For this special root, the equation may be transformed into an iterative scheme similar
to the one for the computation of breakdown voltage itself. We show this for the case where
a solution is wanted for X as a function of «.

We put
a—\Nv=a(l—u)
and rewrite eq (5.21):

) M0y p—all=u)d
1=[eal-wd__1]. Vi 'Yp(’f/a) € ]
l( ]][1—u+1—x/(av_) 1_()/“01(1‘1:)([

According to the assumptions made above, only the first factor on the right changes rapidly
with «. Therefore we solve the equation for this factor, obtaining

B Vi ¥p(o/e) _e“’/”+—e‘“”*’ﬁ) )
aﬁ(l—-u)(l In {1+1/<1—u+1‘—u'l‘/l)_ 1_€_a(1_u)d (5.22)

This form is suitable for iteration since the richt hand side is only slowly varying with «, par-
ticularly, if we use % as an independent parameter. We describe the function N(a) by the
parametric representation A=X\(u), a=a(u). From a first approximation of V" and a we com-
pute v, v_, », o, and

A=avu. (5.23)

Since all variables on the right hand side of eq (5.22) are known, a new approximation for a
can be computed from eq (5.22). Since the right hand side is slowly varying with « for suffi-
ciently small %, we can hope for fast convergence of the iteration.

A similar but slightly more complicated approach is possible for solving eq (5.10), if eq
(5.1a) is used for the computation of electron current. Here, in addition, the relation between
a* and « has to be established iteratively. Let us assume that we know a first approximation
for a* for a given value of the independent parameter

__8)‘35—1
T anAt

Then « can be computed from (5.7) if we assume in addition that »/v_ is at least approximately
known:

54



I—le sz up
a="—% /(1 r_)- (5.24)

If necessary, from the « thus obtained one may compute a new value of »/v_ and repeat the
computation of « iteratively.
From % and « one may compute

x:Alt In (1-+avuAt) (5.25)

and
1 o
B= —% In <1+a — uAac)- (5.26)

Equation (5.10) may be written as

‘Y,;(U/(X)(’ AAt ]+6a'AI cﬁd_e_(a*_ﬁm

and is solved for the first factor:

1=[¢a* -

1 Yi , ‘y,,(a/a)(i‘xu 1,+ca Az (,ﬁd_f~(a —B)a\ —1

= In|1+ o
— *) (] ) 9 —(a* —ﬁ)rt
L fied G (1——u, —: >—u; (" e (1—71 f~> 1=

a*

(5.27)
The computation of the breakdown voltage thus appears as a special case of these formulas,
namely as the case u=\=0.
In the equilibrium case the formula corresponding to eq (5.27) is
1 . o) eMt 1 Ly (Bd_ﬂ~(a pay —1
S T A A A 77 VR e

_ ,aAT_ : T 1 _,—(apd
(1=Bja)d (ﬁ“"’—l)/(an)—uv: (ex4"—1)/(eAx) 2 1—¢ @B

This equation is used together with eqs (5.25) and (5.26) for solving eq (5.10) iteratively.
Because of the similarities between the eqs (5.22), (5.27), and (5.28) one can treat all
three of these equations quite simply in a single computer program.

5.4 General Time-Dependent Solution for Constant Field

So far we have considered only a special root of eq (5.10). However, one can see that a
transcendental equation of the type of eq (5.10) and its limit case eq (5.21) has more roots X
in general. For the case of finite Af and Az, the equation is rational in &*. Therefore, there
is a finite number of roots ¢*’ each of which corresponds to a infinite set of roots X of the
form N=X,-F2mik/At (k=0, +1, +2, . . .). But all these roots describe the same function
on the grid. Equation (5.21), however, has an infinity of roots \, whose asymptotic distribution
is shown in [6]. It turns out that at most a finite number of them can have a real part larger
than the real root discussed before. The root with the largest real part will become dominant
in any solution as time goes on. Therefore, one is mainly interested in the root with the
largest real part. If we knew that this root was the real root discussed in section 5.3, we
could confine our considerations to this root essentially. Unfortunately, a proof is not avail-
able at the time being. Therefore, it remains an open question whether or not the asymptotic
behavior of the solution for larger ¢ can be described by the formulas given in section 5.3.
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For a complete formal solution of an arbitrary initial value problem, of course, one has to
consider all of the solutions of eqs (5.10) and (5.21) and one has to develop the initial distri-
bution into a series of the corresponding functions after substracting the stationary solution
of the nonhomogeneous equation. No attempt has been made to go further in this direction,
but see [1] for some results of this kind.

6. Results

The physical significance of the results obtained by the machine computations is discussed
in [5, 11]. Therefore, we restrict our discussion to the more mathematical questions. The
main question is how large the truncation error is, i.e., the error introduced by using finite
differences instead of derivatives. No attempts to establish rigorous error bounds have been
made. Instead of this, experiments with different step lengths have been carried out for the
following set of parameters:

7,=10712 amp/em?, p=722 torr, d=1 em, S=1 cm?,
C=10""" amp sec/volt, R=10° volt/amp, U=V=25.6 kv for ¢t<0.

U for t >0, v;, v, and Az are different for different curves. The time step At is given by the
formula At=0.8-Az/max {v,} in the electron quasi-equilibrium case, At=0.8-Az/max {v_} in the
z z

general case, unless something else is stated explicitly. The constants used to describe the
functions « and ¢ are C;=0C,=8 em™! torr™!, D;=10,=247 volt em™" torr~!, the mobilities of
electrons and ions are constant: =4 X 10° torr em?/(sec volt), u,=2X10?% torr em?/(sec volt),
B=0, W=+ .

The calculations in section 5 show that in the most interesting area near the breakdown
voltage the solution is very sensitive to changes in the voltage. On the other hand, a finite
stepwidth of reasonable size, e.g., with 20 subintervals, introduces a change of the breakdown
voltage of notable magnitude. Therefore, the differences between runs with different step-
widths are mainly due to the influence of the stepwidth on the breakdown voltage. It seems
to be feasible to eliminate this influence by relating the applied voltages to the breakdown
voltage, as computed according to section 5.3, i.e., neglecting space charge, for the stepwidth
used in each case. This method turned out to give very satisfactory results for the electron
quasi-equilibrium case, as can be seen from figures 2 and 3.

The reason why even the relatively large steplength Az=0.05 cm (eAz=0.5 to 0.6) gives
a good approximation, can be seen from the figures 4, 5, and 6, where the coefficient of temporal
growth A, as computed from the formulas of section 5.3, i.e., without space charge effects, is
plotted versus the voltage V across the gap and the overvoltage V—1V, .. Figure 4 shows that
the curves for the difference equation (quasi-equilibrium case, Az=0.05 cm) and for the differ-
ential equation go almost parallel over a long range. Therefore after relating the voltages
to the breakdown voltage, the curves almost coincide as can be seen from figure 5. This
explains the good results obtained with that approximation, at least as long as space charge
effects have small influence.

With the same value of v,+v,, but a portion of 10 and 20 percent v,, the temporal devel-
opment goes faster than for v,=0, as one could expect {rom physical considerations.

According to figure 6, the difference scheme should give an approximation almost as good
as for y,=0, even a better one in the 10 percent case, where the curves for the differential
equation and the difference solution nearly coincide.

The influence of the time lag in the term describing the production of electrons by secondary
photons (last term in eq (5.10)) has been studied by introducing an artificial factor exp(—\At)
with v, into eq (5.22) for the continuous case. At was assigned a fixed value approximately
equal to the ones used in the computation with Az=0.025, namely At=6.25X10"7 sec. The
deviations due to that factor exp(—2\Af) can be seen from table 1 below.
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Frcure 2A. Mean current density J across the gap versus

time t for v,=0, vi=1.5 1075.

Ficure 2B. Mean current density J across the gap

versus time t for y,=1.5 1075, v;=1.35 1075,

Ax[em] Ulkv] U-Vilkv] x[cm] Ulkv] U-Vir[kv]
(a) 0.05 28. 870 0.233 (d) 0.05 28. 854 0.233
(b) .025 28.870 . 295 (e) .025 28. 854 . 287
(© . 025 28. 807 .233 () . 025 28. 800 .233

We conclude that the influence of that time lag is not very important, at least for the
overvoltages and the small rates v, of production of secondary electrons considered here.
We see that the time lag slows down the speed of development by a few percent at most, even
in the worst case.

The electron quasi-equilibrium assumption 9g_/0t=0 in (2.1) is equivalent to letting
»_—> in this equation. Therefore, the influence of that assumption in the differential equa-
tion may be studied by replacing »_ by « and » by v, in the eqs (5.22) and (5.23). If v,=0,
the result is obvious. For fixed voltage, i.e., fixed «, the introduction of that assumption

57



MAXIMUM VALUES OF V
(0) 28.868kv |

(b) 28.866kv
(c) 28.805kv

T T T T

d) e

MAXIMUM VALUES OF V
(d) 28.85! kv
(e) 28.850kv
() 28.797kv

S | ES—

S

| | |

Ficure

Figure

4x10°

1.0x10°5
1,sec

3A. Voltage V across the gap versus time t for param-
eters of figure 2A.

3B

Voltage V across the gap versus time t for param=-

eters of figure 2B.

25

Ficure

30

4. Coeflicient N of temporal growth for constant field
versus voltage V across the gap, for Ax=0.05 cm.

@) vp=0, vi=1.510-5

(b) vp=1.5105, v;=1.3510-5 (continuous case only)

for electron quasi-equilibrium case (dashed)

general case (dotted)
continuous case (solid).
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Frcure 5. Coefficient N of temporal growth for constant field
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Ficure 6. Coefficient N of temporal growth for constant field
versus overvoltage V—Vy for Ax=0.05 cm.

(@) vp=0, v:=1.510-5

(b) vp=1.510"5, v;=1.35 10-5
(continuous and quasi-
equilibrium case coin-
cide)

(€) v»=3.0107%, v;=1.20 10-5

for electron quasi-equilibrium case (dashed)

continuous case (solid).



Tasre 1. Influence of the time lag At for secondary photons on the cocflicient X of temporal growth

Yr Yr

—=0.1 =02 “
o vitre Yitve

V=Vbr |[__

At=0 ‘ At=6.25 10-7 At=0 t=6.25 107
Volt J‘
—400 —0. 8643 —0. 8624 —0. 9291 —0. 9248
—300 —. 6595 —. 6576 —. 7147 —. 7105
—200 —. 4479 i —. 4463 —. 4901 —. 4864
—100 —. 2285 = 2214 —. 2532 —. 2506
0 0

—+100 —+0. 2396 —+0. 2-577 —+0. 2746 —+0. 2696
=200 —+. 4930 —+. 4878 —+. 5802 —+. 5651
=300 —+. 7605 -+. 7538 +. 9317 —+. 8978
4400 +1.0610 -+1. 0410 —+1. 3650 —+1. 2880

amounts to no change in %, and therefore to a relative increase of N\ by about »,/v_. Hence
the temporal development is speeded up by about 0.5 percent, which is small enough for the
accuracy required in this problem.

A detailed analysis of the effect of that assumption in the case v,50, which is elementary,
but too lengthy to be reproduced here, shows that this remains true as long as the relative
influence of v, as compared to v, in eq (5.22) is small, i.e., roughly speaking, aslong asy,-e2/ 7+ <,
This 1s in agreement with physical considerations, since, if the influence of secondary
photons is dominant, the development is dominated by a process with feedback, all of whose
components go infinitely fast. Quantitatively, as long as u<<1, v, <<v_, ad>1, the change
5\ of N effected by the equilibrium assumption is, with good approximation.

ON_ vy ad—1  v,(g)a)(1—u)e™\
N o < +a(1——l/(1—u) Vi )

The full difference equations, with eq (5.1a) included, have not been used? for the follow-
ing reasons. For the same Az and the same time interval to be covered, the stability conditions
require 200 times as many time steps, il the electron-quasi-equilibrium condition is dropped.
Furthermore, ficures 3 and 4 show that, for Az=0.05 em, the deviation from the limit case
Ar=0 is considerable, and cannot be diminished satisfactorily by a simple change in the outer
voltage leading to the same overvoltage. It is estimated that a decrease of Az to 0.01 em is
at least necessary in order to obtain results as good as the ones in the quasi_equilibrium case.
Two trial runs were made, both leading to breakdown after a few ion transit times. The
data for these runs were:

(a) Az=0.05, U=31.5 kv, V,,=28.64 kv, v;,=1.5 1075, v,=0
infinite current after 2 ion transit times.

(b) Ax=0.5, U=28.87 kv, V,,=28.51 kv, 7,=0, v,=1.5 10~
infinite current after 3 ion transit times.

All the above considerations and the computations done so far are restricted to a domain
where the temporal growth in one (natural) time-step (as indicated by the stability condition)
is not too large. Near the actual breakdown, therefore, these arguments may not apply,
and an investigation of the nature and quantitative features of the breakdown singularity
is not given in this paper. Since the time required for the space change to become significant
is very large compared to the remaining time until completion of the breakdown, and since
the assumption of one-dimensionality is doubted for high current densities, there was no
point in trying to describe the details of the breakdown more precisely.

The features discussed in this section have been tested only for a few sets of parameters.
Up to this time it has not been proved that the conclusions are general. Since the number of

2 Several successful computer runs have been made since by Dr. A. L. Ward, using this option of the program.
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parameters is quite large, it has not been attempted to explore the limits of the region where
the conclusions are valid. But the methods of computing and of guessing the effect of trunca-
tion errors as described here should be tried in other cases.

The authors express their thanks to Dr. A. .. Ward of the Harry Diamond Laboratories,
Department of the Army, for suggesting the problem, and to J. P. Menard and A. E. Beam,
who did the computer programming.
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