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The mutual inductance analog of the generalized Thompson-Lampard theorem (for
cross capacitances) is developed. An infinitely long cage of five parallel wires can yield an
absolute inductance of

henries per meter. Ind-effects of order 1//* occur in a finite cage, but can be reduced to
order 1/l* by using eight wires.

The eight-wire cage has the advantage of overdetermined relations among the induct-
ances to be measured, allowing an estimate of experimental error in the calibration of a
standard. Errors due to faulty cage geometry are shown to be of the order of 1 in 107,

The Thompson-Lampard theorem relates to the cross-capacitances of a eylindrical con-
figuration of conductors. Consider a conducting cylindrical shell whose right cross section
is an arbitrary closed curve, divided into four segments by infinitesimal gaps. The general-
ized theorem ! states that the two cross capacitances, per unit length of the cvlinder, are
related by

o= m?cl/rejx_eﬂr?cz/re: 1

where T, (often written ) is the electric constant of the system of units considered.

The generality of this theorem suggests that an analogous theorem should exist for the
mutual inductances of a cage of parallel wires. Consider first an infinitely long cage ol four
parallel wires, penetrating a transverse plane as in figure 1.
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Ficure 1

Three mutual inductances are involved; the pairs of loops whose traces in the plane are (1) ab
and ¢d, (2) ad and be, (3) ac and bd. In case (1), the mutual inductance per unit cage length is

Ly, ac bd (1)

m —_—
27 4d Be

where T, is the magnetic constant, often written y,. By considering a, b, ¢, d to be pointsin a
complex variable plane, we can write

m= *Il
2w

(a—c)(b—d)|

(a—d)(b—c)|

1D, G. Lampard and R. D. Cutkosky, Some results on the cross capacitances per unit length of eylindrical three-terminal capacitors with thin
dielectric films on their electrodes, I.E.E. Monograph 351 M, 1960.

(2)

In
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We shall find it convenient to use

T, N
m———2——7rln[x]— 471_lnA (3)

where A is the square ol the absolute value of the cross ratio .

The desired theorem is a nonhomogeneous identity among the several mutual inductances.
It can be expressed as an identity among the cross ratios. Thus the problem is to find a geo-
metrical identity among the cross ratios of a set of points in a plane.

Now
_(a—d)(b—0) _(a—b)(d—c)
"Zla—ab—d) " @a—od—b)
vielding the identity
U (4)

If the four points lie on a circle (including a straight line), the cross ratios are real (and
positive), so that [z, -|zs|=1, yielding

=27y T} g —20my Ty = (5)

corresponding to the Thompson-Lampard theorem. Unfortunately, departures from a cir-
cular locus make the 2’s complex, and eq (4) no longer implies any relation between the |2/’s.
The third possible pairing corresponds to crossed loops, with

__(a—b) (e—d)
3= (a—d) (c—b)

and is related to the others through
Tg=—s/21
vielding the homogeneous identity,

Mma=|Mma—m,|
which is a circuit relation, independent of the cage configuration;

1. Pentagonal Cage

For a five-wire cage, there are five pairs of sides (fig. 2).
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F1Gure 2
(Illustrating loops for Mj).
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There are five mutual inductances corresponding to pairs of nonadjacent sides:

(2i41—20) (Biga—2i-1)

There are also five crossed-pairs (fig. 3):

yi=

1 2

Ficure 3
(Iustrating loops for N).

. (2i+2-:i+1) (2i—2i-1)
" (2ige—2im1) (Bi—2i41)

related to the z; through the identity

which yields the circuit relation

The five z; are mutually related by the nonhomogeneous identities

TYi=—Ti1%i+

My +N= My Mgy

A e = L

= £ -1, indices modulo 5
(éi-&-l_'3t~1)(w+2—»'-z)

(6)

These identities will be shown to yield an identity among |z,/, and therefore among the m,.

The result is the desired analog of the Thompson-Lampard theorem.

The identities (6) with 2=1 and :=2 can be combined to yield

2. Derivation of Theorem for Pentagonal Cage

1 1 Xy X
Tyt ¥g————=———
&1 €Iy Ly Iy

The identities (6) for i=1,2,3,5 yield directly

where
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We also have the purely algebraic identity

2

+

2

1
— [@sf*— a5+ =

1

12

Il—x3[2+ll—x5|2——1

S <x3+xo——1~—1)- ©)

Ty Xy
Using (7) and (8), this becomes
AA+ AL A — Ay A A1 — A1 A5 Ay — A3 — As+1/A,+1/4,=2 Re ( 1y

Iy
Ty , Loy
=2Re (%2477)

1
—2watB) () (10
where
-Z'iEai+jBi, ZII—iEai—jﬁi-

Now identity (6) for i=1, Tyt 2ars=1

yields
2(11 = 1 + A1 ==

5%5[1'1’2*01%:/11_01%- (11)

Solving (10) for 8,8s, squaring for i3, and substituting from (11) for gf, «;, and from the
similar relations for 83, as, leads to lengthy algebraic manipulation which yields

A1A2A3A4A5 - AfA3A4_‘ A3A4A5 _A§A5A1 - AEAIAZ —A§A2A3
+ A1A2A4 + ‘4/_12*41 3A5 + A3A4AI + A4A5A2 + A5A1A3
+ A, A3+ A A+ A A+ A A+ As Ay — A — Ay — Ay — Ay— A5+1=0. (12)

Replacing each A; by ¢ ™" yields the mutual inductance identity.
If the pentagon is regular, the A, are equal, and (12) can be factored:

(A2—3A+1)2(A+1)=0. (13)
The allowable roots are
3 :l.-\/g
A—T

corresponding to
_Tpo 3445
4 3

(The two roots are reciprocal, so yield the same absolute value of mutual inductance.)
3. Application
In principle, we measure the approximately equal m; by comparison with a standard, m.

The assumed value of the standard is in error by an unknown factor (144). The object of
the experiment is to determine 6.

If
the apparent, or measured values, are
A im i
mi=a = s = (] 4)




Substitution into the theorem (12) yields an implicit equation for é in terms of the observed 7.

In practice, there will be random measurement errors associated with each 7, These will
be treated in a later section. A more serious problem is presented by the fact that we cannot
measure the inductance per unit length of an infinite cage, but only the change with the length
of a finite cage—i.e., end effects must be considered.

4, End Effects

Consider two loops of length [, the loop planes cutting the transverse plane (fig. 4) in the
lines p;_; and p;yy.

Frcure 4

o 3 a . . 1
The mutual inductance is given by the double line integral around the two loops:

. _& ([hl (IAQ
AMi—47T §§ sz

End effects arise from the truncation of the cage at length /, and also from the couplings among
the shorting bars of length p,_; and p;y; at the cage ends. The expression for M; becomes:

T [ dwdy 1 @—p ot H =g ][ o]

__[(x—y)2+a%]-1/2}_|_2cos@iﬁ Lplﬂ{%——‘—/ﬁ—%}dudv (15)

where 7 1s the distance in the transverse plane between point % on p,_; and point » on p;y,.
Since we are considering inductance per unit length, we are interested in

_AM,; . oM, +Al 2 M
TS ol T2 o
particularly when / is large compared to the cross dimensions of the cage. We have

dr M, _
r, ol

o’dx{[(l—z)2+p%]‘1’2+[(l—x)“rﬁ-x]"”——[(l—x)“rrr?-l]‘”z

—[(l—2)*+ 2]~} +21 cos 6, f f dudv (1213 ~%2=In "1 1‘“

1 1 z

(U+PF03) (I PF)

(I4+VF2) (14 B+ 2-,)
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For large [, this is approximated by

4r OM, . ai_ 05 pitTio 1 oio1—a 2p;—1pi+1 COS 0; ‘

2
-+

T, ol =—ln 72 p? 977 12 T (pit7ioi—ot1—o0})
e o8y {T%_1+p3+pi_lm+l c0s Ot (-t |- a7
The distances in figure 4 are related by
pi+Ti1—0oi1—0i=—2p;_1pi41 COS 0;
simplifying (17) to
47 oM, o o 10;+pi_1pi+1 cos 0,-_1_1 sy g

11—m ol 1 107 I* 16
5 9 \

—04+491T1 1 4‘7%~1‘7§)'—(P;~1+P%+1)Pi—lpi+1COS 0, } (18)
J

The second derivative, 02Mi/d/?, is easily found and leads to

471' AZ\L . Jf 1(71 Pi— 1p,+1 (3080 2A] 4A[
D, AL (=)0 (19)

where a stands for the coefficient of 1/I* in eq (18).
For large Al, integration of (18) yields

o B+hltl

41*“1(12)_*‘7‘/[1'([1)7.7 I 03—10%_+_Pi—1pt+1 cos 0,

0, b=l " W T3 (19¢)
For a regular pentagon, ¢*= 72:34_2\“5 87, b=m/5,
yielding
47 OM 3++v5 1 5
s ﬁln%’ it i +‘ L. (20)

The p*/ end-effect is intolerable. Equation (19) suggests the use of an octagon, cos 6=0.
For a regular octagon,

=242, = (B342y2) (21)
vielding

g oM, L BT .,

r. ol =]n2—3 3 = p'/l (22)

with a tolerable end-effect. Errors due to irregularity of the octagon will be treated later.

5. Octagonal Cage

Since cross ratios are invariant under bilinear transformations, three points of a polygonal
cage can be chosen arbitrarily. This implies that there are 2(n-3) independent mutual in-
ductances. For the pentagon, 2(n-3)=4, providing one identity among the five mutual in-
ductances. In the case of an octagon, there are 10 independent mutual inductances, so the
8 pairs of mutually perpendicular sides are insufficient. There are, however, additional pairs
of perpendicular loops (fig. 5). Fortunately, the dotted pair and the solid pair have the same
nominal value of mutual inductance. Among the 16 mutual inductances now under considera-
tion, there are two circuit identities, leaving 14 essentially independent measurements. This
is a sufficient overdetermination of the cross ratios of the cage to yield a reasonable estimate of
the validity of the final determination of § in the presence of random errors of measurement.
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FiGure 5

For the two sets of mutual inductances per unit length, of an infinite cage, we have

2 2
m _I‘m 0;-10%
i 2 2
4 Ti-1P1
I‘ O’g 2 2
n;——"In 1;7,,7“; indices mod 8. (23)
4T PiTi+3

It does not seem feasible to express the geometric identity among the cross ratios explicitly,
as was done for the pentagon eq (12). There is, however, a useful procedure for the application
of the inherent identity, i.e., for the determination of the calibration constant, 5. We attribute
all random measurements errors to random variations of the standard, i.e., to variations in é.
This artifice simplifies the problem and at the same time yields a conservative estimate of the
reliability of the calibration of the standard inductor.

We modify eq (14) to the form

M= mf (148,)
ni=ni 1+8i4s), 1=0...7 (24)

to allow for errors in the 16 inductance determinations. If there were no experimental errors,
all 8, would be equal, and would be overdetermined by the 16 eq (24). A computer program
could be developed to assign positions to the cage wires that would make eq (24) compatible,

thus yielding both m, and 6. In the presence of errors, our best estimate of § arises from
assigning cage coordinates to minimize the variance of the resulting 4,.

1 15 5 s )
‘Pmin:S2:5%'—5;» 5:61" (25)

Cage coordinates are to be assigned to minimize s>. From eq (24), we have

1 L /m m n;— n 1 I, m,—m -
P2 i i = 1 T i i . )
B () R () R R @

2 This procedure was suggested by Dr. R. J. Arms,
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The theoretical values m;, n;, are computed from assigned cage coordinates using eq (23).
Since the m; and n; depend only upon cross ratios, and cross ratios are unaffected by bilinear
transformations, three of the cage points can be arbitrarily assigned. The other five are then
adjusted to minimize s>. When s* is minimized, the term in braces in (26) is the desired
value of 6. The measured values 7, and 7; will be essentially equal, so this term can be
approximated by

L Zm+2n,

6 A A
Zm;+2Zn;

il (27)

For displacement of cage wires from the vertices of a regular octagon, both =m, and Zn, are
at a saddle point. In fact, for displacement of any one wire in a direction making an angle ¢
with the radius from the octagon center, we have

o2 m; O m,

CDIECDE (282)
FZmi Fm |
S TG w 2 VP osZe (28D)

Thus an ignored displacement of one wire from its regular position would affect s?, but not 8,
to first order. The second order effect on & vanishes if averaged over all directions of dis-
placement.

6. End Effects

The use of a regular octagon reduces end effects to terms in 1//'. Departures from
regularity introduce end effects in 1//2. Formulas (18) and (19) in M, are converted to the
corresponding formulas in N, by the following changes:

0i—17>0;—2 Pi—>pP; 0,—¢;
0041 Pi—1>Ti—2
Ti—1>Ti+3 Pi+17>T4

where ¢, is the angle between 7,_, and 7, (fig. 6).

The computed m; and 7; used for minimizing s* eq (26) can be taken from eq (19) and its n,
equivalent, thus automatically allowing for end effects. Ignoring these end effects by using
the infinite-cage formula in the minimization would still produce only a small error.

o L
[ J i+2
Pi
[ f Il+|
6; |
o« 4/
-t
i-l i
Figure 6
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For a regular octagon, eq (21) yields a fractional error of

_3(3+2+2)

S8 In 2 s

in m;, and the corresponding formula for n, yields a fractional error of

3(3+24/2)3
- (Sﬁn-é_) P/

The resulting fractional error in =(m;+mn;) is approximately —7p*/l*, which is of the order of
1077 for p/l=0.01.
We must also investigate the error arising from the 1/I% term for a slightly irregular octagon.

For the m;, we have
€, —pPi—1Pi4+1 COS 0,-/[2 hl 2

and for the n;, ¢,=71,-7; cos ¢,/I* In 2. By eq (27), these terms lead to an erroneous 8, or
fractional error in the mutual inductance assigned to the standard, equal to €;:

:261‘:2(91‘—1 ‘ Pz‘+1+7'1—2 5 Tz‘)

% 16 16/% In 2

If points 1, 2, 3 are fixed, and the other five displaced from nominal by n,, we find

%
Efizm (295 m7+206 - Ms+Ma - MM M5— M4 Mr—N5+ Mg— N5 Ns— N5 N7— N7 Ms].

If
. 2
[n| <a, then [Ze,«lﬁm 11a?
and
|6, <2712
For

a~0.02p and p~0.017, |5,/ <1077

7. Other Errors

A bent wire, with zero average displacement, is expected to yield an error similar to that
of an ignored displacement, but of lower order. An ignored displacement affects s*(6) but not
5. This would have more effect on the reliability of calibration than on the calibration con-
stant itself. IExact analysis of the bent wire situation is difficult; the effect should be checked
experimentally by adding known perturbations to the cage.

The analysis has assumed ideal wires. Actual construction requires finite diameters.
It is well known (and easily shown) that at zero frequency, such wires are equivalent to ideal
wires. Proximity effects on the current distribution can be experimentally lumped with skin
effect, and the net effect evaluated by making measurements at various frequencies. Non-
geometrical effects, such as produced by the permeability of the wire and supports, will be
investigated in the future.

8. Conclusion

It has been shown that there is a mutual inductance analog of the Thompson-Lampard
theorem. In particular, a design is proposed wherein end effects are substantially reduced.

The mutual inductance of this design is In 2/10 xh/m.
(Paper 67B1-91)
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