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A matrix game is called completely mixed if no optimal strategy has a zero component.

J. von Neumann’s necessary and sufficient

game to be completely mixed was extended by
sufficient condition for a general matrix game to be complete lv mixed.
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separated diagonals” condition for a 2-by-2
Bohnenblust, Karlin, and Shapley to a
The present paper

gives still weaker sufficient conditions, thus facilitating recognition of a wider class of com-

pletely mixed games as such.

Special stress is put on the possibility of using row and column

permutations to transform a given matrix into one obeying the conditions.

1. Introduction

Let A=(a;;) be an m-by-n matrix with 1'*01

.., m—1 and j=0,1,. . ., n-1. We regard A as
the payoff table of a finite zero-sum two- -person game;
if Player I chooses his ith course of action and
Player II chooses his jth course of action, then the
outcome of the game is such that the rules prescribe
a payment of a;; units to Player I by Player II.
(If @;;<0, the “physical” payment would go in the
opposite direction.)

An m-component row vector X=(x,.
such that

')Jllll—])

all ;>0

:an be interpreted as a  mared strategy (1.e., a
probabilistic mixture of courses of action) for Player
I, with 2; representing the relative frequency
or probability with which he employs his 7th
course of action. Similarly, an n-component column
vector Y with nonnegative components 7, summing
to unity can be interpreted as a mixed strategy for
Player 11. The bilinear form XAY then 10p10sonts
the expected value of the payoff to Player I by
Player II, il they select the r(\spective mixed strate-
gies X and V.

A triple (»,X*Y*), where » is a number and
X* and Y* are mixed %tmtoglvs for Players I and
II respectively, is called a solution of the game if

XAY*<p<X*AY

holds for all mixed strategies X and Y. The cele-
brated minimax theorem of J. von Neumann asserts
the existence of at least one solution. The number
v is called the walue of the game; though equal to
X*AY*, it can be shown to be independent of the
particular solution. A mixed strategy is called
optimal if it appears in at least one solutlon and
it is known that a mixed strategy X* is optimal if
and only if
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m—1

Z y?”l’jzv

1=0

for 7=0,1, ...,n—1, (1)

while a mixed strategy Y* is optimal if and only if

n=1

2 aYF<v

Jj=0

e p=(0), 1l (2)

., m—1.

We will make use of the easily proved fact that if
strict inequality holds in (1) for some particular
7 and any optimal X* then y*=0 for every optimal
Y*, while il strict inequality holds in (2) for some

particular 7 and any optimal }Y* then zf=0 for

every optimal X*.
The game is called completely mized if every
g pletel; :

optimal strategy, for each player, has all its com-
ponents strictly positive. Intuitively this means
that depriving a player of one of his courses of
action would really damage him versus a rational
opponent. It is known 2 that a completely mixed
game must have a square matrix, and so m=n will
be assumed in what follows.

For 0 <k<n-1 let I, denote the k-th ([[ur/unal of
A the set of entries a;; with j—1i A

“classical” result of von Neumann ? asserts that a
2-by-2 game is completely mixed if and only if its
diagonals are separated, i.e., if there are disjoint in-
tervals /, and I, with Dyc [, and D, [,. A general-
ization was given by Bohnenblust, Karlin, and
Shapley,* who showed that an n-by-n game is com-
pletely mixed if its diagonals are both svp(u.m\d and
ordered, 1 il there are disjoint intervals in the
order
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i),

L<Li<. .o <duo (3)
such that D, I, for 0 <k <n-1. They point out,
however, that this sufficient condition is not necessary
for complete mixture even when n=3.

It can be shown (op. c¢it. in footnote 4) that a
game with payoff matrix A is completely mixed if
and only if the same is true of all games whose ma-
trices are obtainable from A by a sequence of opera-
tions each of one of the following types:

(1) Permutation of rows.

(i1) Permutation of columns.
(1) Matrix transposition.
(iv) Matrix negation.

The diagonals-separated-and-ordered condition
(briefly, the “BKS condition”) for complete mixture
may apply to one of these transforms of A but not
to A itsell, so that a priori the criterion can only be
used “fully” by testing the diagonals of each trans-
form. It is fairly obvious that actual generation of
all the transforms of A can be replaced by a more
efficient procedure, and theorem 1 of section 2 can be
viewed as the rather straightforward justification of
one such procedure, or alternatively as a determina-
tion of just how far the range of applicability of the
BKS theorem is extended by the operations (i)
through (iv).

Theorem 2 in section 3 gives a new sufficient con-
dition for complete mixture. Though strictly weak-
er than the BKS condition (entries of A in the same
diagonal are not all lumped together), it is in the
same general spirit, permitting a wider class of com-
pletely mixed games to be recognized as such “by
mspection” if this term is generously interpreted.
The ideas of section 2 are carried over to this new
context, and theorem 3 deals with the possibility of
transforming a given matrix into one obeying the
sufficient condition of theorem 2.

Theorems 1, 2, and 3 are the main results of the
paper. Three related topics are treated in section 4.
First, a sufficient condition for complete mixture ap-
parently still weaker than that of theorem 2 is given
(theorem 4), but is shown (in theorem 5) to be equiv-
alent when both conditions are aided by the transfor-
mations (i) through (iv). Second, it is shown by
example that our results are not implied by a second
sufficient condition for complete mixture due to
Bohnenblust, Karlin, and Shapley. Third, it is noted
that our criteria still fail to identify all 3 X3 com-
pletely mixed games, in part because they apply only
when each row and each column of the payoff matrix
consists of distinet entries. Two results are given
which require only “one-way” distinctness (theorem
6 for columns, theorem 7 for rows), but they do not
resolve the case n=3.

2. Testing the Applicability of the BKS
Condition

First a simplification will be made. Suppose a
sequence of operations, of the types (i) through (iv)
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listed in the introduction, leads from a matrix A to
a matrix A7 and contains exactly £ matrix transposi-
tions and exactly A" matrix negations. Both trans-
position and negation are involutions, i.e., (B")"=8B
and —(—B)=B8. Also, a row (column) permutation
followed by a transposition is equivalent to the same
permutation applied to the columns (rows) preceded
by a transposition, while any row or column permu-
tation commutes with negation. From these remarks
it follows that A’ can be obtained by applying an
appropriate sequence, consisting of row and column
permutations only, to

A for t even, N even,
—A for ¢t even, N odd,
AT for t odd, N even,
—AT for ¢t odd, N odd.

We shall therefore delete transposition and negation
from the repertoire of allowable operations; a trans-

form of A now will mean a matrix obtainable from A

by a sequence of row and/or column permutations.
If O denotes a necessary and sufficient condition that
at least one transform of A has some property, then
the statement

“Aor (—A) or A" or (—AT) satisfies

is a necessary and sufficient condition that at least
one matrix obtainable from A by all the operations
(i) through (iv) of the introduction has the property.
Next some terminology and notation will be intro-
duced. A pair of matrix entries® is called collinear if
the entries lie in the same row or the same column.
A set of m entries (in an n-by-n matrix A=(a,;)) will
be called a chord if it contains no collinear pair; the
chords of A are precisely the sets of the form
n—1}

)

S(A,ﬂ'): {ai,,.-(i): 7::0,1, . .y

where 7 is a permutation of {0,1,. . . ,n—1}, de-

termined uniquely by the chord. For example, the

diagonals of A are the sets
D (A)=S(A4,5,)

fh=(),11,, - n—1

*

associated with the “diagonal permutations” 6,
defined by

6: (1) =1+k
Suppose A’=(a;;) is obtained from A=(a,;) by

a row permutation ¢ and a column permutation 7, so
that a,;=a,u). ;. Setting t=c(7) leads to

(mod n).

’ =
@, (i) =W, re1 1) €S (A, 7m0 7Y,
and it is easily shown by such reasoning that

S(A,7m)=SA’, T wa7Y) (4)

5To avoid cumbersome notation, we occasionally slur the distinction between
a matrix entry ai; and its position (7, j); this should cause no confusion.



for any permutation z. If A" is obtained from A by
a sequence consisting of row permutations oy,0s, . . . ,
s, and column permutations 7,7, , T €ach
listed in their order of appearance in the sequence,
then eq (4) still holds with the definitions®
0=0,02 T p, =15 Tq-

This fact will be used in the following proof.

TarOREM 1: Some transform of A has separated and
ordered diagonals, if and only if

(1) the sets Sg={a,: kn<r<(k+1)n} determined by
an enumeration {a,: 0<r<n*} of the entries of A in
nondecreasing order are independent of the particular
enumeration,’

(i1) each Sy 1s a chord, and thus determines a
permutation m such that Sg=S(A,my), and

(i) memy'=(mm")* for k=0,1, . .. n—1.

The necessity of the conditions will be proved first.
Suppose A’ is a transform of A which has separated
and ordered diagonals. The set of entries of A’
(multiplicities included) is the same as for A, so that

Sy=D;(A4") for k=0, 1, . . ., n—1.
This shows that the sets S, are unambiguously
defined. Since row and column permutations pre-
serve collinearity of pairs and therefore map only
(hOIdS nto ¢ holdq, and since 1,(A") 1s a c hord of A”,
its “pretransform” S, must be a chord of A. l‘hus
only the necessity of (iii) remains to be verified.

Since A’ 1s a transform of A, there are permutations
o and 7 such that eq (4) holds for all 7. In particular,
because

S(A, 1) =8Sy=Dy(A")=8S(4’, 5,),
it follows that
y=1mp0} for k(=0,1, . . ., n—1. (5)

Since 6, 1s the identity permutation,
vields o=7m), and therefore implies

this equation

Tkﬂb-lzT_lakT:(T_lalT)k fOI‘ ICIO, 1, o n—1
so that (111) holds.

For the sufficiency proof, suppose the conditions
hold. Define a mapping ="' of {0,1, ..., n—1} into
itself by

7 (k) =mmy " (0) = (mmg ) (0).
To see that 77! is a permutation (so that r is well-
defined), it suffices to observe that by their definitions
m; and m, for 15k, can agree for no value of the
“independent variable” (i.e., S; and S; are disjoint)

6 Our convention is that the factors in a product of permutations operate in
right-to-left order. If p=0 we take o to be the identity permutation; if =0 we
take 7 to be the identity permutation.

7 I e., the smallest element of Sk+ strictly exceeds the largest element of Sk, for
le= . ., n—1. This is certainly true if all entries of A are distinct, but is
dlso truc (for example) if A has n distinct elements, each appearing in n posmons
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and thus not at =,'(0). Now define e=rm,. Then
by (iii)
—r(mm)r,

7'7rk¢f1 = 'r(m,m,"')r_l

so that
) =1(mmy ) (1) H(0)
= (mmy ) H(0)=i+k=6.(1)

TR0 (2) = 7(mmy )T

(mod 7).

(6)
Thus eq (5) holds, and so the transform of A by row
permutation ¢ . and column permutation 7 has

separated and ordered diagonals.

From the first paragraph of section 2 it would seem
appropriate to apply the criterion of theorem 1 to
all four of the matrices + A4, + A", Fortunately
this is unnecessary; the criterion can be applied to A
alone without loss of information. That is, the four
matrices all obey the criterion if and only if any one
of them does. In checking this assertion, the
equivalence of the criterion for A and (—A”) follows

by “composition” [rom its equivalence for A and
A" and for A and A).  Since matrix negation

and transposition are involutions, it suffices to prove
that if A obeys the three conditions of theorem 1,
then the same is true of (—A) and A”. The routine
but tedious verification is omitted.

We conclude this section with some examples
[

4 1
b o o

Here Sy={—1,0,1} and S,={5,6,7} are not chords,
so that condition (i1) fails and the BKS theorem
(aided by operations (i) through (iv) of the intro-
duction) does not identify A, as the payoff matrix
of a completely mixed game.

FErample 1. 6

4‘11: *1

FErample 2. [’ 4 —3 —2
A=} —3 4 —2
L 0 0 1

Here condition (i) fails, for either appearance of

(—2) could be assigned to S, and the other to S
(see footnote 7); again the BKS theorem is inappli-
cable.

Frample 3 2 0 2 1
2 3 1 0
4‘/13 =
0 1 3 2
1 2 0 3



Here conditions (i) and (ii) are satisfied; S, consists
of four appearances of £. We lepresent a permuta-
tion by writing each value of its “independent
variable” above the corresponding value of the
“dependent variable.”” Thus

<O 1 2 3) <O 1 2 3

T)— W= >

1 3 0 2 3 1 0

0o 1 2 3 0 2 3
= >

2 0 3 1 0 1 23

We leave it to the reader to verify that all three
conditions of theorem 1 are satlsﬁed and that using
the column permutation 7 defined b\‘

0 1 2 3
T
0 1 3 2

and the row permutation

0 1 % 3
oC=Tmy— s
1 2 0 3

as in the sufficiency proof of theorem 1, leads to

o

=

Tio=—

0 1 2 3

3 0 1 2
A=

)

o

3 0 1
1 2 3 0

a transform of A with separated and ordered
diagonals.

3. Extensions of the BKS theorem

The previous section was essentially combina-
torial; the present one, in contrast, has some specifi-
cally Q,dme _theoretic content. We begin with the
following simple generalization of the BKS theorem : ®

TrroreM 2: The game with n-by-n matriz A s
completely mived if there erist integers p,q,r,s with
sum relatively prime to n, such that

(a) ay<lay ., whenever j—i#q (mod n),
(b) ay>ayr,; whenever i—j#s (mod n).

Before proving this result, we observe that it
implies the BKS theorem; if A has separated and
ordered diagonals, then theorem 2 applies with
==l qﬁn—l, and s=0. Theorem 2 is strictly
stronger than the BK\ theorem, for it applies (also
with p=r=1, g=n—1, and sk()) to show that the
matrix A; of exumpl(‘ 1 represents a completely

¢ In what follows, appropriate numbers should be read modulo 7.

mixed game, a fact which the BKS theorem (even
aided by row and column, permutations, matrix
transposition, and negation) could not reveal, as was
demonstrated in section 2.

For the proof, suppose that some component z} of
an optimal strategy X* vanished. We will show
that this implies

Tt ptatris=0. )
The same argument can then be applied with
k-+p+q-+r+s replacing k.  Repetition of the argu-
ment, together with the hypothesis on p+4q¢-+r-+s,
shows that all components of X* vanish, which is
absurd since these components must sum to unity.
Thus no component of any optimal X* can vanish;
a similar analysis applies for optimal Y*, and so the
game is completely mixed.

To prove eq (7), first use (1) and the optimality
of X* to write

n—1

i
* - e
v SZ{) Ti;, k+q—§ L5 A, f+q-
1= 17K

By hypothesis (a) of the theorem we have a, 4,
< @; i prq Tor each term in the last sum, and at
least one of the ¥ in this sum is positive (they are
all nonnegative). Therelore

=l
y k S *
v <5__;C xia,, k+p+q—zé Li, it p+a-
i i=

By the remark immediately following (1) and (2),

Yk+ e, vanishes for every optimal Y* so that by (2)
n—1
2 P *
v Z_Z Citptats H5= D23 Gptprats,i¥i-
j=0 #ik+p+iq
By hypothesis (b) of the theorem we have
Wt pigts, Wt pi g r+s, 7 TOr each term in the last sum,

and at least one of the y¥ in this sum is positive

(they are all nonnegative). Therefore
n—1
*k k
v> D Okiprotris Y] *Z Qp+p+a+r+s. 795
JEk+pta =)

which inplies eq (7) by the comment following (1)
and (2). This completes the proof of the theorem.

To derive full benefit from theorem 2, we should
determine its range of applicability when aided by
the four operations listed in the introduction. These
aims are accomplished in the next theorem, which
is related to theorem 2 as theorem 1 is related to
the BKS theorem. First two lemmas will be given.

Lemma 1. Suppose that each row and each column
of A has a unique minimum entry, that the row minima

form a chord, and that the column minima form a

chord.  Then the row and column minima coincide.
For the proof, suppose for example that a;q,,;q is
a row minimum but not a column minimum. Let
Wiy, With 2(1)#%(0), be the minimum of column
7(0). It is mot the minimum of row i(1), since
column 7(0) contains only one row minimum (the
one in row 2(0)). Let a;qy,;a), with 7(1)55(0), be



the minimum of row #(1). It is not the minimum
of column 7(1), ete. Continuing similarly, we obtain
an infinite sequence of entries of A, which is strictly
decreasing and therefore nonrepeating. Since this
is impossible, every row minimum @;q),;0 must
also be a column minimum.

Lemma 2. Suppose that each line® of A has distinet
entries, so that the sets Ry of k-th smallest row en-
tries' and Cy of k-th smallest column entries are
uniquely defined for 0 <k<n. [f each Ry and each
Cy 1s a chord, then Ry=Cy for all k.

For, Ry=C} by lemma 1. Now replace all entries
in f,=C;, by numbers greater than any other entries

of A. The result is a matrix A* for which (with
an  obvious mnotation) R (A*)=R,(A) and

O (A*)=C(A) for 1<k<n-1, while R, ;(4*)=
(,_1(A*) consists of the new entries. By lemma 1,

Ry(A) =Ry(A%) =Cy(A%) =C1(4),

and the argument can be repeated until the proof is
complete.

TuroreMm 3: Some transform of A obeys the condi-
tions of theorem 2, if and only if

(1) the sets Ry and Cy are well-defined for 0 <k<n,

(i1) each Ry and each Cy is a chord, so that a unique
permutation py 1s defined by Re=S(A,py), and

(1i1) prpo ' = (p1po )" for 0 <k<n.

[f all the m of theorem 1 exist, then clearly m, = p;.
Thus the real distinction between theorems 1 and 3
lies in conditions (i) and (ii), and the illustration just
after the statement of theorem 2 was a “typical” one.

The necessity of the three conditions will be
proved first.! Suppose transform A’=(a/) of A
obeys (a) and (b) of theorem 2. It will be shown
initially that this implies, for each 7 and 7,

Girtre” Btytrg—p- - » + = Blytaq—m—13m; (8)
(L;'+-V;j<a;'+v\'*rd< o O T <(I'J,'+-\'f(71—1)r;]‘; (9)
only (8) need be discussed in detail. By (a) it

follows that only a;;+, can be a largest entry of
the ith row of A”. 1If p is relatively prime to =,
then (8) follows readily from (a). If on the other
hand there is a least residue k, with 1 <k<m, such
that n divides kp, then a contradiction is obtained '
by choosing ;7 different from i+¢—vp for 0<v<lk
and using (a) of theorem 2 to write

Ui . o o o C g =

Thus (8) is proved.

By (8) and (9), each row and column of A’ (and
thus of A) has all its entries distinet; condition (i)
has been verified. By the nature of row and column
permutations, A will satisfy condition (i1) if A’ does.

9 A line of a matrix is either a row or a column.

10 Ry consists of the smallest entry of the top row of A4, the smallest entry of
the next row, ete. FR; consists of the next-to-smallest entry of the top row, the
next-to-smallest entry of the next row, ete.

11 In the necessity proof, the fact that p+g¢-+r+s is relatively prime to » is not
used. This fact is actually a consequence of conditions (a) and (b) of theorem
2, which also (see eq (10)) imply that p=r and that p+4g¢-+s is divisible by n.

12 The assumption n>1 is tacit throughout.
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Now the kth smallest entry in the ith row of A’ is
@5, i4q—m—1-py; il some Ry were not a chord we would
have
1+q—m—1—k)p=t+q—(n—1—k)p (mod n)

for distinct residues 7 and ¢, which is impossible.
Similarly each € is a chord. Thus only the neces-
sity of (ii1) remains to be justified.

There exist permutations ¢ and 7 such that eq (4)
holds for all permutations «. In particular, by

lemma 2,
Ri:=8(4,0:) =S(A’,7pra7 "),

Cy=8(4,01) =S(A’,7p107%).
Displays (8) and (9) show that
By=8(A4",6,(0(n-k-1yp) ) =8(A4",5,(8,)*™),
Cr=8(A4",(8,)716xr) =S(A",(8,)77(8,)"),
so that we have

Tpko'_l: 6a(61))k+1_v7—pkofl - (5-\')_1 (6’)k

for k=0, 1, L,n—1. (10)
Setting £=0 1n the first of these equations yields

o= (8,4,) 7Py, s0 that (10) yields
pipo” = (7718,7)"

and condition (iii) is satisfied.

For the sufficiency proof, suppose the three condi-
tions hold. As in the proof of theorem 1, we define
a mapping 7! of {0,1, .mn—1} into itself by

7! (k) :PI\-P()_1 (()) - (PlPOﬁl)k(O);

and observe that 77! is a permutation so that 7 is
well-defined.  We have

8r(1) =1(p1po™")*T(0) =1 (prpo ") 7' (1)

so that 6,=7(pw0o ") !; equivalently pips '=7"16,7.
On defining o= (8;) '7p,, we find that the first of eqs
(10) holds with p=1 and ¢=0. By setting r=1
and s=n—1 we also satisfy the second of eq (10),
so that conditions (a) and (b) of theorem 2 hold for
the transform of A under row permutation ¢ and
column permutation 7. Since

ptgtr+s=n+1

1

is relatively prime to n, the proof is complete.

Two comments are in order. First, the last
paragraph shows that some transform of A obeys
theorem 2 for some (p,q,r,s) if and only if at least one
transform does so with p=r=1, ¢=0, s=n—1.
Second, there is no need to apply the criterion of
theorem 3 to (—A) and 4+ A" as well as A, the situa-
tion is just like the one mentioned directly after the
proofl of theorem 1.



4. Related Results

The proof of theorem 2 will obviously remain valid
if p,q,r, and s are permitted to vary with ¢ and j in
appropriate ways. This leads to the sufficient
condition for complete mixture contained in the
following theorem.

THEOREM 4: Let p, q, v and s be permutations of
1,

{0,1, ... n—1} and consider a game with n-by-n
matriz A such that

(a) ayy<laypg)
(b) ay<arm s

whenever ] # (1),

whenever 17#s(]).

If rspq is a cyclic permutation then no optimal X*
has a zero component, while if pqrs is eyelic then no
optimal Y * has a zero component.

The proof is so like that of theorem 2 that it can
be omitted; ¢ and s must be permutations (and not
merely mappings of {0, 1 ., n—1} into itself)
to permit the same to be true of rspq or pgrs.

One would expect the criterion of theorem 4
(aided by the four operations listed in the introduc-
tion) to be more powerful than that of theorem 2
(similarly aided). In particular, it would seem
possible that some transform of A (and thus A
itsell) could be proved to have no zero component
in any optimal X* by means of this criterion, and
some other transform of A (and thus A itself) proved
to have no zero component in any optimal Y*,
All these hopes are dashed by the following result.

TrrOrREM 5: Some transform of A obeys (a) and (b)
of theorem / for some p,q,r,s if and only if some trans-
Jorm of A obeys the condition of theorem 2.

The correctness in the “if”” direction is trivial,
since theorem 2 is the special case of theorem 4 in
which the relevant permutations are diagonal. So
we need only assume that some transform A’=
(a;;) of A obeys (a) and (b) of theorem 4, and deduce
that A obeys the three conditions of theorem 3.

Condition (a) implies that only ¢(i) can be left
fixed by p; since ¢(0)#q(1), no symbol is left fixed
by p. Therefore, since by (a) no element of the
ith row of A’ except a; ,;, can be the row’s largest
entry, we see that the sequence of subscripts

(i, i4q),

(7.,i‘|"1_1))) S <{Ji+q_(n“1)]’)

in (8) now becomes

(t,q@), @ p7lg@), . .. (G p~"Pg@). (11)
If ¢ and 7 are the row and column permutations
leading from A to A’, then we find that all p, are
well-defined with

for k=0, 1,

Tpro 1= pktiong i

13 'I‘(he)detailml argument used earlier to justify (8) is easily generalized to sup-
port (11).
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in analogy with the first part of (10). From this
it follows that condition (ii1) of theorem 3 is obeyed.

Similarly, using (b) and the appropriate generali-
zation of (9), we find that the ()’s are well-defined
chords, so that (i) and (i) of theorem 3 holds and the
proof is complete.

Bohnenblust, Karlin, and Shapley (op. cit., foot-
note 4) give a second sufficient condition for complete
mixture, that of “main diagonal separated and
dominant.” To state it precisely, let up=pu(A)
denote the largest of the entries of A off the main
diagonal; then the condition consists of

Wy >

and either of the situations

for 1=0,1, n—1 (12)

n—1

2 Qg >nu

1=0

for j=0,1,...,n—1,

sl

>0 Wiy >np

j=o0

for 1=0,1,...,n—1.

[t is interesting to note that the matrix A; of example
1, which defied the BKS condition extended by
theorem 1 but which yielded to our theorem 2,
would also prove intractible to this condition. For
S, and S, are not chords of A, (see the discussion of
example 1), whereas it is easily shown that S, or
S,—1 must be a chord if some transform of any of
n-by-n A4, + A" 1s to obey (12).

It is natural to ask whether theorems 2 and 3 are
sufficiently stronger than the BKS theorem to
achieve identification of all completely mixed 3-by-3
games. This is unfortunately not the case; the
completely mixed game whose payoff matrix is the
A, of example 2, cited as a “maverick’” by Bohnen-
blust, Karlin, and Shapley (op. ¢it.), is not tamed by
our results. To see this, note that A, (and therefore
— A, and + A as well) fails to satisly condition (i)
of theorem 3.

A slight twist in the proofl of theorem 2 leads to
sharper analogs of theorems 2 and 4; for brevity,
only the latter will be given (the former is obtained
by specializing the relevant permutations to be
diagonal).

D)

&

THEOREM 6: Let p, , v and s be permutations of
{0,1, n—1} and consider a game with n-by-n
matriz A such that

(a) ay<ay,q whenever ] # (1),
(@")  arp iy, 1<arapa), o) Jor all j,
(b) ay>a.q.; whenever 17#s(j).

If rspq is a cyelic permutation, then no optimal X*
has @ zero component.
TaEOREM 7: Let p, q, v and s be permutations of

{0,1, . n—1} and consider a game with n-by-n
matriz A such that



(a)  a<<ay ) whenever j#q(1),
(b) ay>aca,; whenever 17#s(j),
(b’) a1 paray > 8y, parcty Sor all i.

If pqrs is a cyclic permutation, then no optimal Y*
has a zero component.

Only theorem 6 need be proved. In view of the
hypothesis on rspg, it suffices to prove that if
=0 for some optimal X* then z¥*.,,4 =0 as well.
By (1) and the optimality of X* we have

n—1
‘i — K
v< ; i, q(k)—_; L3, o)+
1= 17=K

In the right hand expression, all 2% are nonnegative
and we have @i g0 <Ws pxy for each term, with
strict inequality for 7—rqu(k) (which 1s plesont
since rspg does not leave £ fixed). Thus, wunless
¥ e =0 (Le., if ¥, .m>0), we have

=
ria;, zJaIA)*S LI, pawr

l<

and the rest of the proof is as for theorem 2, leading
to the conclusion z7%, ) =0.

Condition (b) of theorem 6 implies that each
column of A has distinet entries, while condition
(a) of theorem 7 implies that each row has distinet
entries. Thus the matrix A, eludes these theorems
(even when aided by the four operations). It
remains unclear whether all 3-by-3 completely mixed
games can be characterized along the lines pursued
above.

29

indebted to K. Goldberg

Addendum. 1 am
(NBS Numerical Analysis Section) for the 10110\&1110
observations.

If A is nonsingular, »#0, and all row and column
sums of A~! are nonzero and have the same sign,
then the game is completely mixed.!"* This covers
examples A1 and A, of section 2; it 1s not an “‘in-

spection”” method since a matrix inversion is required.

For n=3, however, an ‘“inspective’” formulation
can be given; if
(‘11 by Cl]
A= Cy Uy b-g
by ¢ an

then what is required is that all 2-by-2 principal

minors of

bl—cl C1—Qy (111_[)11 fc'_)_bg ba_(ll a1—0Cs
az‘_bg bg_CQ Co— sy and Ay—C3 Cg—bl bl—(lg
C3— 3 (lg—ba b3‘*‘CaJ ng’—‘(l;; A3—Cq Cl—b2

have the same (strict) sign.

14 K. Goldberg, Random notes on matrices, J. Research NBS 60 (1958) R P2850.
Theorem 2 of that paper also can apply to the individual players.

(Paper 67B1-90)
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