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This paper con id ers the resolu t ion limits of those a nalyzers a nd oscill ator.v systems 
whose p e rformance may be r epresented by a seco nd-order d ifferent ial equation . The 
" signal un certain ty" prod uct D.j.D.t is shown to be cont rolled by t he ability of a system t o 
indicate cha nges in e ne l'gy co ntent . The discussion refers the fun ctio ning of the system to 
a signal space whose coo rdin aks arc energy, frequ ency, a nd time. In t his s ignal space, 
the product of t he r esolution lilli its, U = (D.EIEo) (D.flfo) (D.tIT o) is t he volum e of a r egion 
within which no change of state in the system may be observed. Whereas the area cle ment 
D. j.6t is freely defo rm a ble, no operat ions upon either tJ.f or tJ.t can furth er the redu ction of 
the energy r esolu tion li mit . Thus U is ir red ucibly fix ed by the limit ing value of tJ.EIEo_ 
By consid erin g the e ffects of noise upon D.EIEo, a nd t hu s upon U, the paper demonstrates 
t he r ise of s t at ist ical featurps as s ignal- to-noise ratios dec rease. 

Functional relationsh ips derh ed from tJ.EI Eo a nd U are tab ul ated. These equat ions 
fac ili tate co mpu tation of t he limits of observable cha nges of state in a systPIl1 , and t hey 
provide g uid a nce [or tlle dcs ign of exp eri ments to a pportio n th e un cc rta in tics of meas urement 
of transient phe nomena as advantageous ly as poss ible. A reference bibliography a nd 
a ppendices giv in g som ewhat detai led p roofs a re in cluded . 

The b asis of this paper is t he consideration that 
t he indication of most in sLrumcoLs lIsed in measure
ment represents either the torage of energy or t he 
flow ,of power. The least changes that t he instru
ments can indicate, therefore, are con Lrol1ed by th e 
s nlallest discernible change in energy storage or 
power flow. 

The subj ect of the r esolution limi ts of measming 
instruments in terms of the least amo un ts or rre
qu ency change and t he least time in terval in which 
a change may be detected have been treaLed by 
severa.l authors , amo ng whom one may cite as 
examples Gabor, Kharkevich, and Brillouin- and, 
while this paper was being revised, Pimonow. 1 The 
pres en t au thor has also discussed this relationship 
for scanning analyzers, and indi cated that there 
were circumstances in which limitations were intro
du ced by the presence of a least discernible incre
ment or power or en ergy. 2 These pa.pers (ref. 2) 
are quoted, in addition to the prior work, by 
Pimono\v. 

Gabor pointed out, by analogy to quantwll theory, 
that there was a "quantum" of information that 
could be described by the product of differentials 
representing the least discriminable increm ent of 
frequency that could be observed in an increment of 
time. This relation arose from the applica,tion of 
the Fomier transform to relate an increment of time 
to its corresponding increment in the frequency 
domain. The product 

was defin ed by Gabor as the "Logon." T he fact 
t hat, as he says, the product is "of the order of 

unity" is a consequence of the particubr normaliza
tion he used in co mputing Lb e F ourier Lransform 
for Ga,ussian pulses. A sillJiirl,f relation wa,s presented 
by Brillouin, bu t a,s he eompu ted t::,.t in terms of the 
half-powers of brief, symmetrical pulses, he found 
a somewha,t different normalizittion fa,ctor , and 
obtainod 

1 t::,. f. t::,.t=_· 
. 47f 

Kharkevich adopLed a so mewhat more general 
expression for this equation, also in terms of a 
normalized F ourier transform, by first wr iLing 

and computing A for pulses of various forms. H e 
remarked that A might differ if other criteri a were 
chosen, but related A only to the form of the signal. 
Further, he pointed out that A is independent of the, 
dam ping of the system. 

The studies by Gabor. Kharkevich , and Brillouin 
were all carried out for essentially noiseless systems. 
This p aper , on the other hand, does not normalize 
for unit energy, but considers the energy storage 
and dissipation in systems whose perform ance may 
be described by a linear differential eq uation of the 
second order. Thus, by dealing with the energy 
stored as well as with the time and frequency we are 
able to study the response of a system to signals 
other than variously shaped pulses of unit energy, 
and to signals in noise as well as to noiseless systems. 

1 D. O"bor, 'I'hcory of com mu nicat ion , J . 1nst., E lcc. E ng. 93, Part III (1946), r- 429-457; A. . A. Khar kc vich , Spcctra and A.nalysis, T ranslated and published by 

vVe can also consider , in this way, the case which 
bas been omitted from the previous work: the 
response of the system 'which may in itself have a 
"least count" 3 or inherent internal noise. I Consultants Bureau. New York (1960); L. Il r illou in , Science and In form ation. 

;> 'I'11cory, 2d ed it ion , puhlished by th e Academic Press, New York (1962); L . 

l 
Pimonow. Vibrations (' 11 R~gimo 'J' ransitolrc, DUllod, P aris (1962) . (1' his book 
has a very extensive bibliograph y.) 

' L imitations on rap id s ign a l ana lYSiS, J . Wash . Acad. Sci. 45, 359-360 (1 955); 
1' ransienls in s ignal a nalYSiS , J. Wash. Acad. Sci. 46, 305-307 (1956); F niform 
transient crror , J . R esearch N BS 61 , 25-30 (1958) RP2879. 

3 The term Hleast count" is chosen here by a nalogy to a term descri bing the 
li rl1itation in a metering systmn: Lhe leas t incremen t that can be read 011 Lhe 
111eter. 
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We introduce the means for taking into account 
the presence of noise with a signal, internal noise in 
an analyzer, or the least discernible indication of 
the analyzer (which may be a step limitation-such 
as a digital step, or a reading limit) by discussing 
the lirilits of the analyzer's performance as being 
fixed by the least change in energy storage, f),.E, that 
can be resolved under the circumstances of analysis. 
Several conditons may combine to fix the value of 
f),.E. For example, an analyzer having appreciable 
self-noise may be used to detect a signal in noise. 
As a rule, the internal and external noise sources in 
that case would be incoherent, and the sum of the 
noise energies stored in the analyzer from those 
sources would fix the value of f),.E. 

The system for which this discussion is carried 
out is a system whose working may be described by 
a linear differential equation of the second order. 
This behavior is common to many physical systems 
occurring in nature, and to many instruments used 
to observe natural phenomena. All of these systems 
share the same properties, because they are properties 
inherent in the differential equation that describes 
them . By vir tue of the second-order term, they 
may be seen to be capable of storing oscillatory 
energy reversibly. They will respond with a sinu
soidal ou tput after excitation by shock or noise. 
Under sinusoidal excitation, t hey will respond 
selectively to excitation of various frequencies. 

Systems to be discussed in this paper ar e those in 
which the storage of energy occurs in the coordin ates 
describing the system: these systems are described 
by a second-ord er differential equation with constant 
coefficients; i .e., the system parameters are not 
affected by the energy storage process. By invoking 
th e Bol tzmann-Ehrenfest adiabatic principle,4 it is 
also possible to apply many of these equations to 
systems in which energy is stored by a change of 
parameters. However, this matter has not been 
in vestigated in detail. 

Al though most of the systems to which the second
order differential equation is applicable take par t in 
time-varying phenomena, there is nothing inherent 
that restricts the equation to functions of t ime. 
Certain spatial distributions also may be described 
by the equation- such as the magnetization on 
magnetic tape, some types of optical images, and 
some diffraction effects. Thus, al though this paper 
will deal with application of the equation to time
varying phenomena, its conclusions are also appli
cable, with a judicious choice of variables, to spatial 
distributions. 

For the sake of a coherent structure upon which to 
base this paper, we choose a mechanical system of 
inertia, lvI, dissipation (proportional to velocity) D, 
and coefficient of restitution, le. This system has a 
single degree of freedom, along the coordin ate x, and 
its force-free behavior is given by solutions of the 
homogeneous equation: 

Mi + D:t+ lcx= O . 
• M. Greenspan, Simple derivation of the Boltzma,!-,,-Ehrenfest. ad iabati c 

principle, J. Acoust. Soc. Am. 27, 34-35 (1955). 'I'lle adIabatIC prmclple states 
that for a system excited by a change in parameters, the ratio of energy content 
to resonant frequency is a constant. 

When energy is stored in the system, it is dissi
pated at a mean rate which bears a constant rela
tionship to the amount of energy stored. This 
constant is a function of the parameters of the system. 
In terms of dissipation , the constant is frequently 
expressed by the relative damping, ,,(, the ratio of 
the damping of the system to the critical damping 
for no oscillation. A reciprocal quantity, the "figure 
of merit," Q, is commonly used in communication 
problems. These two constants are related through 
the equation: 

1 
"(=- . 

2Q 

Because we are more concerned here with storage 
than with dissipation, the quantity Q will be used in 
the discussion. 

The conventional defmition for Q applies when the 
system is driven at its resonance frequency; at other 
frequencies the ratio of the storage of energy to the 
rate of dissipation depends upon the driving fre
quency. When the system is free of excitation, the 
conventional definition of Q again applies. This 
value of Q will b e denoted as Qo, to distinguish it 
from the more general definition of Q to be applied 
in the appendix. D efining as the natural frequency 
of the system the quantity fo, which is the natural 
frequency of the system in the absence of damping, 

and 

P eak energy stored at the natural frequency 
Qo Energy dissipated per cycle at the natural period 

In terms of the parameters of the system, this defini
tion of Qo is equivalent to the ratio: 

The differential equations for the transient and 
driven response of the system can be expressed in 
terms of Qo, D, and f o. For the force-free equation: 

and, for the driven response of the system to a 
sinusoidal force of amplitUde A and frequency f: 

x :t +2 .-r _ A 121r[t 
2'Trfo + Qo 7f'JOX- QoD e . 

Letting the ratio of the driving frequency to the 
natural undamped frequency be represented by 

cf>=f/Jo 

we can wl'ite down the phase l'elation between the 
driving force and the resulting motion . The phase 
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angle, e, when the stead y-s ta te condition has b een 
atta ined is given by 

and th o energy s tored in the steady-s tate condi tion 
given by : 

A 2 Qo 1 
E s= 2D . 27rjo . Q6(1-<I>2)2+cli 

The application of the Fourier transform can b e 
cons id ered to be tantamount to r eferrin g the b ehavior 
of the sys tem to one or the other of two mutually 
perpend icular planes: The steady-sta te condi tion is 
described by the representation of the sta te of the 
system in the en ergy versus fr equency pla ne and it 
of n ecessity deals with the sten,dy s ta te beotUse the 
vari able, tim e, is no t inl'olved . The tr ansien t 
behavior of the sys tem is r epresented in the energy 
versus time plan e. lL is easier to unders tand that 
this is ortllOgon al to the frequ en cy r epresenta tion if 
we omit the normalillation often used , of choosing the 
unit oJ tim e in terms of th e natural period of the 
sys tem. Ne verth eless, i t is more convenient to 
express tb e beha viOl" of a system in terms r ela ti ,-e to 
i ts natuml parameters, and for the sttke of simplicity 
of equa tions, mu ch of th e discussion will be r elated 
to the n atural properties of the sys tem. 

Three properties sene to specify th e b eh avior of 
an an alYller described by a second-order differ ential 
equ ation : i ts undamped na tural frequen cy, fo, its 
fi gure of m erit, Qo, and its " leas t coun t," f:.E, the 
least en ergy chan ge that can b e r esolved by the 
system . Th e ch an ge in energy con ten t of the sys
tem m ay b e thou ght of as taking place wi thin Lhe 
signal spfLce bounded by th e energy-time and en ergy
frequen cy planes, and the represen tfL tion of the 
b eh avior of the system as a fun ction of time or of 
fr equ en cy m ay b e considered as proj ections upon th e 
principal planes . Sin ce the ac tu al use of th e system 
as an analyzer is n ever wholly steady-state or com
pletely broadband, th e actual process of an alysis m ay 
be con sidered as t aking place in some plan e within 
Lh e s ig nal space bounded by the principal planes. 
D epending upon the information sough t, the plane 
of the analyzer will b e close to one or th e oth er of 
th e principal planes. 

Ordin arily, an analyzer indicates a running time 
l1yerage over the en ergy, E s, stored in it. For steady
state signals the indication becomes propor tional to 
th e inpu t power ; for signals of very brief duration 
the an alyzer responds ballistically and thus gives an 
ind irecL indica tion of energy. The limit of resolu tion 
is fixed by Lhe least change in energy storage, !J.E, 
that can be r esol,'ed under the circumstances of 
analysis. In this discussion we shall b e dealing wi th 
in cr em en tal ratios. As the diil'er en tial will always be 
considered join tly with the to tal en ergy stored over 
Lhe sam e t im e interval, i t will b e possible in general 
to discuss ratios of in cremen Lal pmver, f:. TV, to input 
p ower, vVo, or in cremen tal energy, !J.E, to energy 
stored , E" in terchangeably. 

As a function of time, the building up and decay of 
the energy stored wi thin th e system are exponential 
processes. Therefore it proves con venien t to d escribe 
th e b ehavior of th e system in term s of an exponential 
variable. Thus, to express th e changes in energy 
storage, we choose an expon enLinl coefficient, a. 
The energy resolu tion limi t, f:.E /Eo, may b e expressed 
in terms of a through th e followin g definition: If th e 
initial amount of energy stored in the an alyzer is 
Eo, and th e minimum ch ange of energy that can be 
discerned is f:.E, then in terms of the ex ponential 
variable a the equivalent sta tem en t is that th e energy 
content must decrease to an amoun t (e - a ) Limes i ts 
original value for the change to be at least equ al to 
the minimum change discernible. E xpressed as an 
equa tion, this limit. is given by f:.E= ( l - e- a)Eo for 
energy, and in the m any cases in which we are dealing 
with en ergy flow through the syst em , al ternatively 
as !J. W = (l-e- a ) Wo for power. From th e definiLion 
of a in terms of f:.E and Eo, i t is eviden t that: 

a= - In (1- f:.E ) . 
Eo 

Howel'er , i t is no t alon g the Lime axis alone that a 
pro yes such a con venien t fun ction . B ecause of th e 
close r elation between expon en tial and angle hm c
tion s, it also yields simple equ a tion s fo1' the beh avior 
of the system as a fun ction of frequ ency. For th e 
foregoing reasons, we sh all describe the mann er in 
which the independen t varia ble, th e energy increm en t 
f:.E, influ en ces the r esolution limit s in fr equency and 
time in term s of Lh e varia ble 0', and we will then 
r eturn to consideration of what the equations de
scribing th ese r esolu tion limi ts m ean in terms of f:.E. 
W e will also discuss special typ es of noise conditions 
th a t m ay give rise to the irreducible in crem ent that 
f:.E r epresen ts. 

The eondi tions under whi ch 0' seLs the resolu t ion 
limi t along the time axis arc derived from considering 
th e system to contain an amoun t of energy Eo at 
time t = O, and at that in s tan t and for some time 
subsequent t o that , to be free of any driving force. 
The r esolution limi t ftlong the time axis is fixed by 
th e least time in ter val, f:. t, during which tIl e sys tem 
is capable of ch anging its energy storage by the factor, 
e- a • This corresponds to dissipating a t least th e 
discernible energy increment, f:.E, during the time 
f:.t . The r esolution limit sta t ed in terms of the 
natural period of the sys tem , To, is thu s given by 
f:.t jTo. 

When a system of this sort is used as an a nalyzer, 
th e t ime in ten Tal over which the observa Lion tak es 
place must b e of sufficien t length for some ch ange to 
b e indica ted . Thus the obsernLtion inter val , f:.T, 
must equal or exceed the least time in ter val f:.t. 
(In the previous papers citecl in r efer ence 2, the 
observation in terval f:.T was u ed in place of the 
least time in cremen t f:.t. Use o( the least time 
increment converts several pre \"iously found in
equali ties to equ ations.) 

It is a very close approxim ation (sec appendix 1) 
to consider only th e expon en tial factor in th e decay 
of energy in the sys tem . The oscillatory terms 
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arising from the sinusoidal nature of the dissipation 
process are always relatively minor. Thus, regard
less of the precise initial conditions, 

:: 1(t=4t)=e-a~exp (-~:.~) 
an~, therefore, the resolution limit along the time 
aXIS, expressed in terms of the natural undamped 
period of the system is 

!J.t aQo 
To ~Z:;;:-' 

From this equation one can see that the ratio of 
a to !J.t is twice the real coordinate of the poles of 
the system on a Nyquist diagram. 

The system is selective with respect to the sinu
soidal frequency of the driving force which acts as a 
source for the energy it stores. This makes it sui t
a~le for. the detection of sinusoidal frequencies falling 
wlthm ItS range of response, or a group of similar 
systems with differentjo's may be used in the analysis 
of the components of complex signals. For this 
purpose, the observation talms place in a plane 
approximating the energy-frequency plane. Alono ' 

the frequency axis, one may speak of a frequency 
l'esolution limit in this sense: If one knows the 
natural frequency jo to which an analyzer is 
tuned, then a maximum indication of energy stor age 
for a steady-state sinusoidal signal corresponds to a 
signal in the vicinity of jo. Until the energy storftge 
has changed by an amount in excess of !J.E or, when 
expressed as a relatiye proportion, a factor in excess 
of !J.E/Eo, the departure from maximum indication 
is not observable. The change in frequency required 
to produce this effect, !J.f, corresponds to the fre
quency resolution limit NIJo. 

As one can see from the equation for the energy 
stored in the steady-state condition, the response of 
the system to a sinusoidal frequency other than its 
natural undamped frequency is diminished to a 
fraction, F, of the maximunl energy that would be 
stored at the natural frequency. Expressed in terms 
of the ratio of the frequency of the driving force to 
the natural undamped frequency of the system 
(j/jo= cJ» , the fraction is 

F 1 
cJ>2+ Q~(1-cJ>2)2 

The frequency limi ts for the region !J.j surrounding 
jo are found by solving for the condition e-a=F'. 
Solving for the upper and lower frequency limits, 
jb andja1 for whicJ:l the energy stored in the resonating 
system ]s a fractIOn e- a of the peak response yields 
the expression: 

And to a very close approximation, the frequency 
resolution limit comes out as: 

!J.j -J(e a -1) 
fo Qo 

when !J.j is defined as (fb-j,,). J 
The foregoing discussion may now be summarized 

in geometrical form by reference to a three-dimen- , ) 
sional figure in signal space. The limits of resolution 
of an analyzer may be represented by an irreducible 
region in a three-dimensional space that must be 
exceeded before any information about a signal can 
be found. This space is shown in figure 1. As one 
can see from the equations, the figure of merit, 00, 
enters into the resolution limits for time and fre
quency in a complementary way. Thus, it deter
mines the relative proportions between the resolu
tion limits !J.j/jo and !J.t/To. One may therefore 
apportion the relative uncertainties in frequency 
and time to suit the r equirements of an experiment 
whenever one can control the Q of a system. This 
process is discussed more fully in "Uniform Transient 
Error" (see footnote 2). But the product of the 
resolu tion limits, the " uncertainty equation" de
pends in irreducible fashion upon a. 

w 

>
'" a: 
w 
z 
w FREQUENCY. f 

TIME. T 

T 

E liE 

r 

~o* 
'" M f I 

FIGURE 1. Resolution limits making up the indication limit, U. 
T o is the period corresponding to /0, the natural undamped freq uency of the 

systenl. E o is the JnaxitnU1l1 sinusoidal energy stored. 

1 

Thus the signal uncertainty equation, expressed in 
terms of a, turns out to be 

!J.j. !J.t = 217r -J(ea - 1) 

where a is related to !J.E through the definition of the 
least change !J.E that may be observed in the total 
stored energy Eo. 

The basic form of the resolution equations results 
from substitution for the exponential coefficient, a , 
in the equations already derived: 

!J.t = _ Qo In (1- t::"E) 
To 27r Eo 

, 
I 
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1 /t:.E 1 1 
t:.j. t:.t= ;-y Eo . ~ t:.E I n ~ t:.E 

1- - I - -
Eo Eo 

Th e volume correspondino' to the irreducible lim.its 
in signal space, a quan tity here defin ed as the 
" indication limit, " can be computed from the signal 
un certainty equation. It is defined by the triple 
product of the resolution limits alon g t.he three axes, 

U = t:.E . t:.t . t:.j, 
E o To fo 

and it is just the volume of the elementary figure 
shown in figure 1. Its computation might at fIrst 
glance appear to be somewhat redundan t to the 
signal uncertainty equation. In fact, its functional 
form permits factoring the expression for U into 
components that have an interesting conno tation in 
physical measurements. 

Thus, since: 

U = t:.E . t:.j. t:.t "'" t:.W . t:.f. t:.t 
Eo fo To Wo fo To 

th~ magnitude of U expressed in terms of the variable, 
a, IS 

where Sand N were signal and noise powers, re
spectively, and where tb e use of the observation 
interval t:.r rather than the limiting time increment t:,.t 
made the relation an inequality. 

uch a restriction was, in fact, not r equired. A 
tractable and useful expres ion for the product 
t:.It:,.t can be derived, valid foJ' all values of SjN. 

In the case where both signal and noise energy 
are stored , the total energy present in the system is 
Eo=S + N. An increment in the signal energy stored 
(or in the input signal power) can be detected only 
if it equals or exceeds the minimum energy incremen t 
the system is capable of indicatin g. From this 
definition and the definition of the exponential 
factor, a : 

And, where the least energy increment is controlled 
by the noise energy stored; t:..E N: 01', very nearly 

Thus, where the limit of detection is set by the noise 
energy: 

N + S 
a~ ln -

S 

and U is given in terms of the enel'bO'Y r esolution [ h· h 1 . I . b ,~ - rom w l C t 1e sIgna uncerta1l1ty ecomes: 
limit, t:..EjEo, by: 

r t:,. E T/2 
U=;7r' ll ~lEJ -[- (1-~) In (1-~)l 

E o 

It should be noted that the indication limit U and 
the signal uncertainty relation t:.It:..t depend only 
upon the energy resolution limit. The energy 
resolu tion limit is an independent variable and 
cannot be reduced by operations al tering the function 
of the system along the f and t axes: for instance, 
changing the 00 of the sys tem. 

For a system operating at its optimum, the 
irreducible energy or power increment for the 
system would be set by the noise energy stored in 
the system. This noise energy may be due to 
Brownian motion in the system, for example. Noise 
of external origin may be present with the driving 
signal. In the general case the intrinsic and extrinsic 
noise powers will not be coherent, and the total 
noise energy stored in the system may usually be 
considered as the sum of contributions. 

The prior papers relating the r esolution limi ts to 
the relative amounts of signal and noise present (see 
footnote 2) were based upon a deriva tion subj ect to 
the restriction that the signal-to-noise ratio be high. 
In tho e papers, the relationship found was 

For high values of S jN, this expression approaches 
the limit (1/271-) (S jN) -3 /2, a result found previously 
(see footnote 2). 

An especially interesting interpretation can be 
made from the form of the expression for the indica
tion limit, U, when it is written in terms of the 
signal-to-noise ratio. 

_ (SjN) -3/2 . ( - S jN S jN ). 
U- 271 I+ S /N In I+ S /N 

The first factor can be recognized to be the ex
pression for the signal uncertainty, 4j-t:..t, when the 
signal-to-noise ratio is high. The term in paren
theses also has a recognizable functional form, and in 
fact it is possible to relate it to the limiting probabil
ity of informa tion transfer. 

To facilitate discussion, the factor N may be 
cleared from the fractions in the term, giving it the 
form : - S j(S+N) In 8 j(S+ N) . As on e can see 
from the series expansion for the natural logarithm, 
this product approaches the value N jS for large 
values of S relative to N, and the indication limit 
then is merely the trivial product of the reciprocal 
of the signal-to-noise ratio multiplied by the signal 
uncertainty function. It is quite another matter as 
S /N ----'?O. Then the indication limit may be con-
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sidered to consist of two meaningful terms: one is the 
same signal uncertainty function that has ah'eady 
been derived for high signal-to-noise r atios (see 
footnote 2) (i.e. , for t::,.E small re Eo); the other is a 
modulating function that we will now proceed to 
relate to statistical matters. 

Where one is dealing with the statistical presence 
of noise and signal, the long-time average signal-to
noise ratio may be described in terms of expected 
values. The following definition of expected value 
is taken from a textbook on statistics.5 " The 
expected yalue of a random variable or any function 
of a random variable is obtained by finding the 
average value of the function over all possible values 
of the variable . . .. This is the expected value, or 
mean value of x. It is clear that the same result 
would have been obtained had we merely multiplied 
all possible values of x by their probabilities and 
added the results ... we might reasonably ex
pect the average value of x in a great number of 
trials to be somewhere near the expected value of x." 

A special case that is quite common experimentally 
is one in which the level distributions of signal and 
noise are precisely the same. If one has either a 
signal or noise, the probability of the signal being P, 
then it follows that the probability of the noise is 
(I-P). If the signal and noise have the same level 
distribution , G, the modulating term 

S S p·G p.G 
N-+-S ln -N-+-S -----? p . G+ (1 - P)· G In P=--:· G""'+:-(~I --';::P-:-) ·-;;'G 

and thus the term that modulates the signal un
certaintv function can be seen to reduce to the 
form -"PlnP, where P is the probability of signal 
occurrence. From very simple considerations, there
fore, the limit of detection is shown to be related 
directly here to a limiting probability of information 
transfer- a quantity usually derived in information 
theory by considering signals and noise to be made 
up of equal-sized unit impulses. 

It is interesting that this point was arrived at in 
the reverse direction by Woodward and Davies.6 

They started with the PlnP term from Shannon's 
information function and demonstrated from con
sidering the signals and noise in radar detection 
that the quantity P was related to the signal-to-noise 
ratio for radar signals. 

However, the modulating term in its original form , 
in terms of Sand N, may be seen to represent a 
generalization of the function defmed in information 
theory as the channel capacity, H . This form is 
more closely related to the ordinary formulation 
describing the entropy of a system in terms of the 
probability distribution of energy states within it.7 

• A . JVI. Mood, Intrcduction to the Theory of Statistics, p. gl, (M cGra il" 
Hill Book Co. , New York, N.Y. , lg50). 

6 P. M. Woodward and L L. Davies, A theory of rad ar information , Phil. M ag. 
Series 7, 41, 1001- 1017 (1950). 

, M ax B orn , Natural Philosophy of Cau se anel C hance, The Clarendon Press, 
Oxford (1949), ef, especially the discussion s of probability and entropy; Clau de 
Shannon and Warren 'Veaver, 'rhe iVlathematical Theory of Co]]unuuication, 
University ofDlinois Press. U rbana, Ill. (1949). 
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The question of whether a signal is detected in 
the presence of noise depends upon what the in
vestigator chooses to consider a reasonable limiting 
probability in deciding whether a signal has been 
detected. A preponderance of only I percent above 
random distribution would correspond to a much 
smaller signal-to-noise ratio than would 90 percent. 
In fact , the common definition that gives the limit 
of detection as a signal-to-noise ratio of unity 
corresponds directly to setti ng the criterion for the 
limiting probability of detection at 50 percent. 

For the case N = S the "-PlnP" term becomes 
-t ln t and the indi~ation limit becomes: 

for which the signal uncertainty function is: 

ln2 
tJ.j.t::,.t=-· 
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These are the limiting forms also where signals 
and noise are transmitted as "bits." 

Thus far we have discussed noise from the stand
point of the noise energy stored in the system. This 
energy is, so far as the actual storage in the system 
is concerned, not distinguishable from energy stored 
that might be derived from purely sinusoidal excita
tion. If all excitation were withdrawn, and the 
system left in the force-free state, the energy in it 
would be dissipated in the usual exponential decay, 
and the oscillations during the decay would be 
essentially of frequency fo, providing the system 
had mod era te energy storage capaci ty (Qo > 1). 

Therefore, unless we have some other means for 
distinguishing among the sources of the energy stored 
in the system-such as, for example, knowledge of 
the spectral character of pulsed signals applied to 
the system- or Imowledge of the amount of energy 
found present in the system when it is considered to 
be free of any known source, we are left to regard 
as signal that part of the energy stored in the system 
that was produced by a sinusoidal signal of power Si. 
The remaining driving sources, of more or less broad 
spect~al distribution , would in general be classified 
as nOIse. 

If the system is being driven at its natural fre
quency, its output signal will be Qo/27r times its 
input, for Qo is 27r times the ratio of the energy 
stored to the energy dissipated during the cycle. At 
any other driving frequency, the energy stored will 
be weighted by the response, p, which relates the 
energy stored to the power supplied to the system. 

Suppose the noise within the system arises from a 
source whose spectral distribution is given by the 
power density function, Nt. The system will store 
energy with a weighting factor of p. 

The total energy stored in the system due to ex-

' f 
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ciLa tion by noise will then be found from the integral: 

N = 100 N Jpdw . 

Althouo'h we h ave discussed the behavior of the 
system"'in t~rms of cycle~ per secon~, th e guantity 
we have desIgnated as Qo IS defined dIrectly 111 terJ'!l s 
of the ratio of the en ergy stored to the energy dIs
sipa ted pel' radian. As the parameter of the fun c
tion we are integr ating is Qo, we must choose the 
dimen sionally similar variable in order to ~arry out 
the inteoTation correctly . Thus we must m tegrate 
with respect to w ra ther than j. This poin.t is gi.ven 
in detail because it is an instance of the dImensIOn
ali ty of angles r ecen tly pointed out by C: H . ~age . 8 

T his integral may be evaluated easIly for nOIse of 
constant energy per uni t bandwidth in cycles per 
second; the resul t is then 9 

N = 7rN J 
2 

and it is independent of Qo becaus~ the energy st<?r
age capacity of the system and ltS ba,l~dpass lor 
noise arc affected in a com plemen tary 19s111on by 
changes in t he figure of meri t. 

F or seyenl,] other types of noise, an approximn,te 
equivalent whi te noise coefTi ci.ent, nIl C3;11 be d~fill ed , 
for whi ch the foregomg equ atlOns r emam n,pphcable. 
Given a noise 'whose spectral dis tribu tion is v(j) , 
a mean \'alue " equi vtLlen t" white noi e p~r unit 
bandwid th may be cOJilpu ted from lhe equatIon : 

Obviously if v(j) equals a constant, then nJ is the 
familiar " 'White N oise" coefficien t . However , for 
several o ther ty pes of noise the mean-value integra
t ion yields an equiyalen t nIl whic~l may be treated 
as a constant, WIth rather low r eSIdual error r esult
ing from this approach. This can b e seen from the 
fact tha t the system is selective with respect to the 
frequency components of the power ~o\lrce~ from 
which it stores energy. Thus the restnctIOn IS only 
that the spectral distribution be changing sl~wly in 
the frequ,ency .region. imn~edi.ately surroundm.g io' 
F or the followmg nOIse dIstnbutIOl1S, the reSidual 
terms discarded amount, in the worst case, to no 
more th an 1 2 }~ percent of the approxim ate yalue: 

For th e noise dis tribu tions shown ill the lef t-hand 
column, the respectil'e mean I'alll es arc shown in t he 
righ t-hand column: 

v(j ) = Ic 'I 

Be. H . Pago, Physica l enti ties and mathemati ca l representatio!1, J. Research 
N B S 6511 (M a th . and M ath . Ph ys.) N o. 4, 227- 235 (1961), . 

' D. Bierons <I e Iraa n , :-J ou vc lles Ta b les 1) ' l nteRra lcs DefiJllcs, eq (6) · p , 47 
( Ed ition 1867, repr inted 1939) . 

v(j) = lcl.f 
(con stant energy/octave) 

where, for this purpose, .fb and .fa arc tfl.ken as the 
upper and lower half-energy liJuits of the response 
weigh ting function , p ' . , . 

One can usc the foregOI ng to predICt the ratIO of 
energy stored from t he sinusoidal ex<:itation to the 
energy stored from the sou~'ce .of !lOIse. 'rhus the 
effective signal-to-noise riLLIO 111 Lerm of energy 
s tored in the system is give n by: 

The sio'nal-to-noise r atio will b e a m aximum if the 
frequency of the sinusoidal exci tation is just equal 
to the natural undamped frequency of the system. 
(F or this condi tion, p= Qo/27r .) The maximu m 
ratio is: 

The foregoing deri I' ation has meanin g also wi th 
r espect to any system. described by a second-o rde r 
differential equation in whi ch some event of bnef 
dura tio n occurs. A quantity directly anfl.logous to 
the indication limit may be compu ted . In tltis 
instance, the expressions r elate the resolution limi ts 
t hat bound t he occurrence of the even t , specrfYlng 
t he least incremen ts of energy, frequency and time 
within which the event can take place. 

F ur ther , Lhe limiting energy increment., !5.E , need 
no t be formed by noise. F or example, ll1 a pulse
heigh t system . it would corr~s pond t? t~e smallest 
s tep in pulse heigh t that .mlgh t be mcltc~ted . As 
ano ther example, an fl.tomIC system descnbed by a 
second-order differential equation migh t have !5. E 
sub ject to quantum limitations. 

Summary 

The incremental limits, r esolution limits, a nd in 
dication limit for the performance of any system tha t 
is described by a second-order differential equation 
may be computed from consi~er~n g the manner in 
which the system stores and dISSIpates energy, sub
ject only to .the res~riction tha t the systeJ:'- be Cfl.p
able of stonng OSCIllatory energy r evers!bly. As 
these limits are inherent in the mathematical prop
eIties of second-order differen tial equa tions, they are 
applicable to other types of systems by analogy . 

The resul ts of the discussion presen ted here are 
summarized in table ] . The rclations tabulfl.ted 
apply to condi tions that may be obs?r ved so long as 
the observation in terval exceeds 7h tllnes the n fl.tural 
period of the system, . Th~ firs t line of table .1 
summarizes the equatIOIl s ln term s of the baSIC 
energy resolution limi t, !5.E / Eo. ,]~he second Ime 
o'ives the sam e results expressed fl.S iUl1 ctlOns of the 
~xponen t ial quantity a, and its inherent advan tage 
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'iQJ 
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n ntto + 

TABLE 1. Resolution limits of analyzers and osciliatoTY systems expressrd in seveml alternative variables. 

as a means of expressing flEjEo can be seen from the 
greater simplicity of the equations in a. The third 
line summarizes the equations for the condition that 
flEjEo is limited by the noise energy stored with the 
signal. The last line is the formulation of the noise
limited case in terms of the input powers of sinusoidal 
signal and noise, where the noise power can be 
expressed as noise energy per cycle. 

The derivations sketched in the text are pre
sented in detail in a series of appendices for those 
cases where it is felt this presentation will prove 
informative. 

It is not feasible to relate each idea in this paper 
to a specific item in the literature. However, there 
are numerous papers that bear some relation to the 
material in this paper. A classified bibliography of 
some of these papers is therefore included at the end 
of this paper for the convenience of persons working 

on related problems. (The reader may also wish to 
consult the bibliography in Pimonow's book, see 
footnote 1.) 

In this work I have benefited greatly by numerous 
discussions with Chester H. Page and Richard K. 
Cook. For several very enlightening remarks I am 
grateful to William H. Huggins and C. G. M. Fant. 
For a very helpful discussion on the dimensional 
properties of Q, and for pai.nstaking checking of 
derivations, I should like to acknowledge the help 
of my colleague, Joseph Tant Priestley. To a 
number of my colleagues, friends, and visitors who 
have sat patiently discussing this problem with me 
while I was working it out, I should like to take this 
opportunity of extending my thanks. 

This work was sponsored by the Office of Naval 
Research and also supported in part by the National 
Bureau of Standards. 
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Appendix 1. Energy Storage and Dissipation 

For a system whose properti es are described by a 
second-order differential equation, subjected to a 
driving force of amplitude A, the differential equation 

; ' becomes: 

I 

I 

[' 

r 

~. 

The equation may be rewritten in terms of param
eters related to the undamped natural frequency 
and figure of merit of the system. The relative 
frequency, <:/>, replaces the quantities 1 and W by 
<:/>10. and <:/>wQ respectively. The equation resulting 
from this substitution is 

where, of course, the ratio kiM is wQ2. 
The system responds to the force by motion of 

amplitude B, whose phase l'elative to A is given by 
the angle 8 . 

8 t - 1 <:/> 
= an QQ (1 - <:/» 2 

~nd the absolu te value of thc square 0[' the amplitude 
~ IS 

( ' 

f 
I 

The conventional definition for the quantity we 
represent here by QQ is given in terms of the natural 
undamped period of the system. For a sinusoidal 
driving force, one may have more use for the energy 
dissipated per cycle or the driving force, and in 
general the exciting force will not necessarily be 
alternating at the natural frequency of the system. 

We wish to extend the definition of Q for a system 
when it is being excited at frequencies other than its 
natural frequency. There are several tLlternative 
definitions ordinarily given for the quantity we 
designate here as QQ. 

Peak energy stored 
QQ Mean energy dissipated per radian fraction of 

the natural period 

_ ') Peak energy stored 
-~7r Energy dissipated pel' cycle or the natural period 

Peak energy stored 
=WO~Ican rate or power dissipation 

The second definition is commonly given because 
> L Lhe amount 0[' energy dissipaLed in a single cycle 

can be compu ted wi thou t finding a mean value. 
For our purposes, Lhe third alternative gives the most 
d irect approach Lo a generali zed definition of Q. 

The peak energy sLored in the system under 
steady-state excitation is g iven by: 

and the mean rate of power dis ipaLion i 

The term WQ in the third alternative or Lhe definition 
for QQ may be rewritten as 27rI TQ, where To is the 
natural period of the system. 

Let us denote by Qf the ratio of peak energy 
stored to the energy dissipated during one cycle 
of the driving frequency. The period of the driving 
frequency is T = TQI<:/> and the resultant equation 
for Qf becomes 

However , when a system is subjected to excitation 
by a complex group of driving forces, the only 
consistent period over which to compute the energy 
dissipated is the natural period of the system. For 
one frequency component of the complex signal, 
whose frequency is <:/> times Lhe natural frequency 
of the system, the system stores and dissipates 
energy during excitation as though it had a Q given 
by : 

Note that either of these more general definitions 
of Q reverts to Qo for excitfLtion fLt the natural 
frequency of the system. These expressions show 
that the ratio of energy stored by the system to the 
energy dissipated is a rather smooth function of 
frequency. The familim' frequency-selective action 
of the sy tern is in fact shown by the amoun t of 
energy stored in the system under excitation by a 
sinusoidal force of a given amplitude, and is a con
sequence of the materifLI lowering of impedance in 
the vicinity of the resonant frequency of the system. 

The exponentifLl decfLY of the energy stored in the 
system after cessation of the driving force takes 
place at a frequency very near to the natural un
damped frequency of the system. Owing to the 
dissipation, the frequency is lowered by the factor 

Thus the time scale of the decay is most closely 
expressed by the figure of meri t, QQ. 

The exponential factor a has been defined from 
the exponentifLl envelope of the decay of the energy 
stored in the system after t he driving force was 
withdrawn. This is an approximation in that no 
account is taken of the insLanLaneous phase of the 
energy stored in the sysLem fLt Lhe instant when the 
driving force ceased. In fact , this is no grosf' 
approximfLtion, fLS one can sec by inspection of the 
equation that describes the process. Letting Xa 

and Xb represent the amplitude of the sine and cosine 

I 
I~ 
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terms representing the coordinates of the system 
at t= O: 

As the first term is the square of the modulus of 
the system coordinate at t= O, i t is independent of 
time. The remaining terms, which form the modulus 
of a double-frequency component, represent minor 
variations from exponential decay of the energy 
stored in the system. The main term is a sum of 
squares, whereas the modulus of the dou ble-frequency 
component contains the difference of ~ and ~ and 
the product XaXb. Neither the difference nor the 
product can exceed the sum of the squares, and they 
are further diminished by a factor of l /Qo or smaller, 
depending upon the initial conditions. The magni
tudes of the double-frequency terms depend upon 
the conditions at t= O, but they are always fairly 
unimportant. The situation is shown graphically 
in figure 2.· 

The discussion can be carried one step further: 
As the energy in a force-free system can only be 
dissipated, dEs/dt is not positive during any par t 
of the decay. Therefore, the slope of the modulated 
exponential curve is never greater than zero. 

1. 2 r------;r----,---,---,----,------,-----, 
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FIGURE 2. Decay of the energy in an oscillatory system for Q 
of 1)4 

It is tbese nllnor variation s that we omit by working only with the exponential 
decay. 'l' hey arc too min or to represent for values of Q in excess of2. 

Appendix 2. Noise 

Noise can be considered as the result of a number 
of sinusoidal components acting simultaneously. 
The steady-state storage of noise energy in the 
system can be computed because the energy dissi
pated will be equal to the energy supplied . 

Usually, when we speak of noise of constant power 
per unit bandwidth, we imply that the driving force 
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amplitude is described by the equation : 

Since the power dissipation in the system at its 
resonant frequency is given by WD=.A~/2D, the 
parameter nf has the dimensions of energy per cycle. 

At the frequency of resonance for the system, the 
energy stored is 

EO=2~jO ' nrfo . 

For a driving force of a given magnitude, the peak 
energy stored by the system at any frequency is 
r elated to the peak energy stored at the frequency 
of its natural resonance by the fraction, F: 

The total n01se energy stored is found by inte
grating over this function. The parameter Qo is 
defined for energy dissipated per radian. Therefore 
the weighting for the noise energy stored is 

1'" E-Fclw. 

The integration may be stated in terms of the vari
able, eI>, by making the substitution dw = wodel> 
= 27rjodel>. After some rearrangement of terms, the 
noise energy stored in the system is given by: 

Under circumstances for which nfmay be r emoved 
from the integr ation, the remainder of the integral 
becomes merely (7rQo) /2, so that N = (7rnf) /2. For 
a sinusoidal input signal of average power Ws, at 
the resonance frequency of the system, the maximum 
ratio of signal energy stored to noise energy stored 
is given by: 

In general , n f would be some function of frequency 
v(j), and the evaluation of the noise weighting 
in tegral would be more difficult. However, since 
the systems we are dealing with are somewhat 
selective, there are some other noise distributions 
for which a useful "equivalent white noise coeffi
cient" can be approximated. ' Ve have defined an 
equivalent white noise coefficient as the mean value 
of the noise function over the passband of the 
system. 

For the type of noise that may be described by 
v(j) = kj the mean-value integration gives : 
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The range of values of v(f) is lc (jo - f a) wh ereas the 
"equivalent" nf is (lc /2) (jo + j a). The ralio of the 
range of values for /J(f) lo lhe compu ted value for 
nf represents an extreme es timale for lhe error made 
in using nf. It represents th e iLualion 1'01' a flat 
weigh ting of the noise compo nell Ls, whereas lhe 
syslem is actually selective and gives most weight 
Lo componen ts in the vicinity of jo . This exLreme 
esLimate yields the ratio : 

v(jo) -v (.fa) 2(Mja- 1) 
nf (jo/j~+ 1) 

For systems with a 0 of 3 or bigh er , the response of 
Lhe sys tem falls away rapidly hom the peak response, 
and the ratio jo/ja is very nead y unity when j~ and 
jo are taken as the on e-half power poinLs. For the 
half-power poin ls aL 0= 3 this er1'or esLimaLe rep
re ents Lhe fracLion 1/3, buL half the toLal inLegraLed 
energy stored in Lhe sysLem is sLored within Lh e 
range of fr equencies betweenja andjo; lile oth er hal( 
arises from the remainder of Lhe frequ ency l'fll1 ge 
beLween zero and inIinily. 

(See appendix 3 [or derivaLion of Lhe energy slored 
wiLhin restricted ranges of frcquency .) 

For v(f) = lc/J, tbe equivfllelll while Iloi se con cen
Lration, nh is given by: 

J L is necessary here Lo a pply l 'JT6pilal's Rule Lo see 
LhaL lhis equation is vld icl even for high values of o because as f b---7j a, il simply approaches Lhe limi t 
nf= lc/ja' Thus, us it should, Lhe mean value, nh 
approflehes the value /JUo) , as the range over which 
Lhe m eall valu e is compuled decreflses. 

For low vfllues of 0, the questioll of the elTor 
illLroduced by subsLituling the mean value for the 
actual function is again limited at worst to the ratio 
that the range of values of v(t) bears to the mean 
value nf. 'l'hus, for the function v (f) = lc/j. 

v(jo)- v(.fa) UoI. fn-1)2 

n f .f.!. In .[j! . 
j a Ja 

B ecause of the relatively slow change of the logarithm 
as a function of its argument, this range always 
l'epresen ts a fairly small error. 

In summary, we have shown that an equivalent 
white noise figure can be derived from the mean valu e 
of several noise fun clions, and that substitution of 
an nf derived from the m ean value of v(j) in place of 
the white noise constant does not lead to serious 
errol'. Thus the relations derived in this paper for 
ordinary white noise arc applicable to a number of 
other noise funcLions as well . 
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Appendix 3. Distribution of Energy Versus 
FrequencYI a n d the Noise Integra l 

By patLerning Lhe integraLion upon lbe polynomial 
L1sed in equaLio ll 6 <1,11eI 7 on page 47 in Lhe Lables of 
Bierens de Han,n , we (;,Ul co mpu le Lhe frac tion of the 
lotal noise power Lake ll up by Lhe )lsLem belween 
<LIly pail' of fracLional-power poi n L in Lhe frequency 
range, and tlte fmc lion of th e loLal noise energy Lhflt 
is sLor ed within the fr equell cy nLngc bou nclcd by a ny 
pail' of fractional ener gy points. 

For the system, the mean r ale of power dissipMion 
is given by: 

The energy stored is given by: 

AL Lbe ll aLuralresolll1, ll ce frequellcy of Lh e sys Lem, 
ql= 1, and lilu s, whell cxprcssed as 11, fmction of the 
response aL Lhe nlLLural fr eq uellcy, th e r elaLive power 
and relaLive ell ergy JUll cLiolls becoillc indepelldenL of 
Lhe clri "i ng force. (' hoosi ng for conveniell ce Lo 
express lhe frnclioll fll rcsponsc li S a rccip rocld (e.g., 
2 Jot' lhe on e-hnlf' power, cLc .) 1'01' fr Hcliollal ellcrgy, 

<L llcl , 1'01' fraC'liolHti pOlVcr, 

QW _ ¢2)2+ ¢2 
¢2 . 

One can then solve Lh ese cquations to find at wbat 
r elative frequency limit Lhe system h as a given 
fractional response. This procedure yields, for the 
freqnency range between the fraction al energy 
points, t he approximate resul t: 

f b-fa .J FE - l + 1 /4Q~ 
fo Qo 

and, for the frequency range between the fractional 
power points, the exact solution: 

The approximation needed 111 solving for the 
fr actional energy points arises from the fact that 
the system has finiLe energy storage capacity at 
zero frequency, whereas it has zero energy s torage 
capacity at infinite frequency. The power dissipa
tion capacity of the sys tem is, however , zero at 
both extremes of the frequency ran ge, and the fnnc-



tion of power dissipation versus the logarithm of the 
frequency is symmetrical. Except for systems of 
low energy-storage capacity, the asymmetry of the 
energy storage function is negligible. (Its influence 
on Aflfo is discussed in appendix 4.) 

Within the frequency range between any two 
fractional energy limits, the noise energy stored is 
given by: 

This integral can be divided into partial fractions, 
and the separated integrals give angle functions, 
from which the combined result is 

NE= nf.Qo tan-1 - Z..jFE-1+ 1/4Qg 
Qo 2 (FE - 1)'V1-F E IQ5 

The radical in the denominator becomes imaginary 
for the condition in which the energy storage at 
zero frequency exceeds the value of FE chosen for the 
frequency limit. 

The power taken up by the system between the 
frequency limits representing various fractional 
power points is given by the integral: 

W _ 27rnriof '" =f21f0 ¢2d¢ 

f- Q5 <P l =fl ifO 1+ 2 (Z~g- l) ¢2 + ¢4 

= 1m rio. tan - 1 Z..jF;;=l. 
Qo 2- Fw 

where ¢l and ¢2 are the limits of relative frequency 
corresponding to the fractional powers whose 
reciprocal is Fw. This equation requires no approx
imation. 
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FIGURE 3. Fraction of total energy stored for vario1ls relative 
l'esponse limits. 

The graphical result of this integration is shown in 
figure 3. The stored energy derived from noise 
power between the frequency limits representing 
various fractional power points is presented as a frac
tion of the total storage for the complete spectrum. 

These integrals between finite limits may also be 
applied to evaluating the storage and dissipation of 
energy derived from band-limited sources. 

Appendix 4 . Frequency Resolution Limit 

The approximation that leads to computation of 
t:.flfo has interesting connotations in physical prob
lems. One of the terms discarded represents an 
asymmetry in the function describing the energy 
response of the system as a function of frequency. 
This term becomes appreciable only for systems of 
low energy-storage capacity (Q~!), but its com
putation permits a quantit.ative estimate to be made 
as to the limits within which the equations derived 
in this paper are applicable. 

The boundaries of the frequency resolution limit, 
Af/fo, are those for which the energy storage is less 
than the maximum steady-state storage by the 
limiting energy increment, t:.E. This condition may 
be found from solutions of the equation:-

A convenient method is to rewrite the equation as: 

and to solve for the quantity (¢2- 1). The two 
roots can be written as 

Let 

d1= (¢~- 1) = (jl/Jo-1)Cfr!fo+ 1) 

d2= (¢~- 1) = (f2/Jo- l ) (f2Ifo+ 1) 

Then the limiting frequency increment is given by: 

The asymmetry between the limits fl and f 2 relative 
to f o may be defined as: 

From these definitions: 

t:.f d2- d1 

fo Z(l-A s) 

The solution for the quantity (¢2- 1) yields, as 
the roots: 

472 

f 



I 

I 

I" 

~ 

l 

/ 

t 

dl =2Q~- ~o )(ea - 1) + 1/4Q5 

- 1 1 
d2= 2Qg+ Qo ·,/(e a - l) + 1/4Qg 

ByTapplying the definitions for 4[1, 6.J2 and A s to 
the roots d l and d2 , the value of A s is found to be 

A = 1- 11_l (!If)2 __ ~. 
s -V 4 jo 2 Q~ 

No approximation has been used to this poin t. 
However , the second and third terms under the 
r adical are much smaller than the first. When t hey 
are removed from the radical , by fl,pproximation: 

Now', in the expression for !J.j/jo the term (I - A s) 
appear in the denomina tor. A s is composed of 
terms that are quite smallrela ti \Te to unity, so that 
a series approxim ation of one t erm is sufficien t, and 
we may place it in the numerator, obtaining: 

Inspection of this expression shows th a t a fur ther 
simplifying approxim ation m fl,y be made in A S) for 
it is clear th at th e term (e a - l ) is also rather small. 
Clearly the tenn in A s th a t contfl,ins the square 01' 
!J.jlJo will in general be less t han half as large as 
1/4 Q02. Thus, the m ajor term in A s is jus t. the quan 
tity 1/4 0 02 • We haye discm'ded this quantity Jrom 
the equation s shown in the text. 

In order to find the limitations that bound the 
applica tion of the equations given in the tex t , we 
must fmd the condi tions under which the term 1/4002 

is indeed small. 
When 0 0 is taken as large as permitted by th e leas t 

time in terval in which an observa tion may t ake place, 
the r ela tion between the resolution limit along the 
t ime axis and the energy resolution limit is 

and, thu s, in the limit: 

1 a?n 
4Qg= 167?!J.t2 • 

The approximation for !J.jlJo ,\Till be poores t for the 
condition under which the discarded term is largest 
l' e (e a - l ). From this limiting condition, we can 
fmd the bounds imposed upon the least time interval 
for which these derivations are applicable. L et 

where M represents the terms that do not contain a . 
Differentiating the right-hand term with respect to a 
and setting it equal to zero , one finds two solutions, 
the trivial one of a = O, and the equation 

(a - 2) ea + 2 = 0 . 

A graphical solution gi \Tes as th e most unfavorable 
condi tion, a = 1.6. 

This solution represents a condition in which 
!J.E/E o would be very large; in fact, wher e noise is the 
limitation, the condition implies a signal-to-noise 
ratio of approximately 0.2 . For thi limi t: 

(e a - 1) = e1.6- 1 = 4 . 

Thus, for a precision limit of about 1 2 7~ percent, we 
require only that the product a 2NI < I , or : 

For times of obser va tion compar abl e to one full 
period a nd even less, and in alm.ost any condi tion in 
which 0 0> 1, the term under the radical sign that we 
have discarded is in fact negligible. 
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