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It is assumed that t he symmetr y elements possessed by a strained cr ys ta l will be t hose 
co mmon t o t he un stra ined crystal and to the macroscopic state of stra in . This prin ciple 
h as been appli ed to show all of t he possible subgroups to whi ch a g iven space group can bc 
lowered by homogeneous stra in for a ll of th e 230 crysta llographi c space groups. 

1. Introduction 

The s~~mmetry of strain ed crys tals is imporLan t in 
Lhe following considerations: 

(1) The presence or absence of inLern ftl fri ction 
l'esulLing from lhe motion of poin t defects in ft crysLal 
can depend upon whether or not Lbe iniLia11y equiva­
lenL siLes accessible to tbe defect ftre inequivalent in 
t he strained crys tal (1 , 2, 3, 4).1 An isolated point 
defect, SUCll ,1S a vacan cy, will occupy anyone of a 
seL of a tomic si tes extending throughout lhe cr ysLal 
wilh equal probability in t he ftbsence of . stmin ; if 
tb e sel splits into inequi valen t subseLs under stmin 
intern al friclion will occur when th e frequcncy of m~ 
alternatin g s train is appro:'-.'i maLely equal lo the 
jump frequency for the poinL defecL. 

(2) Any tensor property of a crystal, such as 
piezoelectriciLy, depends primarily upon Lh e sym­
mclry of the ul1strained crysLal, buL a,ddilional 
Lensor co mponents may be introduced by strainin o' 

t he crys tal in such a way as to chan ge its sYll11l).e Lry~ 
(3) A cln,ssifi cation of Lhe types of poly rnorp ilis'm 

?f crystals has ~een proposed by M. J. Buerger (5] ; 
111 so me categon es no bonds are broken bu L only a 
symmetry ch ange takes place. Some slrucLural 
changes can be induced by homogeneous str ain . 

(4) Introduction into crystals of impurity atoms 
is accompanied by strain which may lo~ver the 
symmetry . Such symmetry inversions are well 
k nown and properly regarded as phase transforma­
Lions. At the sftme tin1.e it is t empting to bro l1den 
the use of the term solid solution to include inversions 
in which some crystallographic parameter measUl'ing 
the depar ture from higher symmetry is a continuous 
and increasing function of impurity concentration 
(in a range including zero concentration). If this 
fun ction is lin en,r to first approximation the behavior 
would be a simple extension of Vegard 's Law. In 
any event this ph enoll'lenon would be linliLed to 
sym meLry in versions in conformi ty with strict post u­
lates applyil:g Lo continuous Lrft nsformatioll s by 
s tnulI , t hat ]S seco nd-order tra.nsformations in the 
s tl'icL sense used by Landau and Lifshitz as discussed 
by Dimmock [6]. 

I Itali cized fi gures ill brackets indicate the lit erature references at the end of 
th iS paper. 

(5) Large s tntin fi elds exisL near dislocations and 
accompanying symmetry changes may be associated 
wi th 1l1rge local variations in physical properties such 
as enlutI1 ced diffusion neal' 11 disloca tion . 

(6) 8Ln1in -~ Jl duced altm:aLion of symmetry may 
cn,use change 11', electron-spIn resonance (7] or infrared 
a? sor.ption (8].; measurement of t l! ese chan~es may 
gIve lIlfor maLlOn on Lhe Lypc of SIte occuplCd by a 
given poin t defect. 

(7) The lowerin g of Lhe sym nleLry of a crystal of 
doubLful . poin t group Inay Jna.ke a more defmitive 
lesL ,tvailable for deLermining Lhe class of Lhe un­
sLrained crysLal. 

There are p1'obab1.v oL11er efiects associated with 
strain-induced lowering o( snnmetry but the aim 
of t he presenL paper is co nft ned Lo v the solu tion of 
t he f01'l na.1 problem of the possible lowering of space­
group S.I' n1m eLl',\' b,v homogeneous sLr ain. 

The usual concep t of homogeneous strain can b e 
exLcnded dow nward in sCl11e Lo describe accurately 
LllC change of shape of the u nit cell , but i t will not 
in general describe t he l1tomic movements within 
the cell. H owever , the prese nt co nsiderations in­
volve only the S,\' tllmetr.IT of t he crystal structure. 
The fttoms within the uni t cell neeel not move as 
if t he.l- wer e suspended in a continuous medium 
undergoing homoge neous strain . It is only required 
tha t their movemen ts be co nsisten t wi Lh the sym­
metry of t lw m acroscopic s tmin. 

2. Scope of Present Paper 

In general. a crys tal m ay be subj ected Lo a stress 
tha t causes a stmin which need not be homogeneous 
and which may have a special amplitude. This 
paper is, however , restricted to the consider ation of 
homogeneo us s train of arbitr ary ampli tude. 

It may seem more natUI' l11 to co nsider an applied 
stress as an imposed condition rather than a state 
of strain. It makes no differ ence to the present 
argum ent which is taken as the imposed condition 
because 011 1~T the symmetry elemen ts are significan t. 
We defer discussion of this point until Curie's prin .. 
ciple is taken up in the next section. 

SLr ain gradients may b e impor tanL in some 
processes, such as N ab arro-Herring creep (9 , 10] but 
the effect of a strain gr adien t must be sup e~'imposed 
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on the effect of the average value of the strain in the 
region in which the physical process under con­
sideration takes place. Creep involves transport 
of matter over macroscopic distances and may be 
associated with a strain gradient even though the 
average strain is zero. The properties listed in the 
introduction are, however, more likely to depend 
on average strain over an appropriate volume than 
on strain gradient because the smallest volume of 
crystal which can be used for discussion of these 
properties is comparable to the unit cell of the crystal. 
Accordingly, attention is restricted to homogeneous 
strain in this paper although it is recognized that 
symmetry changes caused by strain gradients may 
be significant for some physical properties. 

One may specialize a strain with respect to orien­
tation or with respect to magnitude, but the former 
is of more general interest. Thus one might apply 
a tensile stress to a tetragonal crystal in such a way 
as to lower it to orthorhombic symmetry and then 
look for effects on physical properties. Such an 
experiment would require only a knowledge of 
crystal orientation. Alternatively, one might appl~r 
a tensile stress along the unique axis of a tetragonal 
crystal and choose its amplitude such that this 
axis is made equal to the other two thus imposing a 
pseudocubic character on the crystal. Such an 
experiment requires a knowledge not only of crystal 
orientation but also of lattice parameters and elastic 
constants. This second type of experiment seems 
of limited interest and we restrict consideration in 
this paper to strain which may be specialized with 
respect to orientation, but not with respect to 
magnitude. 

A strained crystal may undergo a phase change 
and the space group of the new polymorph need not 
necessaril:v be symmetry related to the starting 
crystal. We therefore specifically exempt phase 
changes from these considerations except those 
introduced by a continuous process such as those 
noted in the introduction. 

3 . Working Principle and Uniqueness of 
Symmetry Reduction 

The components of homogeneous macroscopic 
strain form a tensor of second rank convenien tly 
represented by a triaxial ellipsoid of symmetry point 
group mmm. When any two of its major axes are 
equal the ellipsoid acquires rotational symmetry 
about the third major axis. When all three major 
ellipsoid axes are equal it becomes a sphere. In our 
study of symmetry of strained crystals it is necessary 
to consider all kinds of possible orientations of the 
strain ellipsoid relative to the crystal symmetry 
elements. 

We assume that homogeneously strained crystals 
will have all the symmetry elements common to the 
unstrained crystal and to the macroscopic strain, but 
will possess no other symmetry elements. It is an 
extension of Curie's principle [11] to include space­
group as well as point-group operations. Curie's 
principle has been discussed by Shubnikov [1 2] and 
Koptsik [13]. 

Homogeneous strain possesses all possible transla­
tional syrnmetry elements and therefore preserves 
all lattice translations, all glide planes parallel to 
mirror planes of the strain , and screw axes parallel 
to rotation axes of equal or higher order. 

In applying this principle to specific groups it is 
convenient to characterize strain by its point group. 
A situation sometimes arises in which the stra.in has a 
mirror plan e parallel to a glide plane in the space 
group of the unstrained crystal. We assume the glide 
plane remains in the strained crystal. The same as­
sumption is made regarding the retention or an n­
fold screw axis in the crystal when it is parallel to an 
n-fold ro tation axis in the strain. The process or 
taking symmetry operations common to the macro­
scopic strain and to the unstrained crystal must be 
understood to have this meaning. This situation is a 
consequence of the well known fact. that a crystal may 
have glide planes and screw axes corresponding to the 
mirror planes and rotation axes of its point group . 

The process oJ finding the space group of a homo­
geneously strain ed crystal can then be carried out ill 
either of two ways. First, the elements strictly 
common to the point group of the unstrained crystal 
and to the point group of the strain can be found to 
give the point group of the strained crystal. There 
will in general be several space groups corresponding 
to this final point group. The correct space group 
will be the one which not only belongs to the final 
point group but which is also a subgroup of the initial 
space group. The subgroups of the space groups are 
listed in the Internationale Tabellen zur Bestim­
mung von Kristallstrukturen [141 Second, one cftn 
bypass consideration of the point group of the crystal 
and work directly with its space group, taking its 
elements in common 'with the point group of the 
strain in the sense explained in the last paragraph. 
The writers have used both methods as a check and a 
few misprin ts in the In ternationale Tabellen were 
founel. 

One can now see that it makes no difference to the 
present work whether stress or strain is used as the 
imposed condition because in either case only the 
point-group symmetry is involved. 

The reduction of the symmetry of a given crystal 
by a given strain with specified orientation is unique. 
The second process, described above, for finding the 
final space group from the initial space group and 
the strain is clearly unique. A given symmetry 
operation in the point group of the strain either does 
or does not have a corresponding operation in the 
space group of the unstrained crystal; the number of 
operations in this point group is finite and small so 
that everyone can be examined to give a definite, 
unique answer for the final space group. The associ­
ation of crystal wi th space group might be questioned 
but this is also unique. In particular, it will be 
possible to find a general position (characterized by 
point symmetry 1 and by a specific arrangement of 
the atoms around the position) which is acted on by 
every element of the space group so that in every 
primitive cell there are a number N, equal to the 
order of the point group, of identical, distinct po­
sitions. Application of the strain cannot raise the 
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point symmetry, buL can only remove some of the 
symmeLry operations originally relfLting the N 
posiLions. Thus, the originfLl set of N positions splits 
into an inLegral number, N /n, of subsets each con­
taining n equivalent general positions in the strained 
crystal where n is the order of the point group of a 
strained crystal. A set of general positions defines a 
space group so the association of the strained crystal 
with a space group is unique. 

An alternate approach to the lowering of crystal 
symmetry using matrix representation of the sym­
meLry operations has been discussed by Ordw(ty [15]. 

4. Results 
The reduction scheme for crystallographic point 

groups is shown in figure 1. This result has been 
given before and the rules for its construction have 
been discussed [1, 3]. It is shown here for com.plete­
ness and to illustrate the important fact , not pre­
viously discussed, that some of the point-group re­
ductions can be made in two or more crystallograph­
ically equivalent ways. Thus, the r eduction from 
4/mmm can be made either by retaining the (100), 
(010), and (00l) mirror planes or by retaining the 
(110), (110), and (00l) mirror planes depending on 
the orientation of the strain. Thus, two or more 
space-group reductions, corresponding to two or 
more strain orientations, can be associated with a 
given point-group reduction. 

A given strain orientation (relative to the crystal) 
that is not represented by a single tieline can be 
considered as an equivalent sum of strains succes­
sively lowering the symmetry along two or more 
tielines. 

The Bravais-lattice reduction scheme for homo­
geneous strain is shown in figure 2. Here a given 
I I Cen t ro s mmelric Classes O rder 

."............ Cubic Hell.ooono l-
m 3m Trigo nal 48 

21 Non-Ce nt rosymmetrl c Closses 

Cu b ic Hexagona l-Trigonal 

24 432 43;;, 

/'... Indica tes no super­
group 

..........."" No sub - group 

16 

12 

8 

6 

4 

3 

2 

~I 
; 

Triclin ic 

/'... 
6mm 

FIGUR~J 1. Reduction of point groups to subgroups by homo­
geneous strain . 

It is a fl ee ssary condition that a subgroUI) belong to a different crystal system 
than the correspondi ng supergroup. The point group designations arc those 
of the International Tables [16] . 

---_. ---

starting IfLttice must go to fL bttice with a larger 
number of parameters so that only Lransitions down­
·ward along the tielines shown are possible under 
homogeneo us strain . . 

The results in figure 2 can be com binee! with the 
results 1'01' centJ'os:vmmet.l'ic point groups in figure 1 
to give the reducLion schelll e 1'01' lile combin ed 
centrosyml1Iet1'ic poinL gl'oups--BnLvais lattices 
shown ill fi gure 3. This char t shows t Jmt certain 
possibilities are ruled out by the B1'avais-bLttice 1'e-

Lat t ice Po in t s Per Ce l l 

Number of 
I 

Par ame te rs 
2 4 

A A A 
I 

CUlb.~ 5u~ i-")Ub. F 
/ 

2 
t ~ ~homb.f V 1/ 

Te1t· z Hex . P Tet. I 
/ .......... (Hex.R) I" 

3 t I/ ~ N 1:::--. t ~ Orth a.P ~t~o. C Or tho. I ~tho. F 
I 

-----
/ 

4 I/~ ~ ~L1 V 
MOi a.p -1--(8) 

6 1.:--~I---
Tn c. P 

FIGURE 2. Reduction of Bravais-lattice symmet1'y by homo­
geneous strain. 

It is it necessary condition that a lattice go to one with a larger num ber of pa· 
rarnctcrs. P means prilllitive, H stand s for the compound hexagonal lattice 
derivable from Lhe primitive ihombohcdral, C means centered on the C face, 
I men ns body ccntr[cd, and F lllcan s centered on all faces . 

r:CC-u'"'b i,-e----/'..-------.-He- x-ag- o-n-o I---T r""Ci g-o-n-o--'I Order 

m3m{F) 192 

~) 2 

/'.. Indica les no l iT IS A NECESSARY CONDIT ION THAT A 
higher lO l l ice LOWER LATTICE BELONG TO A DIFFERENT 

'-./ No lower lo ltlee CRYSTAL SYSTEM THAN THE CORRESPONDING 
HIGHER LATTICE 

FIGURE 3. R eduction of point-g1'oup--Bravais-lattice combi­
nation by homogeneous strain j01. centrosymmetl-ic point 
grOtLps . 
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ductioll scheme. Thus, a space group associa ted 
with point group m3m and with a face-centered 
lattice can go to a space group associated with poin t 
group 4jmmm but only to one with a body-centered 
lattice, not to one with a primitive lattice. These 
restrictions are autom atically obeyed when eiLher of 
the two processes described earlier is used t o obtain 
a reduced space group . The relations in figure 3 do 
provide a!useful partial check on such results . The 
writers ha.ve constructed a, char t similar to figure 3 
for the noncentrosymmetric point groups combined 
with the Bravais lattices. The construction is easy, 
but slightly tedious, and t he results do not warrant 

publication as a step in the process of checking the 
final product., the space-group charts. 

The final results are shown in figure 4, for cen tro­
symmetric space groups, and figure 5 for noncentro­
symmetric space groups. This division in to two 
charts is possible hecause homogeneous strain is 
ceutrosymmetric and cannot change the space-group 
property of being cen trosymmetric or noncentro­
symmetric. 

As in the scheme shown in figure 1 a plane of sym­
metry on strain trans rorm ation is preserved only if it 
is perpendicular to one of the principal axes of the 
strain ellipsoid for any permissible choice of prin-
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F IGURE 4. R eduction of centrosymmetric space groups by homogeneous strain. 
'rhe notation of the Internat ional T ables [16] is used. Space groups associated with a single point group arc enclo,cd in 

box('s:~ Arrows are drawl) frOlll starting space group to subgronp reacbed by homogeneous strain. A space group 
h avin g no entering arrow cannot be obtained by homogeneous strain frol11 a h igher sy mlnetry sp ace group. 
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l "IGU RE 5. R eduction of n oncent1'osy m'l1wl1'ic space grou ps by homogeneous strain. 
rrhc vertical col umn, consist ing of space groups associated with point groups 6,6: 3m, 32 1nm2, and 222, h as been repeated on page 400 to 

prov ide su fficien t SPflCC fo r entry and exit of arrows. T he space groups associated with point groups 111 and 2 have been shown twice on 
the left hand page for the same reasoll. T he text gives au example of t he use of this chart. 
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FIGURE 5. Reduction of noncentrosymmetric space groups by homogeneous strain.- Continued. 
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cipal axes. A ymnl e ll'? axis can be retained only 
il'iL is parallel 10 one or these prin cipal rtxCS of the 
ellipsoid. An axis or order high er than two can be 
re tained only i f' it. i perpendicular to the circular 
sec Lion or an e11i psoid or revolution. A plane or 
sy nml eLry p arallel or a two-fold axis perpendi.cular 
to an axis of order high er than two cannot be re­
moved without si.multaneous loss of the higher-order 
axis. 

To illustrate the use of these chrtrts, we discuss the 
reduction of group P4mm associated \vith point 
group 4mm. Figure 1 shows that 4mm goes directly 
to mm2 but the latter can oeclli' in two crystallo­
gr aphi crtlJy different orien ta tions dependin g on 
whether th e mirror planes (100) and (010) are re­
tained 01' alternatively the planes (l10) rtnd (110) . 
W e thus expect. to obtain two space groups associ­
ated wi th mm2 from P4mm and fi gure 5 sho,\'s th at 
t hese ar e Pmm2 and Cmm2. The former corre­
s ponds to retention of (100) and (010) mirror planes 
a nd of the original coordina te axes . The latter 
corresponds to retention of' (l10) and (110) mirror 
plan es and to a ch ange oj' cell j·o a C-J'rtce-cenLcred 
cell or twice t he volume with i ts [100] axis alon g 
[110] or the original cell. Pmm2 can go to Pm wit h 
point group m in two ways and then to P l , t he fin al 
space group with no symmetry to whieh all non­
centrosymm etri c space groups must ultim ately r e­
duce. Pmm2 can alternatively go to P2 and then 
t o PI. R e turnin g to the other b l' rtnch comin g from 
P 4mm, we see that Cmm2 crtn go either to e m and 
t hen to PI , or to P2 find Lhcn Pl. 

'1' lte behavior o[ rt se t or 'Wyekof[ positions unde!' 
homogeneous s trrtin is important ill determillin g 
wheLher internal I'riction citn oC' cur [:31 rtnd m ay be 
J'elevan t to the subjects men tion ecl in the in tro­
duction . ",Ve ha ve noted in the pre vious section 
that the set of N gen eral positions of an initial space 
group always map onto N /n se ts of general positions 
in the lower space group. The mapping of a set of 
special positions of the starting space group onto se ts 
of special and/or general positions of tile lower 
space group is more complicated . In particulrtr 
it should be noted tlmt splitting into unequal sub­
se ts is possible for some special orientations of the 
s train ellipsoid relative to symmetry elements of 
the point group [3]. For example the oxygen ions 
in corundum (a- Alz03 , R3c) occupy a set of posi­
tion s designated "e" by Wyckoff and located on 
diad axes . The other s:ymmetry operations gen­
erate a set of six equivalent e-type positions pel' 
primiti ve cell . Tensile strain parallel to an a-axis 
r etains the centers of symmetry, the diad axes 
parallel to, and the glide planes perpendicular to 
the direction or th e tensile s train . The se t of' six 

initially equi \THlen t oxygen positions then spli Ls in to 
one subset or 1'0Ul' rtncl n,nother or two equivalent 
positions . A trtble of the mapping of sp ecirtl posi­
tions on to position s or subgroups Ims not yet been 
completed. 

The rtuLilors LiwnkDr. J. D . H. DOllllny 1'000helpl'ul 
discussions . T llis work was pa rli rd ly s upported by 
tbe Advrtl1 ced Researc ll Proj ecLs Agen cy. 
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