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The fourth order Hami ltonian of a n asy mmetri c ro to r molecule of orthorhombic sy m
metry given recen t ly has been considerabl y r educed in complexi ty t hrough the use of 
equations derived from t he bas ic relationship a mon g the a ng ula r mom entum operators. 
The red uced Ham il ton ia n obta ined pro v id es a most co nvenien t sta r ti ng point for t he 
calc ulation of ro ta tional energy levels from a solu t io n of t he complete sec ula r equat io n, 
for a perturbation t heo ry solution to t he problem of centri fuga l di stor t ion, and fo r t he 
ded uction of s um ru les a mong t he ene rgy levels. 

1. Introduction 

R ecently Chung and Parker [1]1 have examin ed the general molecuhtr vibra,t ional-l'o ta
tional H amiltonian in t he Goldsmith-Amat-Nielse ll [2J formulatioll . They dedu ced H amil
to nians for asymmetric ro tor molecules 0[' orthorhombic, monoclinic, <1 nd triclini c poin t group 
s~Tmmetries and have included in their work all terms ill p I to the rOUl'Ll! order of approximation . 
No term s in p 6 were included in their work, nor will t hey be included s ubsequently in this . 

For the case or the asymm etric rotor H amiltonian for molec ules or t he orthor hombi c 
point groups ((12v, V, and V,,) i t is possible to reduce the Hamiltonian co nsiderably nnd, by a 
red efini tion of' coeffi cien ts, to make valid a considerable body of previous work:. It is our 
purpose to cmT~r out these reduction s, r ela te the results to previous work, and to provide a 
first order perturbation theory solution to the problem of centrifugnl distor tion, which , while 
entirely equivalent to that 0[' 1Gvelson and Wilson [3], is in somewhat simpler form. 

2 . The Hamiltonian 

vVe start with eq (17) 0[' Chung ,md P arker ill the molecuhtr axis system of coordinates 
defined by the standard spectroscopic convention I~<I~<I~ . The following relations among 
the angular momentum operators that are useful 1'01' reducing the Hamiltonian m ay be derived 
from the commutation r ules for the angular momentum operators. 

(1) 

P aP fJP aPfJ+ P {1P aP (1P a= p 4+ p~-P!-p~ - 2P2p ;+ 1l,z(P;-P~-P~) (2) 

PaP~Pa= ![p4 +P~-P!_P~_2P2P;+ 2li2(P;_P~) ] ccp{3,c. ,,( = a, b, or c (or x, y, 0 1' z). (3) 

With the help of th ese relations we obtain a reduced Hamiltonian for molecules belonging 
to the orthorhombic point groups, 

Fft = h!*+ ~ a;p~-!P2~ T~fJnP~+t ~ T~afJ{1P4+t~ (T~aaa+ T~fJn- T~a{1fJ- T~an)P! 
a a a a 

a,c.{3,c.,,(= a, b, and c in cyclic order . (4) 

I Figures in brackets indicate tbe li terature references at tbe end of this paper. 
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In (4) the following definitions have been used for the constants 

(5) 

in which the (Xv' are the 2(, 5.8 , and ~ of Ch ung and Parker and where the A, B , and C of 
Chung and Parker are the reciprocal of twice the respective moments of inertia . Also: 

'T~= 3'T~'Y~'Y + PIl'YIl'Y+ Pllnll+ P'YIlIl'Y-2'Tcc~ccll- Pccllccll- Pllccccll- 2'Tcc yccy- Pccyccy- PyccCC'Y (6) 

'T~aaa== 'T aaaa+ Paaaa (7) 

(10) 

In the preceding h~* and the 'T ccllyo and Pccllyo are those of Chung and Parker, the 'T ccllY~ 
Df Chung and Parker being the reciprocal of h4 times those of Kivelson and Wilson. 

This convenient form of the Hamiltonian reveals that a constant similar to DJ in the 
energy expression for lineal', spherical and symmetric rotors may be defined, that is, a coeffi
cient of J 2(J + 1)2 in the energy. Since this term is diagonal in J , K , M it may be factored 
out of the secular equation before its solution. 

The cyclic nature of (4) indicates that this Hamiltonian may be solved using the systematic 
procedures introduced by King, Hainer, and Cross, [4] after extension of the latter to contain 
the matrix elements of the operators P!, by the choice of th e most convenient representation , 
p . ... lIP, defined by King, Hainer, and Cross (see table II, ref. 4) . 

Defining the effective rotational constants .11v, Bv, and C. in energy units as: 

(11) 

remembering that P4=P2(P~ + P~+PD, and using the definition: 

(12) 

where (x, f3 and 'Yare taken as a, b, and c in cyclic order, we arrive at the following most 
convenient and explicit form for the vibrational-rotational part of the Hamiltonian: 

H = Ht-h:*= [.11./li}-J(J+ 1) (fi,2f4)'T~ a]P~+ [B./h2-J (J + 1) (h2/4)'Tgb] P g 

+ [C./h2-J(J+ 1) W/4)'T~clP~+ H'T~aaa+ 'T~a)P~ 

(13) 

In (13) no cross terms between the components of the angular momentum appear explicitly 
and the secular equation is ·readily set up using only the matrix elements of P~, P~, P~, P L 
Pt and P~ . 

In order to make use of the systematization introduced by King, H ainer , and Cross the 
elements of Pi and Pt must be used in the same phase as they chose for P x and P y. Nowhere 
in the literature are these elements given using this phase. They are, however, readily deduced 
from those given by Wilson [5] since the only change required from h is matrix elements is a 
reversal in sign of the K , K ± 2 elements of P~ and PZ. 

The coefficients of P~, P~ , and P~ can be regarded as effective inertial parameters with a 
J dependence in setting up the secular equation. Since the secular equation has no mixing 
between blocks of different J-factors , this observation can be used to reduce the work in solving 
the secular determinant. One merely uses a different set of effective inertial parameters for 
each J-factor. 
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Each J-factor can be fUTthel' factored as in the case of the rigid asymmetric rotor into 
four factors that can be called E ± and O± in complete analogy with the rigid case. These factors 
are conveniently written as: 

E oo ~2E02 ~2E04 0 

E ±= ~2Eoz (E zz ± E z- 2) E Z4 E Z6 0 

, /2E04 E 24 E 44 E 46 E 48 0 

0 E Z6 E 46 E 66 E 68 E 6. 10 

0 0 

and (14) 

(E u ± E 1- 1) E 13 E 15 0 

El3 E 33 E35 E 37 0 

O±= E l5 E 35 E 55 E 57 E 59 0 

0 E37 E57 En E79 E 7.11 

0 0 

wb ere E - is ob tained from E + by removing the first row and column as indicated by the dots. 

3. First Order Perturbation Theory 

Equation (13) forms a convenient star t ing poin t for a per turbation treatment. In a 
fll'st-order tr eatment t he desired energies involve only the diagonal values of the per turbing 
operators. Consequen tly, eq (13) may be rewl"i t ten using only the average values of these 
operators in a representation in which the semirigid energy is di agon al, 

E=Et+HT~aaa+ T~a)<P~>+HT~bbb+ T~b)<P~>+HT~CCC+T~C)<~>' (15) 

The values of <P~>, <P'~>, and <P~> can be obtain ed [rom the work of Schwendeman [6]. 

For SOHle purposes it may be convenien t to use the symmetric rotor type centrifugal dis
tortion constants given by Kivelson and Wilson rather than the T~IM' These cen trifugal 
distor tion constan ts of Kivelson and Wilson can be given accurate to the presen t order of 
approximfttion of the H amiltonian by simply replacing the T~lhO of Kivelson and Wilson by T~~~o' 

4 . Sum Rules 

R ecently sum rules for the energy levels of an orthorhombic asymmetric ro tor have been 
published [7] . By the substitu tion mentioned above in a 1'representation [4] these sum rules 
can be made valid to the present order of approximation . To obtain these sum rules sub titu te 
the righ t hand side of the following equations for the terms on the left hand side which appear 
in the sum rules. 

A = A v 

B = Bv 

C=Cv 
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R 6- 1
1
0 DK= 10 [(r~aaa+ r~bbb+ r~CCJ+ (r~a+ r~b+ r~C)] 

-;0 (15DJ+ 5DJK + 3D K)= 1o [ ( r~aaa+ r~bbb+ r~CCJ-% (r~a+ r~ b + r~C)] 

DJ-20J-~ DK=~ [( r~aaa+ r~bbb-4r~ccc) + (r~a+ r~ b + r~C)] 

DJ+20J-~ DK= io [( r~aaa+ r~cCC -4r~bbb) + (r~a+ r~b+ r~C) ] 

D J- R6 -110 D K= 10 [( r~aaa-4T~ bbb-4r~ccc) + ( r~a+ r~b+ r~c)] 

6R6+~ DK= 10 [(3r~bbb+ 3T~ccc- 2r~aaa)+(3T~b+3 T~c-2 T~a)] 

2(R5+ R 6+ }{o DK~ = 10 [(3r~ ccc -2r~bbb -2T~aaa) + (3 r~c- 2r~b- 2r~a)] 

2 (R s-R 6- }{o DK) = 10 [ (2r~ccc+ 2r~aaa-3r~bbb ) + (2 r~c+ 2T~a-3 rtb )]' 

5 . Planar Orthorhombic Molecule 

(16) 

Dowling [8] and Oka and Morino [9] have given relations among the ra~1" of a planar 
orthorhombic molecule. Noting that the plane of the molecule must be the ab plane these 
become 

rbcbc= T caca= 0 

(A)2 (A)2 
Taaaa= c: Tccaa - B: Taabb· 

As corresponding relations among the pa~1" of the planar orthorhombic molecule have 
not yet been worked out, no special relations can yet be said to exist among the T~Bro' 

6 . Conclusion 
The H amiltonian of an orthorhombic asymmetric ro tor molecule, to the approximation 

considered in this work, has been set up in nine effective constants occurring as coefficients of 
six rotational operators. 

This Hamiltonian appears to be in the simples t possible form, and to provide the most 
convenien t starting point for any type of calculation concerning the rotation of this type of 
molecule. 
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