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Group represe ntation t heo ry is app lied to t he problem of calculating the r elaxation 
modes of a point defect t rapped n car an impurity a tom or other defect in a crystal, where 
more t han one set of n eighboring site's is available t o t he point defect . For illustration, t he 
case of a cation vacancy trapped ncar a divalent impurity in t he sodium chloride lattice is 
treated, including nearest- a nd next-nearest-neighbor sites. 

Unve n a nd van Santen [ljl and IVachtman [2] have 
used group th eory m ethods to determin e the relaxa­
lioll modes appropriate to a vacan cy tr apped in th e 
vicinity of an impuri ty ion in a n ionic crystaL 
Wach tman applied th e r esults to a study of 1.'1102 

containing Ca++ and oxygen ion vacancies. Haven 
a nd va n San ten tr ea ted th e case of a sodium-chloride 
Ilt tLice containing divalen t impmities and sodium-ion 
vacancies. They gave complete solu tions for all 
lllodes [or the r elaxa tion involving only n ear-es t­
neighbor posi tions, and also considered sever al spe­
cial cases when next-nearest-neighbor positions were 
allowed as well . Previously, LidiaI'd [3] h ad solved, 
wilhou t r estrictions, for the electrically active r elax­
ation illvolving n ext-n earest-n eighbor positions, bu t 
had not distinguish ed th e two distin ct modes presen t 
ill his solu tions. Dreyfu s [4] showed that Licliard 's 
solu bon was indeed equivalen t to two electrically 
ac tive modes. H aven and van Satnen h ad also ob­
t ltin ed two electrically ac tive relaxation modes. 

The group theory methods can in fact b e ver y 
I'Mdily ex tended to include any number of additional 
se Ls of neighbors. The problem of th e un driven r elax­
at ion can b e expressed m ath ematically in m atrix 
form [2]: 

( d )-? 
elt 1+0 p=O (1) 

where 1 is th e iden tity m atrix ; 0 is a ma trix in which 
th e clem ent in th e i th row and j th column is th e 
negative probability per uni t time of a jump from th e 
j lh into the ith site, and in which the ith diagonal 
elem en t is th e sum of all jump probabili ties out of 

~ 

the ith site; and p is the vec tor whose ith component 
is th e probabili ty of occupa tion of th e ith si te by th e 
poin t-defect. T he eigenvectors of 0 in th e space of 
~ 

p are then th e relaxation modes. 
Since by defini tion th e various sets ar e not carried 

in to each oth er by the point-group operations of th e 
crys tal , th ey correspond to independen t, orthogonal 
su bspaces of th e vector space defined by the oceupa-

1 Figures in brackets indicate the litera ture references at the end of this paper. 

tion probability of the allowed sites. H ence the r e­
laxation modes cOl'l'esponding to th e various appJ'O­
pri~t te irredu cible represen tations of th e poin t grou p 
can be found separately for e ~tCh se t , and th en com­
bined in a simple fashion . The rel~txation modes for 
th e whole sys tem, involvin g all allowed i tes, will b e 
jus t lineal' combin ation s of th e modes for th e several 
se Ls, combining Logeth er only modes belonging to Lhe 
same ilTeducible r epresen ta tion and arising, as par t­
ner s, from the same symmetry-b asis fun ctions as 
discussed by Bethe [5]. 

Use of standard maLrix alge bra m ethods [6] allows 
th e problem to be solved. A real , or thogon al trans­
formation m atrix may be formed from Lhe uncom­
bined relaxaLion modes as columns. This m atrix 
transforms C Lo r edu ced form, from which the eigen­
values a nd th e coefficien ts in Lhe linear combin ations 
of un combined l'elaxaLion modes that consLit u te th e 
eigenvectors may be cltlculated . The eigellvalues 
ar e just th e r eciprocal r elaxation tim es. One eigen­
valu e is always zero , cOl'l'esponding to th e <'l{uilib riuffi 
distribution of th e defects. 1£ th e co rresponding 

~ 

normalized eigenvector is U], and th e oth er n ormal­
~ 

ized eigenvectors ar e deno Led by V i , then Lhe solu­
t ions to eq (1) can be wri tten 

-> [ -> N -> ] ( )-1 p= UI+~ ! iU i ~ U lk 
.=2 , k 

l i=liO exp [- Ait ] 

where the 1;0 ar e determined by the initial distrib u-
~ 

tion, the Ul k are the components of UI, and th e Ai are 
th e eigenvalues, and N is the to tal number of siles 
available. 

Application of this technique to th e problem of 
th e mo tion of a sodium-ion vacancy trapp ed n car a 
divalen t impurity ion in the sodium-chloride lattice, 
and allowing jumps among nearest and nexL-nearest 
n eighbors as well as interch ange b etween Lhe 
impurity ion and the vacancy on a n earest-neighbor 
site, r esults in the following (unnol'malized) r elaxa­
tion modes [7] : 
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Mode n umber Description 

1_ _ ___ ______________________ Equilibrium _____________ _ 
2_ _ _ ______ __________________ Hydrostatic ______________ _ 
3,4,5,6 ____________________ Uniaxial compression _____ _ 

7,8, 9 _______________________ Shear _______ _______ ______ _ 
10,11, 12 ___ __________ _____ __ Inactive __________________ _ 
13,14,15, 16,17, 18 _____ _____ E lectricaL _______________ _ 
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Irred ucible 
representation [8] 

MODE NUMBER 
7,B,9 

MODE NUMBER 
10, II, 12 

MODE NUMBER 
13,14,15,16,17,18 

Relaxation frequen cy 

a 
2(w,+2w.) 

(3w,+w,+2w.) 
± [(3w,+w,-2w,)'+2w3W,]' 
2(2 w,+W3) 

2(3w,+w,+w,) 
(w,+w,+w3+2w.) " 

±[(w,+w,+w,-2w.)'+4w3W.], 

Occupation ratio, a 

W3/W. 
-2 

[(3W,+W3- 2w ,) 
'fO[ (3W,+W3-2w.) '+2W3W.] t )/WI 

In this table, the w's represent the jump frequencies 
for the unit motions, as follows: wI - between nearest­
neighbor positions; w2- interchange of the impurity 
ion and the vacancy in a nearest-neighbor position ; 
w3-nearest-neighbor to next-neal'est-neighbol' posi­
tion; and w4- the reverse of W3' For any group, such 
as modes 7, 8, and 9, having the same relaxation fre­
quency, any linear combination will also be a relaxa­
tion mode. In the group 3, 4 , 5, and 6, there are two 
pairs distinguished by the cube axis along which the 
uniaxial compression acts. Note that relaxa tion 
along the third axis is the negative sum of those along 
the other two axes. In the electrically active group 
13 to 18, there are three pairs, again corresponding 
to the three independent cube axes. The occupation 
ratios , a, given in the last column are defined in the 
sketches shown in the figure for the various modes. 

The author is grateful to J. B. Wachtman, Jr. , for 
the original suggestion that led to undertaking this 
problem, and to both J . B. Wachtman, Jr., and A. H . 
Kahn for extremely enlightening discussions. 
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