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A systematic approach is prescntcd for fi tting empiri cal expression s to data de pendin g 
on two variahles . The problem can also be described as the simultaneous fi tt ing of a fa mily 
of curves depe ndin g on a parameter. . 

The proposed method redu ces a surface fittin g problem Lo Lh at of fitting a few function s 
of one vari able each. First, the s urface is expressed in ter ms of thcse on e-variable function s 
(md using an extens ion of two-way a nalys is of variance, the acc uracy of t his fit is assessed 
without having to determin e, at this poin t, the nat ure of t he oll e-variable func t ion s. The n 
the one-variable fun ction s are fitted by cus tomary curve-fitLing proccdur()s. ' 

For illus tration , the method is appli ed to two sets of ex perime ntal data. 

1. Introduction 

A freq uenLly occurring situaLion in sc ien lific wOl·k 
is one in which the relaLionship betweenLwo quan­
tities is eXl1.mined for a series of valu es of a third 
quanti ty. For example , in the Lhermodyn amic 
studies of gases the pressure-volum e relaLionship 
may b e examined at various temperatures. The 
results of su ch experiments are often presented in 
terms of a one-parameter family of curves. Alter­
naLivcl~T , one may describe the problem as thc fLUing 
of a surface in a space of three dimens ions. 

An analysis of a set of data (or curves) of this type 
follows one of two poss ible lill es : either a m odel is 
postulated on Lhe basis of ph~-s icochemieal hypo th­
eses, in which case th e main p urpose of t he analysis 
is to verify the adequacy of th is m odel, and possibly 
to estimate certain c Ilsta,nts occurring in the m odel; 
or t.here exists no pertinen t theOl'~T , in which case the 
problem consists in finding a satisfactory empiri cal 
representation of the datiL. Thus, in our example , 

l" one might postulate Van del' Waals equation: 

! 
(1 ) 

t where p, V, and T represent pressure, volume, and 
temper ature, R, the gas constant, and a and b two 

~~ constants to be inferred from tbe data. The postu­
lation of this equ ation would put tbe problem in 

> t be first category. On the other hand , the experi­
menter may desire to determine tbe form of the 
equation t bat best represents his data, without 

,>. committing himself to any specific preconceived 
equation such as (1). In that case, which consti­

:'> t utes a problem of the second category, the choice 
of a suitable equation may present considerable 

," difficulties. There exist few, if any, guidelines to 
assist one in the selection, and Lrial and error is the 
only way by which a particular equation is finally 

chosen . A widel)- used sta tistical procedUl"e for 
fiLting curves and sUl"f~lces is thc meLhod of least 
squares. Application of this method req uires Lhat 
some speeific functional form be agreed upon prior 
to the fitting process. This process serves to estimate 
t hc unknown parameters and to ('valuate Lhe ade­
quacy of Lhe fit in terms of lhe smallness of the 
rcs iduals. There is no assuranee , b.,' t his met hod, 
t ha t a much beLter fLt might no t be achieved b." 
an entircl.\' diiI"eren t funcLi on~ll [ot·m. Also, i [ the 
fLt tmns out to be in (I,dequate, Lhe method of least 
squares ~' i elds litLle, if an.\', inform a Lion regarding 
the direcLion in which one ou ght to search [or' a more 
appropria te model. < 

In this paper , the emplrical fi tting of a £amil.\' of 
CUl"ves is attacked in a systematic \\Ta.". l\1athe­
matical expressions are used involving funcLions 
t hat depend each on one variable only. The naLure 
of each of these functions is leIt entir'ely open in the 
init.ial fLtting process, and the aclequac.\- oI t he fit is 
judged without having to spec-ify the naLure of these 
fun ctions . Thus, one need not estimate the values 
of any parameters before judging the success of the 
fit . 

The specmc examples presented in this paper are 
used only to illustrate the mathematical approach 
and not to propose alternative equation of state, 
either for rubber or for ethylene. 

2 . Generalized Model 

For the sake of clarity, we shall discuss the proble m 
first in terms of eq (1). Rewriting eq (1) as : 

p=( V~)+(V~b) T (2) 

we see th at for any particular value of 17, it repre­
sen ts simply a linear relationship between p and T. 

~ 259 
i 

? 



Thus, for any value of V, a plot can be made of p 
versus T , and a straight line fitted to the plotted 
points. If data are available for different values of 
V, this method will result in a collection of straight 
lines. one for each value of V. The slope of the 
straight line, corresponding to any given value of V, 

is V R b and the intercept is ;. Thus, by studying 

the relationship between the experimentally deter­
mined slopes and the corresponding values of V, one 
can obtain an estimate of the parameter b. Similarly, 
from the intercepts an estimate of a can be obtained. 

So far , no new technique of analysis has been intro­
duced, and the procedure is entirely contingent on 
the linearity of p in terms of T. Note, however, that 
in fitting each straight line, no use has been made 
of the fact that the slope depends on V in accordance 

with the function V ~b or that the intercept is in­

versely proportional to V 2. It is only in the estima­
tion of b and a that consideration has been given to 
these facts. 

Suppose, now, that the experimenter is not com­
mitted to eq (2) as the only possible representation 
of his data, or that, in fact, he knows this equation to 
be unsatisfactory for that purpose. It is then possi­
ble to suggest an immediate generalization of eq (2), 
far less restrictive than this equation, that may be 
more adequate as a representation of the data. 

y..,r e note that eq (2) belongs to the general class. 

p = f(V) + g (V)h(T) (3) 

where .1 and 9 are two distinct functions of volume 
only, while h is a function of temperature only. 
Equation (3) is more general than eq (2) in that no 
assumptions are made regarding the form of the func­
tions .1, g, and h. For example, h(T) may be a 
quadl·atic, or an exponential, or any other desired 
function of T. Nor is it necessary to assume that 

- a 
fey) an d g(V) obey the functional forms V 2 and 

V R b required by Van del' Waal's equation. Any 

dependence of h on T and off and 9 on V is admissible 
in the general formulation of eq (3). 

We will adopt as our generalized model that repre­
sented by eq (3). First we describe a method for 
fitting th·e model represented by eq (3) and for evalu­
ating the adequacy of the fit. Then we illustrate 
the usef~lness of this model by applying it to two sets 
of experimental data. 

3. Analysis of the Generalized Model 

Let. the data be in the form of a rectangular array, 
in which each row is associated with a particular 
value of V, and each column with a particular value 
of T . Each cell of the array then contains the value 
of pressure corresponding to the volume and temper­
ature values represented by the row and column 
intersecting in that cell. Such an arrangement is 
shown in table 1. 

T ABLE 1. Schematic of p-V-T data 

'remperature 

Volume TI T , ... Tj . .. T n 

VI 

V, 

Vi 

Average 

The main difficulty in fitting eq (3) lies in our 
ignorance of the function hCT) . Indeed, eq (3) ex­
presses for any given value of V, a linear relation 
between p and hCT ). If h(T) is known for each T , 
the straight line corresponding to each value of V 
can at once be plotted and the nature of the functions 
fCV) and g(V) can then be determined by studying 
the slopes and intercepts of the lines as functions of 
V. Let us note, however, that a similar analysis can 
be made as soon as we have a set of values li.nearly 
related to hC T). For if a func tion H ( T ) is defined by 

H (T) =a+f3h(T ) (4) 

eq (3) can be written 

p= A(V) + B(V)H(T) (5) 
with 

A(V) "=f(v)-~ g(V) (6a) 

B (V)=g(V) 
f3 

(6b) 

I 

V 

-
I 

I . ' 

<' 
I 

"1 

Then eq (5) also represents, as does eq (3), a linear 
relationship between p and H (T ) for each value of .j" 

V . If H (T ) is known, the functions A(V) and B (V ) 
may then be determined from the linear fits of p 
versus H (T), for different values of V. Now when 
h( T ) is unknown, there exist nevertheless many 
functions H (T ) the values of which can be inferred 
from the data for all T values represented in the 
table. One of these functions is given by the 

')i. column aver ages PT of table 1. This follows at once 
by averaging both members of eq (3) over all rows, 
for any given value of T,: 

(7) 

" 
I 

J 
This function belongs indeed to the class of H (T) j 
defined by eq (4). For reasons of statistical con- " 
venience, a preferable choice is given by J 

I 
(8) ) I 
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where p is the grand fLVCl'fl,ge of all Pr values in the Zv, r=}(V) + g(V) h(T) +e (12) 
ta ble. 'iiVhen HCT) is selccted Lo be Or, as defined 
by eq ( ), we will refer to the cOlTesponding repre- which CfLn be written in the sLfLnclm'd for lll : 
sc:ntaLion by eq (5) as the "sLandiLl'd form," Thus, 

~ the standm'd form is given by: Zv, r= Av+ B vOr+ e (13) 

p= Av+ B vOr 

where OT is defmcd by (8) and: 

(9) where B = l and 0 = 0. pecifically, 0 7, is defined by 

;.; 

I 

Av=}(V)_I-}) g(V) 
9 

Bv=g(~) 
9 

(l Oa) 

( lOb) 

l From (lOb) it follows that the average of Bv over 
all rows is equal to unity. On the other hfLnd, eq 
(8) shows that the average of the Cr over all col­

I umns is equal to zero. Thus: 
l ~ 

(ll ) 

It is easily verified that these two conditions are 
necessary and sufficient for assuring thfLt tbe repre­

'. sentation is in the standard form. Therefore, fL 
function of two vfwifLbles, as represented in tfLble 1, 

I~ may be approximated, in the form of eq (9), by three 
single- vm'iable functions. The function OT of tem­
pemtul'e is first computed from the column averages 
of table 1 by eq (8). A lineal' fit of each row of the 
table versus OT then gives the values of the functions 

'> Av and B v as the intercepts and the slopes of the 
fitted lines. 

;- An fLnalyticfLl formula for the function of two 
variables may now be obtained by fitting empirical 
formulas to the curves OT versus T, Av versus 11, 
fLnd Bv versus 11. 

4. Statistical Model 

I So far we have not considered errors of measure­
ment. Let us now aSSlm1e that the experiment has 

' . been conducted ill such a way that 11 and Tare 
controlled and p is a measurement subject to experi­

'> mental error . Then eq (3) becomes: 

p j(V) + g(11) h(T )+ e' (3a) 

:" 
I' where e' is a random error of zero expectation. For 
'~ greater generality, the first member in eq (3a) can 

be replaced by any suitable function of p. In work 
dealing with equations of state, such as pressure­
volume-temperature relfLtionships, it i customary to 
study the quantity p 11. Replacing p by p 11 in the 
left-hand side of (3a) would visibly not change the 

I). functional natUl'e of the :right-band side of this rela­
~ ... tion fLnd it would generally result in greater homoge­
, neity in the variance of the errol' term. R epresenting 

the measured qualltiLy, 01' any appropriate function r of it (as in this case p 11) by ZV, T, we have the 
general relation 

(14) 

where Zr is the column average for column T and Z 
the grand average in table 1, the cell entries of which 
are Z V, T' In regard to the errors, e, we will assun1e 
that they are normally and independently distribu ted 
constituting a sample from a normal population of 
zero mean, and variance equal to (J2. 

Under these assumptions, the values Zv, T and ZT 
(from which the OT are calculatedL are no longer 
statistically independent, nor are ZT and OT in­
dependent. It has, however, been shown [1]1 that 
the following analysis is not invalidated bv this 
circum stance. . 

5 . Statistical Analysis 

D enote by m the mUllber of rows of tablc 1, and by 
n the numbcr of its columns. For each row, a straight 
line is fitted to the set of points (Z, 0) using the usual 
method of linear regression . This yields the esti-
mates, 

A 2:ZV. 1' 

A v =-=T'---_ 
n 

(15) 

(16) 

and an estimn,te of the variance about the regression 
line: 

n- 2 
(17) 

Since the variance of E is assumed to be the same for 
all values of 11, the m estimates given by eq (17) 
for the m values of 11 may be pooled. How this is to 
be done will be shown in the discussion on the 
analysis of variance. Note, however, that an 

A 
inspection of the m values of 11(e) is of considerable 
interest, especially for the detection of trends 
related to the magnitude of 11. A pooled value is 
meaningful only in the absence of such trends. 

A 
From (17), or from a pooled value of 11(e) , estimates 

A A 
of the standard errors of Av and Bv may be obtained 
by the usual formulas. 

l Figures in brarket s iudicate the literature references at the end of this paper. 

>­

( 
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6 . Case of Concurrence 

Among the many possibilities for the structure of 
a family of curves, two special cases deserve partic­
ular attention. The first concerns a family of "par­
allel" curves. In this case, the straight lines result­
ing from the application of the method described in 
this paper will also be parallel. Their slopes are then 
independent of V and all equal to unity so that the 
model reduces to the "additive" type. 

Z v, T= A v+ CT + E= Av+ ZT - Z + E. (18 ) 

The second special case is that in which all the 
curves of the family pass through a common point. 
We denote this situation as the "concurrent" case. 
When the curves are concurrent, then so are the 
straight lines resulting from our analysis. Now a 
necessary and sufficient condition for a collection of 
straight lines of the type 

Z = f(V ) + g(V)h(T) (19) 

to concur, is tha t a linear relation exist between f(V) 
and g(V ) . For if h(T o) , 2 0 are the coordinates 0'1' the 
common point, the following identity must hold for 
all V ; 

2 0=f (V ) + g(V)h(To) 
or 

f (V ) = Zo- [h(To)]g(F ). (20) 

This equation expresses a linear relation between f (V ) 
and g(V) , since Zo and h(To) are numerical const~mts. 
Conversely, if this lineftl' relation holds, then tbe 
entire set of straight lines passes through the point 
[h (To) , Zo], and hence is concurrent. 

The importance of the concurrent model is that in 
it, the algebra,ic expression of the structure of the 
family of curves becomes qui te simple. Indeed, re­
placing in eq (19) , the quantityf(V) by its expression 
given by eq (20) , we obtain 

Z = [Zo - h(To) g(V)] + g(V)h(T ) 
or 

Z - Zo= g(V) [h(T) - h(To)]. (21 ) 

Thus, in the case of concurrence, the measured qurU1-
tity is essentially the product of two functions , the 
first involving V only, and the second only T. 

We will show in the next section how the con­
currence of a family of curves is revealed by the 
analysis of variance. 

7. Analysis of Variance 

The theoretical basis of the analysis of variance is 
discussed in reference [1]. The analysis is based on 
the standard form of the model, as given by eq (13), 
which can be rewritten as 

Zv, T=Av+ CT+ (Bv- 1) CT+ E. (22) 

To each of the four terms in this expression cor­
responds a sum of squares, computed as indicated 
in table 2a. 

TABLE 2!1. Analysi s of variance 

'rCl'm in Degrees of Sum of squares M:ean square 
eq (22) freedom 

A v m - l SSA=n~vA'2v SSA 
m- l 

Cr n- l SSc=ml:,.C',· 
SSc -
n- l 

( Bv- l ) CT rn- I SS B'C= l:v(Bv- l )'l:rC'r 
SSBXC 
m - 1 

(m-1)(n-2) SS,= l: vl:r[Z v r-C!v+ B C7-)]2 
S8, 

(7Il - 1) (n- 2) 

It is seen from table 2a that the usual interaction 
term is here partitioned into two parts, (B v - 1)CT 

and E. Thus, only (m - 1) (11 - 2) degrees of freedom 
are avail able for random error, the remaining (m - 1) 
being allocated to the important "slope effect." 
The annlysis . thus provides an answer to the ques­
tion of how the m estimates given by eq (17) are to 
be pooled: the total number of degrees of freedom 

/ 

for the pooled estimate is (m - 1) (n - 2) (rather than 
m (n - 2) , because of the correlation between the m 
separate estimates) . The m - l degrees of freedom 
corresponding to the term (Bv - 1) CT provide a l 
means for testing the "paral1 elism" of the family of j 

1 
~ , 

1 

CUl'ves. In the case of parallelism the mean square 1 
corresponding to the (B v - 1)CT term will not be -;, 
significantly larger than the E mean square and the I 

model underlying the set of curves becomes the "" It' 
simple additive model of ordinary analysis of 
Varl<lnce. 

The existence of a point of concurrence is tested 
by a further partitioning of the interaction sum of 
squares . The test is based on the theorem proved 
in the preceding section that a necessary and suffi­
cient condition of concurrence is the existence of an 
exact linear relation betweenf(V) and g(V) . In view 
of eqs (lOa) and (lOb), t his implies a linear relation 
between Av and Bv. But then the correlation be­
tween these two quantities is unity. Consequently, 
the test for concurrence is carried out as follows. 
First, compute the correlation coefficient r A B be-

A" ' 
tween the quantities Av and Bv. Then partition 
t he (Bv- 1)CT term as shown in table 2b. If the 
mean square for concurrence is significant with 
respect to that for nonconcurrence and the latter is 
compa~'able in m.agnitude to the E I?ean square, 
there IS good eVIdence that the famIly of curves 
pass through a common po in t. Of course, one can 

" " also plot the m points (Av, Bv); if an exact straight 

'L., 

I 
\ 

...1 

line (to within E errol') results, there is concurrence p 
in the family of curves. 

TABLE 2b. T est for concurrence 

'['crm iu eCl (22) Degrees of Sum of SQua res 
freed 0111 

---------1-------1-------------------
(E v-1) CT m - l SS 8 XC 

Concurcence SS 'Q n,= [SS B, c][r';.8l 

Nonconcurrence m -2 SS nonconc=[SSBxc] [1-r2,t,8] 

I 
Mean 
square 

I SSB'C 

I· m-l 

• SS COllC 

I SS nonconc 

I m-2 
1 
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8 . Further Generalization of the Model 

Suppose that application of the proposed method 
to a particular one-para meter family of curves has 
b een unsuccessful. In term s of eq (13), this would 
be shown by the failure to obtain straight-line 
relationships when Zy, T is plotted versus CT , for 
par ticular values of V. A natural extension of the 
procedure is to try a mod el of the type 

(23) 

that is, to fit a quadratic, rather thfm a linear rela­
tion, to Z as a function of the column averages. If 
necessary, a polynomial of degree higher than two can 
be tried. Experience shows that th e quadratic 
model represented by eq (23) may give very satis­
fac tory r esults where the simpler linear model fails. 
For computational convenience, i t is often advan­
tageous to make the quadratic fit by the method of 
orthogonal polynomials in OT, d espite the fact t hat 
t he OT can , of course, not be expected to be equi­
dis tant. The r elative adva.ntage of using orthogonal 
polyno111 ials increases with the numb er of rows in 
the table , sin ce all rows are fi tted versus a constant 
set of polynomials in Cr. For the quadratic model, 
th e m ethod of orthogonal pol:vnOJlIi als yields the 
equation 

(24) 

where Ay and B v and OT are identical with the cor­
responding quantities used ill t he linear fit , and 
Q( (IT) is defined by: 

(25) 

where n is the number of values of T (number of 
columns). The estimate of D y is given by 

" D v (26) 

The improvement of the quadratic fit over the linertr 
one can be assessed by the corresponding reduction 
in th e sum of squares in the analysis of variance. 
D enoting the reduction in the sum of squares due 
t o the qUfldratic term by SSD, we have: 

" SSD = (:>:D~) ~[Q ( CT )J2. 
v T 

(27) 

The corresponding number of degrees of freedom is 
m - 1, where m represents the number of V values 
(number of rows). 

9 . Application to the Compression of 
Vulcanized Rubber 

The data in table 3 are taken from a study of the 
compression of natmal r ubber-sulfur vulcanizates 

[3 ]. Tabulated are specific vol ume measurements 
for preSSLU'e values ranging from 1 to 10,000 atm 
over a tempera ture range extending from. 20 to 80 
DC. The analysis WrtS m ade using the program for 
the IBM 7090 computer , to be described in the 
last section. The analysis of v!triance i shown in 
table 4. This rtnalysis corresponds to a FLt of the 
data by the empirical formula 

(28) 

wh ere V is tbe measured specific volum e, Ap and 
B p rtr e two functions of pressure, and 0 1, is a func­
tion of t.emper ature. The symbol e represents an 
"error-term," including the effect of experim ental 
enol' ~ts well as thrtt of any inadequacy of eq (28) 
to represent the data. It is seen that the s tandrtrd 
devirttion corr esponding to this error term is 0.00094. 
Since the values of specific volume are all of the 
order of 0 .85, the coefficient of vrtl'iation of the 
errol' term is about 0.11 percent. 

T A B LE 3. Spec£jic volume of Tubb er 

'I'empcraturc, OC 
Pressure 

21.0 38.5 50.2 64.0 81.5 

atm 
1 0.93397 0.94143 0.94826 0.95639 0.96667 

1000 .91678 .92204 .92673 .93344 .94077 
2000 . 8994l .90189 .90464 .90953 .91360 
3000 .88447 .88645 .8R880 .89'231 .89436 
4000 .812 14 .87336 .87572 .87864 .87937 
5000 .86056 .86188 .86424 .86697 .86680 
6000 .85038 .85 134 . 854lO .85654 .85636 
7000 . 84Jl3 . 8420l .84480 .84717 .84708 
8000 .83263 .83345 .83608 . 83P28 .83828 
9000 .82647 .82563 .82859 .82996 .83074 

10000 .8 l834 .81829 .82129 .82249 .82360 

T ABLE ll. Specific volwnf:, oj j'ubber- analysis of variance 

Term in cq (28)' Degrees Sum of M oan 
of freedom squares square 

A. JO 0.0878718 0.008787 
Or 4 .0009200 .000230 
(B.- I)Cr JO .0004684 .000047 . 30 . 0000264 .00000088 

• (Equation (28) may be writtoll as follows: 

V=A.+C~+(B.-I)CT+" 

The values of A p , B p , and CT are listed in table 5. 
Their relation t.o pressure and temperature are 
shown in figures 1, 2, and 3. It is interesting to 
compare the results of this analysis with those of 
the conventional analysis of variance for a t.wo-way 
table. I n such an analysis, the effect of "slopes" 
would not have been separated from that of random 
interaction. Consequently , the trend . shown in 
figme 2 would have been ignored; i.e., t he curve in 
this figure would h ave been replaced by a hori­
zontal straight line. The "error-term" would have 
b een inflated by the trend of figure 2 and would have 
yielded a mean square of 12 .37 X 10- 6 (the pooled 
mean square for the last two term in t.able 4) 
corresponding to a standard deviation of error of 
0.0035, and a coellicient of variation of roughly 
0.4 percent. 
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TABLE 5. Specific volume of rubber- parametels 

Pressure A. Bp Tempera- CT 
ture 

1 0.9494 2. 77~7 21. 0 -0.005370 
1000 .9280 2.0484 38.5 -. 003416 
2000 .9058 1. 2497 50.2 -.000191 
3000 .8893 0.8905 64.0 +. 003306 
4000 . 8758 . 6899 81. 5 +. 0056"tl 
5000 .864 1 .6149 
6000 .8537 . 5020 
7000 .8444 .5985 
8000 .8357 . 5558 
9000 .8283 .4570 

10000 . 8208 .5 167 
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FIG U R E 3. Compression of vulcanized mbber, pammeter C. w ~ 

By means of figures 1, 2, and 3, the effects of 
pressure and temperature on specific volume have 
been quantitatively separated. Figures 1 and 2 
r epresent the effect of pressure; by fitting empirical 
curves to these graphs, isotherms can be obtained 
for each of the temperatures included in the st'udy. 
Figure 3 r epresents the effect of temperature. It 
exhibits a possible discontinuity of slope which, if 
real, would be interpreted as a so-called "glass 
transi tion." 

In the next section we will discuss another appli­
cation, for which an analytic expression will be 
derived to represent the data, 

10. Application to the Isotherms of Ethylene 

The data for this illustration are taken from a 
published study of the isotherms of ethylene [2], for 
temperatures between 0 and 150 °0 and pressures 
up to 3,000 atms. The data for 0 °0 were incom­
plete. A complete rectangular array could be ex­
tracted from the data, covering 6 values of tempera­
ture (columns), and 40 values of density (rows) . 
However, in order to demonstrate the capabilities of 
the proposed fitting process, only 13 densities were 
selected from this set. These data are shown in 
table 6; they were analyzed by the IBM 7090 pro­
gram. An examination of t he residuals revealed, 
however , a marked increase in variance with an in­
crease in density. Therefore, the analysis was re­
peated, after "weighting" the rows, r epresenting 
densities, by an appropriate factor. This "weighting 
by rows" is a simple procedure. Let 

and let the variance of ~d,T be given by 

I 
~ 

" It , 

FIGURE 2. Compression of vulcanized rubber, parameter B. 
(30) , 
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Then, mul tiplying eq (29) by Wd we have: 

TABLE 6. Equation oj state Jor ethylene a 

'rem pcralurc, °C 
Density 

25 50 75 100 125 150 

19.0407 0.97365 1. 07743 1. 180 10 1. 28 137 I. 38277 1. 48309 
47.875 . 80607 0.92622 1. 04361 I. 15894 1. 27309 1. 38615 
90.841 . n0885 .75053 0.88775 1. 02243 1. 15528 1. 28704 

133.083 . 47510 .63254 .78765 0.941 27 1. 09356 1. 24486 
186. 001 .37578 .55506 .73693 .9 1911 I. 10127 1. 28330 
205.88 .35635 .54767 .74293 .93895 1.1352 1 I. 33117 
23860 .35108 .56984 .79304 I. 01706 1. 24101 1. 46466 
266.25 .38459 .63473 . 8~799 1.14112 1. 39357 1. 64500 
291. 80 . 46:132 . 74~81 1. 03528 1. 32004 I. 60310 1. 88420 
315.34 .59374 . 916(i4 1. 23~07 1. 55592 I. 87086 2. 18230 
375.30 1. 31315 1. 749 11 2. 17600 2.59200 3.00240 3.406:30 
415.87 2.2661 2.7896 3.2984 3.7906 4.2745 4.7487 
437.03 2.9648 3.5354 4.0890 4.6228 5. 1463 5.6596 

• The tabulated value is p V. 

Denoting (-JWd)(Za,T) by Zt T we obtain 

(31) 
where 

(32a) 

(32b) 
and 

(33) 

Thus, eq (31) now represents a family of curves with 
constant error-variance; the CT are redefined in 
terms of the Z1,T and Ad and Bd are computed from 
A~ and B j using eqs (32). 

In the present case, the weights Wa were chosen in 
accordance with the relation 

(34) 

where Ad is of course simply the average of all p V 
values in the row corresponding to density el. It 
follows from this choice and eq (32a), that the 
est.imate of A~ is equal to unity for all values of d. 

The analysis of variance is given in table 7. It 
should be noted that the latter is in terms of the 
weighted values, in accordance with eq (35) . Thus, 
the residual variance is a measme of V(E*) , not 
VeE). Furthermore, becausc A~=l for all el, the 
mean square corresponding to this term is zero. 
From eqs (30) and (33) we infer that: 

which, in view of eq (34) becomes 

(36) 

TABLE 7. Equation oj state for ethylene--analysis of variance 

Term in eq (35) Degrees of Sum of Mean square 
freedom squares 

A' 
d 12 0 0 

CT 5 7.53538 1. 50708 

(B~-l)CT 12 0.70968 0.05914 

D:(Q(CT)] 12 . 0004263 .0000355 

" 36 . 0000178 .000000494 

Residual error, us-
ing eq (31) 48 0.0004441 O. 0000092.\ 

Thus, <T,* is roughly equal to the coefficient of varia­
tion of p V. From the analysis of variance it is 
seen that this coefricient of variation is equal to 
approximately 0.3 percent using the simple model 
of the type of eq (13), and that it is reduced to 
about 0.07 percent when the more complicated model 
involving a term in Ci, is used. This model can be 
wl'itten 

or 
Zd. T= Aa+ BaCT+ Dd[ Q( CT) 1 + E 

Za.T=A~+B~CT+DdC}+ E. (37) 

The values of A~, B~, Da and CT resulting from the 
analysis are given in table 8. 

The analysis could be terminated at this point. 
Using table and eq (37), a value of Zd,T can be 
computed for any value of d and any value of T 
within the ranges of these variables covered by the 
data. This can be done by numerical interpolation 
carried out on the functions A~, B~, Da, and CT' 

TABLE 8. Equation of stale for ethylene--parameters 

DenSity A' B' D Tamper· a 
ature 

Equation (31) was fitted to the data and g:we a 
coefficient of variation of 0.3 percent. Since the 
data are believed to have a better precision than 
is indicated by this coefficient of variation, the fi t­
ting process was repeated, using the quadratic model: ------

(35) 

where Q( CT ) is defined by eq (25) and V~ is esti­
mated by a formula similar to eq (26). Tn terms 
of the unweighted data, the coefficient of the 
quadratic term is V a, where 

(32c) 

265 

19.1).107 
47.8i' 
90.841 

133.0'<3 
186. QOl 
205.8S 
238.60 
266.25 
291.80 
315.34 
375. 30 
415.87 
437. 03 

1. 229967 
1.100321 
0.954057 

.863068 

.825883 

.838570 

.902332 
1. 011673 
1. 174651 
1. 393917 
2.380897 
3.540819 
~. 351878 

0.5<;9646 -0. 177346XIC- 2 25 -0.457000 
.636773 -1. 353445X1Q-' 50 -.272319 
. 744060 -2. 1504i6X1Q-2 7.'> - . 089140 
.845462 -0. ,\91976XIQ-2 100 .092803 
. 99~293 2. 786081 X1Q-' 125 .273447 

1. 072784 3. 599158X1Q-2 150 .452757 
1.225498 3.916:304X1()-2 
1.386~8 2. 926550XIQ-' 
1. 562422 1. 179659XIQ-' 
1. 746246 -1. 032038X1Q-' 
2.298531 -7. 853346XIQ-' 
2.724986 -13. 286168XIQ-' 
2.957346 -16.109714XIQ-· 



To obtain a complete empirical representation of 
the data, one further step is required. The quantities 
A~ , B~, and Da must be expressed I1S calculable func­
tions of the dens ity d, and CT RS a calculable function 
·of the temperature T. This was done by fi tting 
polynomial expressions to each of these functions, 
using t he data in table 8. In particular, the quantity 
OT was sa tisfactorily fitted by 

CT =Co+ c1 T + C2 T 2. 

A reduction in the overall number of coefficients is 
Rchieved by introducing the quantity 

(38) 

Then, as can readily be verified, eq (37) can be 
written in the form 

It was fo und that satisfRctory fits were obtained by 
using a fourth-de(?Tee polynomial for DIf and fifth­
degree polynomials for Alf fmd BIl The coefficients 
{)f the fitted polynomials are listed in table 9. 

TABLE g.- Equation of state fo1' ethylene coefficients of fitted 
polynomials' 

De~re0 of 
krr!] in 

'Polynomial 
.1" 

·0._........ 1.0316.\ 
L _ ........ -9. 3:l337XIO-3 
2. ___ ..•... 4. 43017XIO-' 
3 .......... - 1. 23357X]Q-7 
4 ... _ ...... _ 8.03331XIO-II 
0 ... __ ... _ 2.7 ]884Xlo-I3 

R" 

a.37538X10-3 
4. 591r,OX10-' 

-3. 05037X] 0- 7 

O. 77568X 10- 10 
-2. 03756X 10- 13 
-9. 87817X iO- I' 

D" 

1. 7 58 1 ~Xl0-6 
- 1. 07282Xl0-7 

1. 13RG5XlO-' 
-3. 71lJ3X!G-I' 

0.5::2',fiXlO-I' 

(\ 
1 

C" 

-1. 406662X1 0- ' 

aFar It ", B ", and D" the polynolnials qrc in tCfrPS of the (lellsity d; for Gil, 
the polynomial is in terms of the te mperature T . 'rho CI1uation fitted to tho 
data is pV=A"+B"C"+D"(C")'. 

Using these functions, "calculated" values (de­

" noted as Zd.1') are obtained for Z d. T Rccording to the 
equation 

" " "" " " Zd. T=A~' +B~IC~+D~'(C~)2 (40) 

" "" " in which A If , BIf, DIf , and CIf are given by th e 
polynomials whose coefficients are listed in table 9. 

" Values of Z d. T for the thirteen densities and six tem -
peratures are given in table 10. A comparison of 
t hese values with those of table 6 shows that 90 per­
cent of the fit ted values agree with the observed data 
to within 0.5 percent or beLter, and that of the re­
maining ones, all but two agree to within 1 percent. 
Th e largest rela tive deviation is l.23 percent. 

The fi tting procedure has therefore been very 
successfu l for these data. Since all the data are 
fitted by a single algebraic expression, interpolation 
for either pressures or tcmperatures not used in the 
fi t should be accurate. To t est this point, eq (40) 
was used for interpolation at densities not used in 
t he fitting procedure. It may be recalled that the 

data used for the fit constitu ted a selection of 13 
densit ies from a total available set of 40 densities. 
Values of p V were now calculated for all six tempera­
t ures and the following additional densities : 111.849 , 
153.349, 221.48, 245.75, 310 .08, 355.43, and 456.85. 
This last value is ou tside the range covered by the 
fit and involves therefore an extrapolation process. 
The remaining six densities involve only interpola­
tion. Thus, the fitted surface was tested for 42 
individual values by interpolation or extrapolation. 
The results showed that for 35 of these 42 values, 
the difference "observed minus fitted" was less than 
0.5 percent of the observed value. All but three of 
these differences were smaller than 1 percent of the 
observed values. The largest difference was equal 

'" 

to 1.21 percent of the observed value. Thus, the 
values obtained by interpolation are of the same 
order of precision as those directly fitted. This 
appears to be generally true for the procedure pro- "1 
posed in this paper, provided t hat the fi ts used for 
the single-variable functions A, B , 0, an d D are all 
of sufficien t accuracy. 

T ABLE 10. Equation of state f01" ethylene calculated values 

D ensity 'r em perature, 0 C 

25 50 75 JOO 125 150 
----

10.0407 0.97650 1. 07924 L 18138 1. 28291 1. 38382 1. 48413 
47.875 .80066 0.92173 1. 04053 1.157]0 1. 27147 L 38367 
90.841 .61040 .75035 0. 88793 1. 02317 1. 15611 1. 28676 

133.083 . 48047 .63589 . 79020 0.94342 1. 0955<1 1. 24656 
186.001 .37525 .55591 .73715 .91892 L 101 18 L 28389 
205.88 .35326 .5471 5 .74 194 .03757 L 13401 1. 3311 0 
238.60 .34675 . 56859 .79126 1. 0147 1 1.23889 L 46376 
266.25 .38248 .63477 .88716 1. 13962 1. 39210 1. 6<457 
291. 80 . 46452 . 75090 1. 03614 1. 32021 L 60311 1. 88481 
315.34 .59742 .92027 1. 24037 1. 55772 1. 87233 2. 18421 
375.30 1. 31369 L 74885 2.17557 2.59397 3.0041 5 3.40623 
415.87 2.263]2 2.78469 3.29348 3.78071 4.27354 4.74519 
437. 03 

I 
2.96876 3.53605 4.08850 4.62635 5.14983 5.659] 6 

It is interesting to compare the resul ts of this fit 
with the equally empirical fitting process used by 
Michels and Geldermans [2 ). These authors fitted 
each isotherm individually, requiring a total of 42 
coefficien ts for the six isotherms, as contrasted with 

) 
I 

"I 

J 
I 

.' I 

the 18 coefficients (listed in table 9) required by the 
presen t procedure. The residuals obtained by 
Michels and Geldermans are somewhat smaller than 
those obtained by the present fit. On the other 
hand, the procedure used in this paper leads to a .... ; 
single algebraic expression to fit the entire surface. 
Differentiation is possible both with respect to 
density and temperature whereas Michels and 
Geldermans ' fit does not allow for differentiation 
with r espect to temperature. 

[) 

11 . Computer Program 

A program has been written to fi t data, to the 
linear or quadratic models on the IBM 7090 com­
puter. The program was written in Fortran . The 
original data, fitted parameters, residuals resulting 
from the fitting procedures, and analysis of variance 
are printed. Row or column weighting may be used . 

\I 
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Provision is also made lor transforming the data, lor 
combining rows or columns of the data, for applying 
specified corrections to individual data, for reversing 
rows l1Dd columns of the elata, and for omitting 
specified rows and colw1ll1s I'rom the original set of 
·data. The rows and column s of the data are 
iden t ified by alphabetical or n wnerical labels so the 
{mtput is easily interpreted without any coding. 

12. Further Generaliza tions 

Measurements dependent on two variables are not 
.always given in the form of a complete two-way 
.array, such as table 1. It is often possible, in such 
cases, to constru ct such a table by interpolation or 
curve fitting procedures carried out on subsets of the 
-data within which one of the two variables is held 
constant. 

The presentation in this paper has been in terms 
·of one-parameter famili es of Cl1l'ves. The method 
·can, however, be used for the analysis of lamilies of 
-curves involving more than one parameter. Applica­
tions of this Lype are now being made. 

13. Summary 

A systematic method has been presented for the 
.empirical fttting of daLa depending on two variables. 
Essentially, the method reduces the fitting or sur­
faces to that of functions of single variables. In Lhe 
basic model these single-varia.ble functions are COIll­

pletely arbitrary, allowing for great nexibiliLy in 
applying the method. The adequacy of Lhe model 
can be evaluated without having Lo introduce alge­
braic expressions for Lhe single-varia.ble functions. 
To obtain a complete algebraic representation of the 
surface, it is t hen merely necessary to ftt the single­
variable functions by any appropria te method. 

In cm'Lain cases i t lll ay be desirable to omit this 
last step, and still retain a workable model which 

will express the urface in terms of tabulated func­
tions of single-variables. In that case, numerical 
interpolation methods must be applied to these 
tabulated values. 

The fu'st example u ed to illustrate the method 
deals with the effects of preSSll1'e and temperature on 
the specific volume of certain types of rubber. A 
quantitative separation of Lhese effects was obtained 
in terms of tabulated values of three sinO'le-variable 
functions. The ftt by means of these functions was 
within experimental error. • 

A second example concerned the equation of state 
of ethylene. The entire set 01 data was represented 
by a single algebraic expression and a good fit was 
obtained. Eighteen coefficients were required by 
this fit , as against 42 coefficients necessitated by the 
procedure commonly used for data of this type. 

The statistical analysis required for the applica­
tion of the proposed procedure is presented. In 
addition to providing estimates for the parameters of 
the model, the analys is allows for testing the sig­
nificallce of the pertinellt effecLs. 
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puter and [or tabulation and graphing of the data. 
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