JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry Vol. 67A, No. 3, May-June 1963

Infrared Spectrum of the $\nu_2 + \nu_6$ Band of C¹³C¹²H₆*

Walter J. Lafferty and Earle K. Plyler

(February 12, 1963)

The infrared spectrum of the $\nu_2 + \nu_6$ band of $C^{13}C^{12}H_6$ has been analyzed and a value of $B_0 = 0.64865 \pm 0.00005$ cm⁻¹ determined. When this value is combined with that found in recent work on isotopically normal ethane, a " r_s " value of 1.527 ± 0.004 A for the carboncarbon bond distance is obtained. (Uncertainties are probable errors.)

1. Introduction

From recent infrared studies of ethane and ethane d_6 , a ground state carbon-carbon bond distance of 1.536 with probable error 0.002 A has been obtained $[1, 2]^1$ This bond distance is considerably higher than the C—C bond lengths, 1.526 with limits of error ± 0.002 A, obtained for the saturated hydrocarbons propane and isobutane by the " r_s " or "substitution" method in the microwave studies of Lide [3, 4]. Since the two methods of determining bond distances are only approximately equivalent due to rotation-vibration effects, this difference is not surprising.

The purpose of this work was to examine the spectrum of $C^{13}C^{12}H_6$ in an attempt to obtain a " r_s " value for the C—C bond distance of ethane for comparison with these bond lengths reported for the more complex molecules. In addition other rotational constants would be obtained which would be of use to future investigators of this molecule.

2. Experimental Procedure

The sample, which contained 59.5 percent $C^{13}C^{12}H_6$, was purchased from Merck Sharp & Dohme of Canada, Ltd. The spectra were taken with a pressure of 3.2 mm Hg total pressure (1.9 mm $C^{13}C^{12}H_6$) and an optical path of 24 m.

The spectrometer, used in this study as well as for the normal ethane work [2], has been described previously. Because of the small amount of costly sample available, a threefold longer optical path (24 m) was required than was used for ethane. This resulted in the loss of some resolution; however, lines separated by about 0.035 cm^{-1} could be resolved. The spectra were measured by using rare gas emission lines as standards. The regions between the standard lines were measured from the fringe system formed by a Fabry-Perot interferometer [5].

¹ Figures in brackets indicate the literature references at the end of this paper.

3. Rotational Analysis

As in the case of normal ethane, the only parallel band of $C^{13}C^{12}H_6$ that could be resolved sufficiently well with the instrumentation available was the $\nu_2 + \nu_6$ band at 2749 cm⁻¹. Substitution of one C¹³ in ethane results in a shift of about 4.1 cm^{-1} for the origin of this band. Since the sample contained about 40 percent normal ethane, the resulting spectrum consisted of a complicated mixture of lines from the two overlapping bands together with their accompanying "hot bands" arising from excited levels of the torsional vibration. The lines of ethane were easily identified when the spectra were compared with those obtained from the earlier studies on ethane. The vibrational shift was such that most of the P and R branch lines fell between those of the normal ethane. There was, however, some blending of the lines. Since blending can result in an apparent change of the frequency of a line, all blended lines were marked as such when assigned and given a weight of $\frac{1}{2}$ in the following calculations. Badly overlapped lines were not used in the analysis.

As in the case of normal ethane, the quantity (A'-B')-(A''-B'') was sufficiently large so that transitions from the substates K=2 and higher were resolved. The unresolved lines from the substates K=0 and 1 were not used in the calculations. The ground state rotational constants were calculated by means of combination differences from the equation

$$\Delta_2 F'' = R(J-1, K) - P(J+1, K)$$

$$= (4B'' - 6D''_J - 4D''_{JK}K^2) \ (J+\frac{1}{2})$$

$$- 8D''_I (J+\frac{1}{2})^3. \quad (1)$$

Since no substates with K greater than 6 were identified, the value of D''_{JK} obtained was highly uncertain. The assumption was then made that this constant is equal to that found for ethane times the ratio of the \hat{B} values of the substituted ethane to that of the normal molecule or 5.8×10^{-6} cm⁻¹. With this assumed constant, the resulting ground state rotational constants found by least squares

^{*}This work was supported by the Research Division of the U.S. Atomic Energy Commission

were $B''=0.64865\pm0.00005$ cm⁻¹ and $D''_{J}=8.4\pm$ 1.4×10^{-7} cm⁻¹ where the uncertainties cited are probable errors. The values of D''_{J} calculated is in good agreement with that found for normal ethane $(D''_{J}=7\pm2\times10^{-7}$ cm⁻¹).

The upper state rotational constants were determined using the equation

$$\nu = \nu_0 + [B' + B'' - (D'_{JK} + D''_{JK})K^2]m + [B' - B'' - D'_J + D''_J - (D'_{JK} - D''_{JK})K^2]m^2 - 2(D'_J + D''_J)m^3 - (D'_J - D''_J)m^4 + [(A' - B') - (A'' - B'')]K^2.$$
(2)

The values of $B^{\prime\prime}$, $D^{\prime\prime}_J$, $D^{\prime\prime}_{JK}$ obtained above were inserted into the equation, and the data were sub-

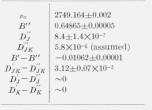

jected to a least squares fit. As in the case of normal ethane, the K=5 substate was found to be perturbed. The origin of this state fell 0.03_{\circ} cm⁻¹ above the calculated value. While this difference is small, it is 3.1 times the standard deviation of the fit taken without including this substate and is therefore significant. Any changes in the other rotational constants of this state were too small to be detected. Because of this perturbation, the observed frequencies were again fit to eq (2) with the frequencies from the K=5 substate omitted. The constants obtained from this treatment are listed in table 2. The spectrum calculated from these constants is compared with the observed spectrum in table 1. For the K=5 substate, the observed origin was used instead of that calculated from eq (2).

TABLE 1. Comparison between observed and calculated spectrum of $\nu_2 + \nu_6$ of C¹³C¹²H₆

J_K	$QR_K(J)$		$QP_K(J)$		J_K	$QR_K(J)$		$QP_K(J)$	
	Obs	Cale	Obs	Calc		Obs	Calc	Obs	Cale
	cm-1	cm-1	cm-1	cm^{-1}		c m ⁻¹	cm-1	cm^{-1}	cm-1
0	2754.164	f 2754.141			113	63.236	63.233	^b 33. 908	33.907
1	1	1 54.163			114	^b 63.356	63.361	34.044	34.043
2	54.229	54.227	2745.290	2745. 297	115	63.540	63. 556	34.241	34.253
3	^b 54.346	^b 54. 336			116	63.717	63.728	34.440	34.433
0	54.362	55.331			120	} 64.104	{ 64.089	32.230	{ 32.201
1	1	55. 353	L 49 091	49.090	121		64. 105		1 32.218
2	55.410	55. 417	^b 43. 931	43.936	122	64.143	64.158	32.270	32.278
3 - •	55. 545	55. 525	44.058	44.046	123	^b 64.253	64.247	^b 32. 369	32.373
44	55.671	55. 675			124	^b 64.368	64.370	32.509	32.505
					125	64.558	64.560	32.696	32.710
0	56. 528	∫ 56. 501			126	64.715	64.723	32.890	32.883
1)	1 56. 522							
2	56.589	56. 585	42.550	42.553	130	$\{ 65, 111 \}$	∫ 65.087	30.679	$\int 30.649$
3	56.719	56.691	42.652	42.662	131	1	65. 103		1 30.667
4	56.838	56.840	42.825	42.814	132	65.150	65.154	30.719	30.725
5	^b 57.072	57.061			133	^b 65.231	65.238	30.834	30.816
					134	^b 65.358	65.357	30.937	30.945
0	57.671	∫ 57.650			135	65.529	65. 540	31.150	31.144
1	J	1 57.669			136	65.700	65.696	31.310	31.311
2	57.728	57.732	41.158	41.149					
3	57.860	57.836	41.276	41.257	140	h .		2729.112	\$ 2729.077
4	57.977	57.982	^b 41. 411	41.407	141	∫			1 29.095
5	58.195		41.646	41.635	142			29.142	29.151
06	58.399	58.399			143	2766.237	2766.208	29.239	29.239
					144	^b 66. 319	66. 321	29.363	29.363
0	2758.800	∫ 2758.775	2739.661	£ 2739.638	145	66.508	66. 497	29.542	29.556
1	2108. 800	58.795		39.657	146	66.638	66.645		
2	58.839	58.857	b 39.722	39.724					
3	^b 58. 963	58.959	39.835	39.830	152	67.070	67.079	27.548	27.556
4	59.085	59.102	39.980	39.978	153			^b 27. 618	27.641
5	59.342	59.317	40.199	40.203	154	^b 67.259	67.263	27.755	27.759
6	59.501	59.511			155	67.444	67.431	27.952	27.947
					156	67.591	67.571	28.097	28.098
0] =0.000	f 59.882	20.000	f 38, 193					1
1	59.898	1 59.901	38.209	38.213	160	1) 07 070	f 67.952	05 004	f 25.872
9	59.950	59.961	38.255	38.277	161	67.976	67.964	25.894	1 25.888
3	60.087	60.061	38.388	38.381	162	68.010	68.009	25.935	25.940
4	60.191	60.201	38.537	38. 527	163			26.030	26.021
5	60.396	60.412	38.751	38.749	164			26.137	26.134
8	60.589	60.600	38.944	38.944	165	68.330	68.342	201 201	
					166	68.468	68. 473		
90	} 60.988	∫ 60.966							6 01 000
1		1 60. 984			170	ll.		24.268	$\int 24.238$
2	61.024	61.043	36.794	36.809	171)			1 24. 252
3	61.152	61.140	36.913	36.912	172			24.298	24.302
94	^b 61. 277	61.276	37.055	37.055	173	68.990	68.985	24.385	24.379
5	61.476	61.483			174			24.487	24.487
6	61.664	61.666	37.468	37.463	17 ₅ 17 ₆	$69.236 \\ 69.356$	69.234 69.352		
00	1 0700 045	∫ 2762.037	0795 000	(2735.238	110	03.000	05.002		
01	2762.045	62.045	2735.269	35.258	182			22.649	22.644
02	62.079	62.103	35.315	35.320	183			22.707	22.716
03	62.203	62.197	35.433	35. 420	184			22.818	22.818
04	62.322	62. 330	35. 560	35. 560					
05	62.534	62.531	35.757	35.773	193			2721.030	2721.032
06	62.721	62.708	35.948	35.959	194			21. 129	21. 127
10	} 63.082	∫ 63.069	33.756	∫ 33.731	202			19.270	19.264
		1 63.086	00.700	33.749	203			19.348	19.327
11	63. 150	63. 141	33.802	33. 810	203			19.040	10.021

^b Blended line.

TABLE 2. Rotational constants of $C^{13}C^{12}H_6$ derived from the combination band, $\nu_2 + \nu_6$ in cm

 $(A'\!-\!B')\!-\!(A''\!-\!B'')\!=\!0.0226\!\pm\!0.0005$

^aUncertainties cited are probable errors.

4. Results

For a symmetric top molecule, the " r_s " distance of an atom on the symmetry axis from the center of gravity is given by the relation

$$\Delta I_0 = \mu r_s^2 \tag{3}$$

where ΔI_0 is the change of the moment of inertia upon substitution, $\mu = m\Delta m/(M+2m)$, M is the mass of the original molecule, and Δm is the change of mass upon substitution. Using the B_0 value obtained earlier for ethane and the value found for the C¹³ substituted ethane above, a " r_s " value of 1.527 ± 0.004 A for the C—C distance is calculated. The uncertainty cited is probable error.

This value supports Lide's estimate that the " r_s " value for ethane lies in the range 1.525-1.530 A [6] and is in good, albeit somewhat fortuitous, agreement with the value 1.526 A found for the C—C bond lengths in propane and isobutane.

The authors thank Dr. B. P. Stoicheff for his suggestions and interest in this problem, and Miss Jessie Kirkland for measuring the spectra.

5. References

- [1] H. C. Allen, Jr., and E. K. Plyler, J. Chem. Phys. 31, 1062 (1959).
- [2] W. J. Lafferty and E. K. Plyler, J. Chem. Phys. 37, 2688 (1962)
- [3] D. R. Lide, J. Chem. Phys. **33**, 1514 (1960).
- [5] D. R. Lide, J. Chem. Phys. 33, 1519 (1960).
 [5] E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research NBS 55, 183 (1955) RP 2617.
- [6] D. R. Lide, Tetrahedron 17, 125 (1962).

(Paper 67A3–208)