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This paper is concerned with the synthesis of a radiation pattern in an equatorial plane
surrounding an infinite circular cylinder. A discussion of the radiation field about such a
cylinder leads to the conclusion that a leaky-wave antenna can be utilized to provide the
proper aperture distribution. With ka chosen sufficiently large to ensure that prior theory
concerning the inductive sheet leaky-wave antenna will apply, a Chebyshev distribution is
analyzed. It is shown that the order of the Chebyshev polynominal must satisfy N<ka
cos ¢ sin dn, where ¢ is the angle of radiation measured from a normal to the cylinder surface,
and 6y is the maximum deviation from this angle. The radiation angle is given by ¢,=arc
sin (B/k), where 8 is a constant which is the phase factor of an X-band waveguide. Experi-
mental work with such a waveguide, curved in the I plane and flush-mounted in a finite
cylinder with ka=12x, provided radiation patterns which closely adhered to the theoretical
analysis in the frequency range 8.4 to 11.5 Ge/s.

1. Introduction

The flush-mounted leaky-wave antenna has been the subject of many investigations and
resulting papers. Goldstone and Oliner [1959] have contributed to the theory by working with
the general leaky-wave structure and applying a perturbation technique to the transverse
resonance condition. On the other hand, Honey [1959] has used a computer to solve the trans-
verse resonance equation for the specific case of the inductive sheet antenna. The extension
of this type of antenna to the case of a curved surface, namely an infinite circular cylinder, is
the purpose of this report.

The far field patterns of a source on an infinite, conducting, circular cylinder have long
been known [Silver and Saunders, 1950]. More recently, Wait [1959] has published an entire
book on the subject and related topics which also contains a comprehensive bibliography.
Wait and Householder [1959] have also obtained theoretical patterns for the slotted cylinder
antenna. However, in order to obtain their patterns, it is necessary to control the phase shift
around the cylinder in such a manner that rather complicated excitation devices would be
needed. The leaky-wave antenna provides a means to avoid such devices.

In this report, theory is developed to show that the radiation field in the equatorial plane
surrounding the circular eylinder, except for an azimuthal phase shift, is essentially directed
in proportion to the vertically polarized aperture distribution of the leaky-wave antenna.

A Chebyshev distribution is analyzed so that synthesis can be carried out. Subsequent
experimental work with the resulting antenna provided justification for the theory, as excellent
correspondence between the theoretical radiation pattern and actual radiation patterns over
the range 8.4 to 11.5 Ge/s was demonstrated.

1 The research reported in this document has been sponsored by the Electronics Research Directorate of the Air Force Cambridge Research
Laboratories, Office of Aerospace Research, United States Air Force, Bedford, Mass.., under Contract No. AF 19(604)-4098.
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2. Radiation Field

Consider excitation of a transverse slot in an infinite conducting cylinder shown in figure la
as given by

N
fl@leFre= > Ane Mg, —1< 2, (1)

m=—N

where f(¢) is the amplitude distribution in the slot, 5 is the slot phase factor, @ is the cylinder
radius, 4, is the Fourier coeflicient, NV is an integer, and 2/ is the slot width. Following an
analysis similar to that of Silver and Saunders [1950], the tangential field is

. N © 0
Es(a@,g’):% m;N 6~j(m+ﬂa)¢f <812th 4-'1,,1216"]"13(/}1, (2>

E(P(ayd’yz):()-
When expanding the field external to the cylinder, the condition of periodicity in the
¢-direction is no longer stipulated. It is assumed instead that a traveling wave continuously
circles the cylinder. It is further assumed that after one circumvention of the cylinder, the

amplitude of the wave becomes negligible such that transmitted or reflected components are
of little importance. The ¢-dependence under such assumptions is given by

A(g) e (3)

where 8 is the phase factor of the external field and A(¢) is the amplitude function.

1 5

le— 0 —+f

P(p,$,2)

Ficure la. A transverse slot on an infinile
conducting cylinder.
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Although A(¢) is not periodic on the interval 0 to 2, a Fourier series representation over
this interval of the form

A@)= > cne=ime @)

m=—co

is assumed. Then, by an extension of the results of previous workers [Silver and Saunders,
1950; Wait, 1959], the external field components are found to be

©

Ez(p7¢7 2) = Z a’mk Hm+ﬁ(krp)e—]<m+ﬁ)¢€ ]M(lh
. ° X [—(m+B)h LD
Eopo )= [ 3 [ SO 0 125 o)+ joubn 2 B3R | )

X e~ImtBsg=iedp,

where a,, and b,, are arbitrary constants and k. =/k>—h? k=+/u/e, is the free space propagation
constant, and h is the complex propagation factor arising from a Fourier transform in the axial
direction. H H, is the Hankel function of the second kind and order m-+g. Evaluating the
latter equations at the surface of the cylinder, i.e.,p=a, and then equating them to the tangential
field as given by (2), it is apparent that to be equal for all ¢,

=Ba ®)

which then allows a,, and b,, to be determined. With these constants evaluated, all remaining
field components can be found. Next, letting

p=R sin 6, z=R cos 0, (7)
it is apparent that in the radiation field where R—>o |

m+PBa

ke R sin 6 - 8)

This means that the usual asymptotic form of the Hankel function can be utilized, and a
saddle-point integration will give as the radiation field components,

o <91n (ki cos 6) Z s (—A,20) eintDr/2 = HE _ F,
TN kleost Ju=n" " wsingHP (kasing R g’

, kel cos ) ;
E,= i]ll.( Z €~ Irm®
klcosb Jus=N i _a% H? (ka sin 6)

— 9 3 (vt /2 —JkR — N
A20(— gy, ctn 0)ei eR  H— 717% )

where v, =m+Ba, 1=+ u/e,, 12 is the Hankel function of second kind and order »,, and
terms that vary as 1/R? have been neglected.

If attention be confined to the equatorial plane only, that is, where §==/2, then I,=
Hy,=0. The remaining components, F; and H;, although complicated due to the presence of
the Hankel function, can be simplified if the relationship between its order and argument be
prescribed such that

< ka, (10a)

or

”'" = (10b)

As shown subsequently in paragraph 3, the ratio in (10b), unlike that of (8), does not approach
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zero, and use must be made of the asymptotic form [Sommerfeld, 1949]

2 ) )
@) (La) = . —jka(sin a—a €08 a) +j7/4 il
H,,,(ka) \/rka sin a @ A
where
cos a:Z—'("L- (12)

Then, substituting this asymptotic form into the expressions for the remaining field com-
ponents in the equatorial plane,
N , . .
Ey= 3> B,A,e méta=7/2g=ik(E=asinagir/4 (13)

m=—N

where B,,=—(l/R) (2 ka sin a/r)’?, and the IT component has been dropped since the radiation
field is plane polarized.

TO FAR FIELD

Ficure 1b. A plane wave leaving the cylinder in
the equatorial plane.

In figure 1b is shown the equatorial plane. If a plane wave leaves point A on the surface
of the eylinder so as to make an angle ¢, with the normal, and if the space phase difference is
measured with respect to the center of the cylinder 0, then the far field is given by

e—jk(R—a €08 ¢byy,) <14)
)
where [ is the free space propagation constant, and the remaining parameters are defined in
the figure. Comparing this expression with the radiation field representation of (13), it is
apparent that
oS ¢, —SsIn «, (15)

and
a:7r/2—¢,”. (16)

Furthermore, from (12) and (16), the radiation angle is defined by

dp=arc sin (v,/ka), a7)
or

¢m: arec Si]l g—f—%] (18>
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Therefore (13) can be written

N
I Z B"H/lmg_j"nl%_'f’m)e_jk(g‘a CO8 ¢yy) pIT/4 (19)

i
Now, let the radiation angle be written

¢m:¢0+6m) (20)

where

¢o=arc sin (B/k), (21)

and 4§, (m0) is a deviation angle which is a function of the summation index m. If the
deviation angle is small, then

COS ¢, 08 ¢0—g O, (22)
and (19) reduces to
e
/=15 mgv end e ™ (p=d0—dm) p—Balp=¢0 (23)
where
2 2\ &
BZ—H \/M ¢~ k(R—a cos go)+Jr/4 (24)
o 7] 2

Under the restriction that 6,, be small, the radiation field of (23), except for a phase shift
of ¢, degrees, will be directly proportional to the slot distribution of (1). It can be concluded,
therefore, that a desired pattern can be synthesized in the equatorial plane simply by con-
trolling the excitation of the aperture.

3. Aperture Excitation

It is necessary to determine how the excitation in the aperture given by (1) should be
accomplished. Honey [1959] has suggested that the inductive sheet antenna might be used
on a curved surface. In the case of the circular cylinder, values of ka sufficiently large should
ensure that his analysis can be applied directly.

The inductive sheet used in this case will consist of the outer wall of an XN-band waveguide
curved in the / plane and propagating a TE,; mode. Although an approximate solution
exists [Borgnis and Papas, 1958] for the propagation factor of such a guide, it is not in a readily
usable form, and the assumption that ke is large allows use of the approximate dependency
e~ "¢ " where 7, s, z form the coordinate system of figure 2a. The wave equation is thus

v v +-k*=0, (26)

where the propagation factors v, and v, are for the longitudinal and transverse directions
respectively.

Due to the fact that energy is gradually being “leaked’ from the waveguide, the longi-
tudinal propagation factor will be complex,

o @)

The imaginary part of this expression is, of course, just the phase factor of (1). Since it
does not vary with the azimuthal angle ¢,

B=-constant. (28)
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Ficure 2a. Inductive wall waveguide and coordinate
system.

In addition, because the waveguide is propagating a fast wave, or leaky wave, it is possible to
write

0<P<1, (29)
or utilizing (21)
0<Lpp<Lm/2. (30)
Furthermore, if the deviation angle is selected such that
0<epo+,<m/2, (31)

then, from (20) and (17), it can be concluded that
Vm 09
0 <1, (32)

which justifies the use of the asymptotic form of (11).
Turning attention to the real part of the longitudinal propagation factor, it is possible to
relate it to the amplitude distribution in the slot since [Honey, 1959]

G*(s)

1(* e
FJ !/2(8’)(1-5"——J ¢(s") ds’
0 0

20(s) =

(33)

where ¢(s) is the amplitude distribution, /"is the fraction of the input power which is radiated
by the antenna, L is the total length of the aperture, and s” is the variable of integration
along the aperture.

If g(s) be expanded in a Fourier series as

m=—0

® s
g(s)= 25 cne”Pml=f <:17r g>; (34)

. . 2rs’ :
then for the curved cylindrical surface s=a’¢,L="2ra’ and J'("jlr‘S )Zf(d)). Hence, the expression
for the attenuation factor is '

@
2a(s)=

1 (2 s, 0. .,
Va f 12" )dp’ — f 1o do
JO JO
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Ficure 2b. Transverse network represenation.

where ¢ is the variable of integration for the ¢ dimension, and @’ =a—w,/2 is the radius which
corresponds to the circumferential path in the center of the waveguide, w, being the width of
the closed guide. :

Having established the longitudinal propagation factor, the next logical step is to find
the transverse propagation factor, therefore let

Yr=0+j7. (36)

Substituting this together with (27) into (26) leads to the solution for the real and imaginary
parts of v, as.’

—(2— 2R T2 Rz 22 2
U:_[ @B+ ﬁ+k>+4<a6>], (370)
T:[w— B2+-E) 4+ (a;—62+lc2)2+4 (aﬂﬂ]“_ (37h)

P2 ¥ However, another condition to which the inductive sheet antenna must conform is the
transverse resonance equation. This condition arises due to the conservation of energy; that
is, admittances or impedances must be equal when viewed transversely in either direction
from a plane parallel to the inductive sheet wall. Taking as the reference plane the inductive
wall itself, the network representation of figure 2b is obtained. Therefore, transverse resonance
gives rise to the characteristic equation [Honey, 1959]

—C"

r

1+4coth v,w=

) (38)

where w is the width of the waveguide,

—— 27 y
& “pIncse (xd)2p) (39)

and parameters p and d are the strip spacing and width as shown in figure 2a. Writing the
characteristic equation in real and imaginary parts,

7 sinh ow cosh ow—o sin 7w cos rw

T . - o =0 40a
+ sinh? ow cos? rw-sin? 7w cosh? ow (40a)
o sinh ow cosh ew-+7 sin 7w cos rw
e (40b)

sinh? gw cos? rw-+sin? 7w cosh? ow

At this point it is possible to more clearly define the aperture distribution problem: Find
w, the waveguide width, and €, a parameter of the inductive wall geometry such that

a(w,C")=als)
B(w,C") =constant. (41)
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This means:

(a) B should be selected as the propagation factor of the closed waveguide, and thus
satisfy (28). (As shown subsequently in par. 4, its selection will also have a bearing
on the amplitude distribution.)

(b) Determine the attenuation factor as a function of the circumferential distance from
(35).

(¢) Find the components of the transverse propagation factor as functions of the cir-
cumferential distance from (37).

(d) For each of the components determined in (c¢), solve the transcendental (40a) for the
waveguide width w.

(e) For each of the values of w determined, solve (40b) for the inductive wall parameter
.

(f) Using each value of ¢ found in (e), find the strip spacing p from (39), or curves [Honey,
1959].

4. The Chebyshev Distribution

The pattern whose synthesis is being undertaken is a Chebyshev distribution. As Duhamel
[1953] has shown, a Chebyshev polynomial can be expanded as a finite Fourier series

N
Ty(@)=Tx(a cos p+b)=>) O cos me, (42)
m=0

where 2=a cos ¢-+b and C) is a function of @ and b.

However, there are two conditions to which this distribution must adhere. The first
condition results from (28), i.e., the phase factor of the distribution must be constant. This
in turn implies that the amplitude distribution shall not change sign, thus inherently intro-
ducing a phase shift of = radians. In the general synthesis with a Chebyshev polynomial
this does occur. To combat this difficulty the polynomial 7y (z)+1 can be utilized [Silver,
1949].

The second condition imposed can be derived from the relationships of (18) and (20)
which, when combined, yield

- B, m
Sk (¢O+6m> _‘k-l"ka’ (43)
or
m=Ba(cos 5,,—1)+ka cos ¢, sin §,,. (44)

Since 8, 1s small and —N<m <N, the restriction becomes
N<ka cos ¢, sin 6, (45)

which determines the order of the Chebyshev polynomial to be expanded.
Once the order of the Chebyshev polynomial has been determined, it can be used in (35).
To illustrate with an example, consider the polynomial

0

Ts(x) +1=162"—2023+52-+1=> O3 cos m¢, (46)

m=0

where [Duhamel, 1953]
o=1-+5b—20b%+16b°— 30a%b +80a*b*+30a*h®
C2=5a—60ab-+8ab*—15a*+120a%b2+-10a®
C3=—30a%b+-80a*h*4-40a'd
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Ci=—5a’+40a’b*+5a°
A=10
Oi=d’. (47)

For this case, the integral in the denominator of (35) is given by

¢ 5 2
[7(35, €5 cos ma ) do=y 03+ 0103 -Ci G Cg

m=0

S (20001 +C\ 0+ CC5+ CC+-CyC5) sin [}

+ (CHHACCH20,0:H20:0,4-20,04) sin 2

5 ROCy+-CiCi+CCirt G0 sin 36

+5 (00 A20,05H20,05) sin 46

+% 20,05+ C,0s+CaCy) sin 56 (48)
+é (C2420,0,+20,C,+20,C;) sin 66

7 (OO0 sin 79

+% (034-20,C5) sin 8¢

-{% (C4C5) sin 9¢

—I-‘)i0 (C%) sin 104

where for convenience the superseript 5 has been dropped from the €,’s. In the general case,
similar expressions for any order polynomial may be derived.

5. Numerical Solution

A brief description of the numerical solution for the experimental antenna is presented
here to illustrate the steps outlined at the end of paragraph 3.

As a preliminary consideration, the operating frequency and cylinder radius must be
chosen to ensure that ka is svfficiently large. In this case the design frequency was 10 Ge/s,
and a cylinder radius of six wavelengths gave a value of ka=12r.

Step (a):
The waveguide propagation factor of standard X-band guide is

B=2m/\,=4.01967 rad/in.
Also the free space propagation factor of 10 Ge/s is
k=2m/\=5.3284 rad/in.
With these values determined, two additional calculations can be made:
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MAINLOBE /SIDELOBE R=20 10 Y, 180°
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BEAMWIDTH 38.42
.
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Ficure 3. Radiation pattern based on the Ts(x)+ 1 Ficure 4. Waveguide with grating wall removed to
polynomial. show matered corner.

First, the unperturbed radiation phase angle from (21) is
¢o=narc sin (0.75505)=49.0°;

and second, selecting a maximum deviation angle of 13 degrees (to conform with (31)
and the approximation of (22)), the order of the Chebyshev polynomial must satisfy (45),

N<(37.8)(0.655)(0.225)=5.58.

Letting N=5, the distribution as shown in figure 3 can be obtained where =20 is the
main lobe to sidelobe ratio corresponding to 26 db down. In figure 5 the theoretical
radiation power pattern is shown, where the main lobe appears at 180°+49.0°=229.0°.
(Note that on the scale shown, the sidelobes will not be visible.)
Steps (b) and (c):
The longitudinal attenuation factor was computed for increments of five degrees (about
N2 on the circumference) using #=0.9, and the expression of (48). With the values thus
obtained for «, calculation of the transverse phase factors was accomplished. Instead
of solving for the transverse attenuation factors from (37a), the following relationship
was used
o= —af/r. (49)
Steps (d), (e), and (f):
Computation of the waveguide width w involved the solution of a transcendental equation
which must be carried out with the aid of a computer or curves as those given by Honey

[1959]. Likewise, the spacing, p, of the wires of the inductive wall grating must also be
found from a computer solution or from curves.

The results of these calculations are to be found tabulated in appendix A.
6. Experimental Results

An infinite cylinder was approximated by fitting two 24 in. (about 20 wavelengths) cir-
cular cylindrical sections fabricated from 0.050 in. sheet aluminum to the top and bottom of
the X-band waveguide shown in figure 4. This waveguide had its inner wall varied so as to
maintain the inside width w as computed from (40a). The outer wall consisted of number
28 copper wire fastened to a thin paper backing by overlaying with epoxy resin, and spaced
as per dimension p calculated from (39).

Although the design frequency was 10 Ge/s, it was found that the radiation pattern over
the range from 8.4 to 11.5 Ge/s closely approximated the theoretical pattern shown in figure
5, as can be seen by comparing it with figures 6 to 12.
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Ficure 5. Theoretical pattern for 10 Gels.

Fiaure 6. Radiation paltern for 8.4 Ge/s.

il
o
HiH ek T

SR

G ;
1N R &
] s
ﬂﬁfiﬂl]ﬂ!%lmﬁﬂﬁf.«{’#
R

Ficure 8. Radiation pattern for 9.5 Ge/s.

793

Figure 9.

Ficure 10.

Ficure 11.
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TasLe 1. Comparison of actual and theoretical radiation

patterns
T T ‘
l'l‘heoryi 8.4a| 9.0 ‘ 9.5 | 10.0 105 | 180 ‘ 1.5
| | ‘ ‘
Main beam direction_.__| 220° | 215° | 221° | 221° | 224° | 225° | 226° | 226°
Sidelobe level (dbdown).| 26 | 13.5 | 14.3 | 16.2 | 17.4 | 17.6 | 17.3 | 17.3
Beamwidth— ... 38.4° | 4o | 4° | 420 | 4o | 0o | s | 3°

a Indicates the frequency in Ge/s at which radiation pattern was taken.

The main departures from the theoretical pattern are apparent from the data of table 1:
The direction of the main beam at the design frequency of 10 Ge/s is slightly in error; sidelobe
levels are higher than theory predicts; and a wider beamwidth exists at the design frequency.

The apparent disagreement in the main beam position is caused, in the main, by the in-
ability to aline the antenna on the pattern range. The circular symmetry of the cylinder
allowed no better than a +3° tolerance in locating a given point on the circumference, namely
the feed point at 0° (see fig. 4).

The disagreement in sidelobe level is due to the spurious sidelobes exhibited in the radi-
ation patterns of figures 6 to 12. These sidelobes could be attributed to several factors: (1)
The assumption that the transmitted and reflected components of the azimuthal traveling
wave of the external field are negligible may not be valid as certain harmonic components of
(4) may cause standing waves to exist; (2) The deviation angle é,, and e, defined in (25) show
that the radiation field is not, in the strict sense, proportional to the aperture distribution
and the effect of these perturbations may cause the sidelobes; (3) A correction term in (39)
which was neglected [Honey, 1959] could also account for premature excess leakage of energy
giving rise to sidelobes located between the main beam and the feeding point; (4) The mitered
corner’ feed of figure 4 may also have abetted the formation of sidelobes due to diffraction
about the mitered wall. The corner was designed from data for the intersection of two straight,
closed waveguides; the waveguide here was neither straight nor closed.

The error in beamwidth of 3.6° at the design frequency may also be caused by the fact
that the correction term in (39) was neglected. This term would tend to decrease the wire
spacing p significantly in the region from 165 to 215°, which would decrease energy leakage
and in turn the beamwidth. |

7. Conclusions

It has been shown that the flush-mounted leaky-wave antenna offers an excellent means
to synthesize a Chebyshev pattern in the equatorial plane surrounding a finite metallic cylinder.
Experimental results bear out the theory except for the problem of spurious large sidelobes.

Discussion of the experimental results suggests two immediate actions as a cure for this
problem: (1) Inclusion of the correction term in (39), (2) use of an alternate feeding method
such as a probe within the waveguide a quarter wavelength from the closed end.

Since the purpose of this report was to synthesize, as well as determine the requirements
for synthesis of a specified radiation pattern under certain boundary conditions, investigation
beyond these goals was not undertaken. Therefore, the other characteristics of the resulting
antenna such as its impedance, efficiency, and gain have been left unevaluated.

Finally, although the azimuthal radiation pattern was the prime interest in this report,
it is suggested that investigation of synthesis of an elevation pattern might also constitute an
interesting research topic.

Appendix A. Tabulation of Numerical Calculations

The following is the numerical solution carried out for the design of the experimental
antenna:
Cylinder radius, a=7.0812 in. (6\)
Height of aperture, 2/=0.40 in.
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¢Nﬂ

005
010
015
020
025
030
955
040
045
050
055
060
065
070
©7/5
080
08s
090
095
100
105
110
ISL5
120
NS
130
135
140
145
150
1SS
160
165
170
1875
180
1185
190
195
200
205
210
2115
220
225
230
235
240
245
250
255
260
265
270
r27(=]
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
855
360

QINEPERS/ 1N)

767994 (~07)
109548 (~05)
4456503(=05)
1406075(=04)
1483364 (~-04)
235431 (-04)
238153(-04)
1489652 (-04)
1¢15057(-04)
4488415(-05)
117362 (-05)
785692 (-07)
1.06820(~-12)
104908 (-06)
140925(-05)
S570402(-05)
1431583(-04)
2409090 (-04)
2444198 (-04)
2410031 (=04)
125266(-04)
4432409(~05)
4471458 (=-06)
9407968(~11)
541350 (-06)
125218(-04)
790178(-04)
2488687(-03)
769009 (~03)
1465789(-02)
3¢06655(=-02)
505201 (-05)
760795 (~02)
106681 (-01)
1441071 (-01)
1e77229(-01)
2¢11871(=01)
239572(-01)
2451981 (-01)
238981 (-01)
1e95285(=-01)
1¢30713¢(-01)
6487288(-02)
2¢73303(~02)
762880 (-03)
1e21423(=-03)
S5e24186(-05)
8480574 (-10)
4457349(-05)
4419570(-04)
1e¢21662(-03)
2404403(-03)
2438331(-03)
2¢04653(-03)
1¢29071(-03)
5460181 (~04)
1e38462(-04)
1.03083(-05)
1,05081(-11)
772004 (-06)
1415331(-04)
4480176(-04)
1¢13250(-03)
1¢87084(-03)
235653(-03)
2e33762(-03)
1482625(-03)
1.08875(-03)
4456217(-04)
1409533(-04)
7468006(-06)
1¢38509(~-16)

(NUMBERS

-0 (NEPERS/ IN)

BeB84393(-07)
1426151 (-05)
525691 (=05)
1e25607(=-04)
2e¢11155(~-04)
2¢71113(-04)
2e474247(=04)
2418396 (-04)
1 ¢32495(~-04)
S5e62443(-05)
e 3S1S0I=051)
Ge04770(~-07)
0,00000
1.20805(-06)
1.62284(-05)
6¢56853(-05)
1¢51526(=-04)
2¢40779(-04)
2481209(-04)
2441864(-04)
1e44252(-04)
4497945(=05)
Se42912(~06)
00,0000
6423398(-06)
1e44196(-04)
9409939(-04)
3e32441(-03)
B8485556(-03)
1e¢90911(=02)
3453100(=02)
581628(-05)
Be75619(-02)
122716(=-01)
1e62144(-01)
2403483(-01)
2442948(=01)
2474392(-01)
288440(-01)
2e¢73723(-01)
2e24072(=01)
1¢50279(=01)
791098(=02)
3414702(=-02)
878498(-03)
139826(~-03)
704784 (-05)
00000
523377(-05)
480160(~04)
1¢40101(=02)
2¢35382(-03)
2e74453(-03)
2e34671(~-03)
148633(-03)
6¢45080(=04)
159447 (=-04)
1¢18707(-05)
040000
8489010(-06)
132811 (-04)
552956 (-04)
1430415(-03)
2e15438(-03)
2¢71369(-03)
2469191 (=-03)
210304 (-03)
1¢25376(=03)
525361 (=04)
126134 (-04)
884406 (-06)
040000

IN PARENTHESES

T(RAD/ IN)

3649062
3049062
3649062
3649062
3649062
3649062
349062
349062
3649062
3649062
3649062
3e49062
3649062
3049062
3649062
349062
349062
345062
349062
349062
349062
3649062
349062
349062
3649062
3649062
3e49062
349063
349064
349072
349094
349147
3649255
3649441
3649723
350104
350548
350958
Se SIS
350949
350326
3649630
3649220
3.49087
3049064
3e49062
349062
349062
349062
3849062
3649062
349063
349063
3449063
349062
3449062
3049062
3e49062
3449062
3e49062
349062
3449062
3649062
349062
349063
349063
349063
3449062
349062
3e49062
349062
3449062

795

c!

3¢91241(03)
1403512(03)
5407040(02)
3428237(02)
2¢53137(02)
2e23362(02)
2422090(02)
2¢48903(02)
3e¢19527(02)
4490393(02)
1.00098(03)
387551(03)
o

336607(03)
S412853(02)
4453965(02)
2e¢98774(02)
2437010(02)
2419352(02)
2¢36531(02)
3.06262(02)
S5e21291:(02)
1458027(03)
[ee]

1e47234(03)
306262(02)
1¢21876(02)
6436283(01)
388000(01)
2¢61997(01)
1¢90115(01)
1e45472(01)
1415918(01)
9e53973(00)
8¢06800(00)
6¢99853(00)
623747(00)
574986 (00)
5¢55760(00)
5e¢75936(00)
6¢57705(00)
8¢45117(00)
1¢22738(01)
2402004 (01)
389577(01)
982722(01)
4e73114(02)
(e o]

506776(02)
1¢67313(02)
9¢81775(01)
756770(01)

"700617(01)

7e56347(01)
953074 (01)
144768(02)
2e91332(02)
1606751 (03)
oo

123301 (D3)
319154 (02)
156371 (02)
1¢01768(02)
T791166(01)
704631 (01)
7¢07457(01)
B8400825(01)
1.03788(02)
160452(02)
3¢27580(02)
123674(03)
©

INDICATE POWERS OF 10)

W in)

08998
08990
08980
08970
08961
08955
08955
08960
08969
08980
08990
08998
09000
08997
008989
08978
068967
0+8958
008954
0.8958
048967
08981
048994
09000
08993
08967
08918
08843
08744
049626
048490
08352
048209
08068
0e¢7933
0e 7809
Oe7701
Qe7622
0e«7588
Oe7624
Oe7751
07971
08247
048521
08746
08898
08979
0439000
08980
08940
0+.8898
0+«8868
08858
0.8868
08895
08931
08966
08991
049000
08992
08969
08936
08902
08874
08859
08859
08876
048904
08938
08970
08992
049000

PCiIN)

00313
00384
00454
00515
0e0562
00338
00586
00566
00520
00458
00386
00314
00250
00319
00394
000468
00532
00575
00592
00575
00527
00451

00355
00250
00359
060527
00747
Oel014
0e1320
0e1656
0e2014
0e2387
02770
03156
03539
03905
0e4234
04485
04594
04480
04079
03428
02667
01939
01317
00822
00463
00250
00454
000656
00823
00930
00966
00931

00834
00694
040536
00381

00250
00371

00520
060673
00809
00910
00964
0e0962
00905
040802
00667
00516
040371
00250



Wire diameter, d/2=0.01264 in.

Design frequency, f/=10.0 Ge/s

Design wavelength, A=1.1802 in.

Free space propagation constant, £=5.32384 rad./in.
Design guide wavelength, \,=—1.5631 in.

Guide propagation factor, 3=4.01967 rad./in.
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