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The rigorous mathematical treatment for the propagation of a radio wave from a Hertz-
dipole-source current-moment around a finitely conducting spherical earth surrounded by
a concentric electron-ion plasma can be expressed as a series of zonal harmonics. Such a
solution to the problem was obtained for the terrestrial sphere without a concentric plasma
many years ago (1904-1915). However, the summation of the series, even at long wave-
lengths or low frequencies, was considered to be impractical and the well-known and, indeed,
rigorous Watson transformation was introduced (1918).

The Watson transformation led to the development of elegant mathematical techniques
both rigorous and approximate for the evaluation of the fields of radio waves in the vicinity
of the earth. However, it does not necessarily follow that the Watson transformation
is the only way to achieve numerical mastery of the problem. Indeed, it also does not
follow that the Watson transformation is the most efficient approach to the rigorous form
of the theory of propagation, especially at long wavelengths.

This paper demonstrates that the field of the propagated long wavelength radio wave
(frequencies less than approximately 50 ke/s) can indeed be evaluated by a summation of
a series of zonal harmonics. Whereas the number of terms could become quite large (of
the order of 10 kia where a is the radius of the sphere and £k, is the wave number of the me-
dium between the concentric plasma and the earth), the speed with which these terms
can be summed on a large-scale computer offsets the complications introduced by the Watson
transformation as to the rigorous mathematical solution of the problem.

The detailed structure of the field in the absence of a concentric plasma is characterized
by the quite regular behavior of the ground wave as a function of distance. Indeed, the
steady decrement of the ground-wave field is modified only near the antipode, where an
interference pattern or standing wave as a function of distance is noted because of another
wave’s traveling around the sphere in the opposite direction.

The introduction of the concentric electron-ion plasma shell traps the waves leaking
into space, where reflection from the plasma builds up traveling waves in the direction of
increased distance from the transmitter. Thus, the series of zonal harmomics comprises
individual waves which are traveling in the radial direction with respect to the center of
the sphere and standing in the direction of increased angular distance around the sphere.
These waves, when summed, build up the wave progressing in the direction of increased
angular distance. Under special circumstances, standing waves can be noted. This is
especially obvious near the antipode of the transmitter.

The results of the computations indicate that full rigor can be achieved with comparative
ease at frequencies less than approximately 50 ke/s, leaving only the assumed model for
the transmitter and the propagation medium and avoiding the complications of the Watson
transformation.

1. Introduction

The treatment of the propagation of electromagnetic or sound waves diffracted by spherical
objects as a series of zonal harmonies was introduced in such early theoretical investigations as
those of Lord Rayleigh [1904] and Debye [1909]. The early research work on the radio prob-
lem, such as that of Poincaré [1904, 1910], Macdonald [1903, 1904, 1911, 1914], Nicholson
[1910, 1911], and Love [1915], attempted to use the theory of zonal harmonics, either by a direct
summation or by forming an integral from the series, to explain the ‘“remarkable observed facts

1 This work was sponsored by the Rome Air Development Center, Griffiss Air Force Base, N.Y., under Tasks 4 and 5 of D.O. No. AF

30(602)-2488. Techniques for summing zonal harmonics and evaluating Bessel functions for ELF/VLF wave propagation were developed for U. S.
Navy, ONR, order No. NA-46-59.
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concerning the propagation of radio waves around the earth’s curvature.” The series, as
formulated at this time, was quite difficult to sum because of slow convergence for the radio
problem. TLove, however, succeeded in summing a large number of terms, but his method was
not considered to be completely satisfactory since it involved graphical construction and
estimates.

The results of Love, Poincaré, and Nicholson did not explain the propagation around the
earth’s curvature, since it was correctly concluded for the assumed model that the diffracted
field decayed exponentially, exp [-8 (k1a)'0], where B is a constant, k, is the angular wave num-
ber, k;~w/c at a frequency f=w/2m with ¢, the speed of light, a is the radius of the spherical
earth, and 6 is the angular distance measured at the center of the spherical earth, figure 2,
from the transmitter.

Since the experimental evidence indicated that the field decayed approximately as 1\/([

or at most 1/d, where d=a#f is the distance along the surface of the earth, March [1912] refor-
mulated the problem as an integral to obtain an answer more consistent with observed facts,

and indeed found that the field decayed approximately as 1/W/‘9 sin #~1/d around the earth’s
curvature. Although the work of March [1912] contained questionable approximations which
affected the conclusions, a new approach to the problem had been introduced. March con-
cluded that the waves were propagated without the exponential attenuation and further
concluded that the “remarkable propagation of radio waves around the earth was explained.”
Apparently in answer to a criticism of March’s [1912] paper by Poincaré (Poincaré [1904, 1910]
previously concluded the wave was damped exponentially with distance), von Rybezynski
[1913] extended March’s paper and concluded that the exponential factor was neglected by
March. He further concluded that this factor would become significant at great distances.
However, von Rybezynski concluded that since the experimental results at that time were
inconclusive (i.e., the results involved short distances) the significance of the exponential
factor had not been established.

In view of the discrepancies in the results of March and others, and apparently at the
request of van der Pol, Watson [1918, 1919] reformulated the integrals used by March by
means of the well-known Watson transformation and again reached the conclusion that the
waves decayed exponentially around the earth’s curvature, the experimental evidence not-
withstanding. Watson [1919] further postulated a reflector of concentric plasma of high
conductivity and reached the conclusion for this theoretical model that the waves did decay
approximately as 1/\//(l around the earth’s curvature as indicated by the observed facts, not for
the reason set forth by March, but as a result of trapping of waves by the ionosphere. The
comment of Watson in the 1919 paper “a consequence of its presence (the ionosphere) is that it
places grave obstacles in the way of communications with Mars or Venus, if the desirability of
communicating with these planets should ever arise” is interesting from today’s (1961)
perspective.

The Watson transformation seems to be the basis for most theoretical work in subsequent.
years (1919 to date), and Watson thus becomes the “prophet” of a “new rigor’” in the treatment
of the propagation of terrestrial radio waves. Thus, for example, the works of van der Pol
and Bremmer [1937, 1938, 1949] use the Watson transformation for the radio problem. The
treatment of radio wave propagation in the space between the ionosphere and the earth as a
waveguide at very low frequencies [Wait, 1957, 1960] has also exploited the Watson transfor-
mation. Although the technique of zonal harmoniecs has been used extensively in the literature
on, for example, electromagnetic problems associated with cylinders [Wait, 1959], the appli-
cation to the terrestrial sphere for the radio problem is confined to the work of Love [1915].
This is probably a consequence of the delusion that the slow convergence of the series ol zonal
harmonies for the radio-terrestrial sphere problem is an intractable situation.

Whereas the Watson transformation has very great merit {rom a theoretical point ol view
and has been exploited extensively in certain theories of propagation, it is appropriate at this
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time, especially at the low frequencies or long wavelengths,? to re-examine the earlier treatment,
based on zonal harmonics which was apparently successful in yielding correct conclusions.
Indeed, the procedure outlined in this paper, based on recurrence techniques for the calculation
of Bessel functions [Goldstein and Thaler, 1959], can, as will be demonstrated herein, yield
results quite readily at frequencies less than approximately 50 ke/s. The formulation pre-
sented in this paper is completely rigorous and assumes only the models of a Hertzian dipole
source current moment and propagation media consisting of a finitely conducting spherical
earth with a specified concentric plasma shell. The results can also be extended to stratified
spherical earth and indeed to a continuously stratified [Johler and Harper, 1962] concentric
plasma, figure 4, as a model ionosphere.

2. Theory of Propagation

The electrodynamic fields E, volts/meter,® and H ampere-turns/meter described by
Maxwell’s equations,

= B
VX E+po Y] H=0

- — N e =

VXH—e— E=dJ (1)
ot

where o/ is the conduction or convection current, amperes/square meter, can be treated as a

continuous ({=—w to +) time-harmonic wave, L=F (v, D), H=H (w, D), at a distance, D,
from some reference and a frequency, f=w/27, or,

]«_’::]I-L—‘J exp liwt—ik D], 2

where the positive time function is assumed, and the angular-wave number of the medium is
represented by k=wn/c, where 7 is the index of refraction of the medium. Maxwell’s equations
are therefore wirtten,
polwH+V X E=0
(etw+ o) E—V X H=0, (3)

where €, o, and p, are the permittivity, farad/meter; the conductivity, mhos/meter; and the
permeability, henry/meter, of the medium of propagation respectively.

The spherical coordinate system, figure 1, with the unit vectors, r, 6, ¢, is introduced for
convenience, since the earth and the ionosphere, for example, present approximately spherical
boundaries to the propagation media. The origin of the coordinate system is located at the
center of the sphere such as illustrated, figure 2. There are six components of the electrody-
namic fields in such a coordinate system, F,, Ky, It,, H,, Hy, and H,, which can be calculated
by a differentiation process from a single [Hertz, 1889; Debye, 1909] vector, 11, provided the
scalar T satisfies the wave equation in the medium with wave number, k, (—k*=puiw(eiv+0))

(V24-£?) I=0, (4)

where II=ITa for constant E, and the operator V2 is defined by eq (55) or,

. —1 o[ . olIr°
E.=[exp (iwt)] l:m] 58 l:sm 0 Wb#]

1 0o? [
rb orof
2 Additional general references to the literature of long wavelength radio waves not otherwise cited in this paper but listed under

“references’” are Campbell [1960]; Jean et al. [1961]; Pierce [1960]; and Wait [1960].
3 Rationalized mks units are used in this paper.

Ey=exp (iwt)] A

739



H =[exp iwt)]
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where 11" refers to vertical magnetic source dipole or scatter field and I1° refers to vertical
electric source dipole or scatter field, provided the problem can be reduced to a two-dimensional
form, ficures 2, 3, and 4, or,

ol | .

The radio problem treated in this paper is one such two-dimensional problem.
2.1. Primary Field

The model for the source or transmitter is specified by the primary Hertz vector,

g [ ] 5 et =i, o

where, for purposes of calculations, the source dipole current-moment, 7,/ ampere-meters, is

4 _ \ .. :
taken as Iol:l(,~3~34(10 ) ampere-meters. The radiation field of such a transmitter can be

Mol

written approximately,

E, ~10*710z% sin 6 exp [iwt —ik,D] (8)

or, over an infinitely conducting plane of infinite extent, figure 1, xy-plane:

=18~ 7)]0l50\p[2wt—zk10] 9)

The radiation field is not necessarily the most important field at long wavelengths. Thus,
unless the distance, D, is very great, the induction and electrostatic fields are quite important.
It is therefore necessary to employ the exact expression for the assumed Hertz vector for the
fields based on the Hertz vector (7), and eq (5),

—1 oIl
_I'bSiIIGI:SIl(L)*;AI_COSG OB:I (10)

where II=1I;, or for the particular case of transmivter and receiver located on the surface of
the sphere, r=b=a, figures 2, 3, and 4,

Ol | cos 6 OIT
= 11
Ey= |:b()2 sin 6 08 (,=b=a)’ 1)

('0%22 ke cos® o
— ) S o
E="3 exp [+ist—ibD] { —1——2t-2 i) 1 ot -
sin? 3 4 sin? 5 Skya sin® 5 2 sin 3 4k, sin? 3
(12)
The particular case, =, ficures 2, 3, and 4, is of interest,
]L,~ exp [iwt—2ik,a] L —1 3 ) (13)
a? 2 " Ska

since the transmitting and receiving dipoles are located end-to-end. The radiation field is
therefore zero, but the induction and electrostatic fields remain finite and indeed not negligible
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at extra low frequencies. However, at frequencies greater than, say, one kilocycle,

1 .
Er~27a,é exp [—21k1a] ;> 1ke/s) - i

Similarily, the horizontal magnetic, H,, field can be written,

0
cos = .
H,= ’fa exp [iwt—ik,D) 20 1——@'—6 (15)
O 2sin = 2kasin =
2 2 (r=b=a)
which for the particular case, 6=m,
H,=0(0=m). (16)

2.2. Media of Propagation

The media of propagation, figures 2, 3, and 4, are characterized by their electrical constants

which can be expressed in concise form as the wave number, . Thus, for air, with index of
L . . 5
refraction, 7, or dielectric constant e,=mn;,

2
Hzﬁ:%q, (17)
or
kl %" M, (18)

(,~1.000676 at the surface of the earth, =1 in a vacuum, 7,~1.000338 at the surface of
the earth, 5,=11n a vacuum), where ¢ is the speed of light, ¢~3(10%) m/sec. (¢~2.997925 (10%)
m/sec in a vacuum.)

The angular wave number of the ground,

I \/ez_i i (19)

where ¢ is the ground conductivity and e is the relative dielectric constant (relative to a vac-
uum), where the permittivity, e=ee, e=1/¢* p, and pgy=4m (1077) h/m, the permeability of
space.

The angular wave number of the ionosphere is more intricate,

k=ke=" n0. (20)

Thus, there are four distinet propagation components with the complex index of refraction’
g corresponding to ordinary wave (0), and extraordinary wave (¢), upgoing wave (i), and
downgoing wave (7). The index of refraction of the electron-ion plasma can be introduced
with the plane coordinate system, figure 1. A simultaneous solution of Maxwell’s eq (3)
together with the Langevin equation of motion of the electron,

m (—fl‘—t+m g/?-ﬁm‘ (T'XH,,,) +eE=0, (21)

where m is the mass of the electron, ¢ is the electron charge, ¢ is time, V is the vector velocity,
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and 77, is the earth’s static magnetic field vector, figure 1. Collisions of electrons with ions
can be treated either from the viewpoint of classical magneto-ionic theory where g~» and »
is a constant average value collision frequency, or from the more accurate Boltzmann theory
of ionized gases in which electron collisions are proportional to energy, u, v=w(u) [Phelps,
1960] where g=¢(w+wn), g(o—wy), g(w) [Johler and Harper, 1962] for a gyrofrequency, wg,
or the parameter ¢ is complex and frequency-dependent.

Carrying out the simultaneous solution of the Langevin equations together with Maxwell’s
equations results in a Booker [1939] type quartic in the parameter, ¢, assuming the convection
currents, eq (3),

J=—NeV, (22)
or,
st as P+ 4a ¢ +a,=0, (23)
where the index of refraction, 7,
n*={24-sin? ¢;, (24)

and ¢, figure 1, is the angle of incidence on the lower ionosphere plasma, and the coefficients
@y, @y, Ay, @, @ are given in the appendix. The quartic (13) has four roots corresponding to four
propagation components of the index of refraction (24), 5. In special case of a single concentric,
uniform plasma illustrated, figure 3, only the upgoing indexes, 7;.., are of concern. The down-
going waves usually result from higher level reflections and correspond to the indexes 7g ., figure 4.

The validity of the Q—L approximation [Budden, 1951] at long wavelengths has been checked
numerically [Johler and Walters, 1960],

n(?),e:] _/i C:: (\XI) [:t?'BIL (25)
where
tan g,="4, (26)
14
2
w; 27
il e e -

o 9
©w  wyrtey’

where wgy and wy are the gyro and plasma frequencies defined in the appendix and » is the
constant classical collision frequency. The plus (+4) sign is taken for the ordinary component,
and the minus (—) sign 1s taken for the extraordinary component.

2.3. Heavy Ions

The effect of the heavy ions, i.e., the effect other than the collisions with electrons, cannot
in general be neglected at extra low and ultra low radiofrequencies, since the gyrofrequency is
approximately 50 c¢/s for these ions, according to Rateliffe [1959]. An approach to this problem
has been introduced by Pfister [1955]. This approach can be developed as a modification of the
calculation of the index of refraction, », of the plasma, but the formulation becomes quite
intricate.

The number of positive ions, N+, the number of negative ions, N_, in addition to the num-
ber of electrons, N=N, are to be considered. The convection current components are, figure 1
eq (22):

Jo=—NeV,=—e[NV —N, VI +N_V 7 =J, +J, "+~

Jy=—NeV,=—e[N,VI—N,V /+N_V_1=J +J,+J,"

J.=—NeV,=—e[NV ~N. V. +N_V_|=J+J.F+J, . (28)
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The classical magneto-ionic collision frequency types, (v can be described in connection with

5 Y
certain constants, (', C,, Oy, . .

(, MMy My - My (v m—
=0 ’ 4=V+,0 — ' Ur=v—0 —— Lio=wo,—
% my+my o tm T Y m_+my my+m_
m- m- mes Mt
sz:ll - ’ C':V - ) C = ’ 0 S Sesmm )
e et m Y Y T e FTom—tme M0t mytmey
ms - om, M,
03:11 gy T CG:V — ., Cy= —y Cla= ’
T memy “m +m, e o Fm, ko Mo+ Me (29)

where v, is the electron-neutral molecule average collision frequency, v, is an electron-neg-
ative ion average collision frequency, ete., where the average velocity of like particles is assumed
to be zero, and my, m,, m+, m_ are the masses of the neutral molecules, electrons, positive and
negative ions respectively. The components of the Langevin eq (21) can then be written
(assuming the Langevin equation can be applied to such ions),

Vest o Bt Vel o=V o sl H (OOt O Vs OV a— GV - = GV =0
’lee 1/+ r +MOP[VV¢° zIIm Sz Vve rZ{m z]+(01+0 +03) IYe W ‘ 0. 02‘7- 1/_03‘ + r/_()
“’-’T]e z+ z+uoe[Ve er N7 I’e wELm I]+(Ol+ {_CB)V () Z_CZT’A 2—03‘/7-}— z—0

%JV+ r+ E + .U'Oe[ +.yI{m.z_“1V+.z[{nt.y]+(04+05+ 06) ‘/—!—,2_04 'YO.I_CE‘Y—,I_CG‘?(Z.I:O

6Vt By MV Hi o=V o A4 (OOt Q) V= OV oy = GV = OV 0y =0
w "Y z+ Ez+ U-Oe[ 7+.J:[Im ,y_T'Y+,y[{m.r]+(04+05+06) I’7+.z"_C'4 "YO.z—CSI/Y-—.2—06"78.2:0

¢ Ex+&[{7~ ,y[Irrl T V—,zljm,y] + (O7+ 08+ 09) T/-— Wz 07"70.1—08174—,1— OQIVL«’.I:O

m_ m_

ol At

iw ‘7 1/+ IJI/+ #Oe[ - zIJm z I/v~ ,z[{m ,z] + (07+ 08+ 09) ‘/Y— W 071/70.11_ CSV+»H_ 091'7(’-1/:0

iw‘*’_,z—-[— E -+ ”06[1 —aHn =V Hp | H(CH-Co+C) V_ ,— OV, ,— 3V ,— OV, ,=0

(010+ 011‘}'012)"70,:_ 010V—,z—011V+.z_C|2Ve.z:O
(n10+n11+012) 0, 1/’_(10I - 1/'_011V+ v OIZVe,y:O
(010+011+012)Vo,z—(yloV — 1V+ z— L 12Ve =0, (30)

where the components, figure 1, of F, and the velocity components of V are designated by the
subscripts z, 7, z of the plane local coordinate system at the ionosphere boundary.
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The simultaneous solution of these eqs (30) with Maxwell’s eqs (3) utilizing eq (28) results
in two coupled matrix equations:

[y, s g5 (10 0 0 17 0 0 7]
oy oo Aog 0 o5 0 0 Qog 0
s a3z (33 0 0 s 0 0 Q39
Ay 0 0 (om g5 o y7 0 0
0 s 0 N @355 @54 0 sg 0
0 0 (g3 gy g3 g 0 0 gy
an 0 0 A4 0 0 A7y s Qg
0 s 0 0 Qg5 0 g7 s Asy
0 0 a0 0 G Qo Qs e
and
b b by E, C(Jo+JF+J7)
by by boy E, |+| C(Jo+Ji+J,)
by by by E, C(Js+JF+J7)
where ('=—1/iwe, and the a,; and b,; are defined in the appendix.

The two eqs (31, 32) are equivalent to the single equation,

(5%

(531

Q31

Ay2
22
32

0

13

23

A4

0

@25

Q45

A55

0
0
A3
Ay
A5

e

1
L0
0

0
1

= o o

= &

S O

ay;; 0
0 ax
0 0
ag; 0
0 as
0 0
Ay Qs
g7 Qg
Qg7 Qgg
C 0
0o C
0 0

BE

E, =0 (31)

(32)

=0. (33)

E.

The 12 X 12 matrix, eq (33), and the vector submatrices can be divided into block maftrices
as indicated by the dashed line,

648645—62 8
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Then M.J4+N-K=0. (35)

and P.J4+Q-K=0. (36)
It M1 exists, multiply eq (35) by P-M~! and subtract from eq (36). Then,
Q-K—P-M'N.-K=(Q—P-M'.N).K=0. (37)
But,
by by bis E,

W= b bos bos | ,and K= | E,
b31 b32 b33 Ez

and P-M~%N can be computed numerically [Johler and Harper, 1962; Johler and Walters,
1960]. Thus (Q—P-M'N) can be written as a matrix involving the complex number, ¢,
eqs (23, 24). (Q—P-M~1.N).K=0 has a nontrivial solution if, and only if, | —P-M~*.N|=0.
This yields a polynomial in ¢ which can be solved to find ¢ [Johler and Walters, 1960]. These
results depend on the existence of M~ where M is the original 99 matrix, eq (31). If K
exists, the nonexistence of M~ would imply that eq (31) has no unique solution.

Writing,
!bu*an b12_a12 bla_al:s
b21_a21 bzz—azz 623_0123 - Q_P'lu_l'AY —0; (38)
bsl_aal bar‘asz bss—azs

and letting (see appendix for azar)

a=a;?—1—ay, g=—ag

b=—agar—ap /3‘:—0123

c=—ayr i=—ar

d=—ay J=—as

€= —QrpAr—0n k:az,(lr‘aw

f=ar"—1—ayy [ =ar*+ara;—1—ag, (39)

then eq (38) becomes,

Fta b ci+d
¢ CH gsth=
i$+3 k l
=)+ (—eg—id—kg)+ *(la+ lf +-bgi—fie—jd—kh) + ¢ (bhi
+bjg+eke—fej—idf —kag) + (af L +bhj+ekd—fjd—kha—Llbe),  (40)

or,
ZHa b cq+d
€ o g§+h|=a i+ as P+ a P +a i +a, (41)
lig+7 k l
where,
(lg':l_(lTZ

3= pog —Apays+kay,

a=la—+ lf‘i‘ barar—ar* —ayz0 +kows

1 ="baray+bagos — ekar—faray—fara;+kaay,

@o=af l+ baszorz) — ekays— fag a5+ kacy; — Lbe. (42)

A preliminary numerical evaluation of the eqs (28-42) based on estimated approximate
values of collision frequency and ion density indicated ion gyrofrequencies which could affect
the index of refraction at long wavelengths (1 ¢/s to 100 ¢/s).
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2.4. Boundary Conditions

The conventional procedure for the solution of electromagnetic-wave propagation problems
requires the description of the propagation in the various media assuming each of these to be of
infinite extent in space. Thus, figures 2, 3, and 4, the electromagnetic wave is determined by
the wave equation in the Hertz vector and the angular-wave number,

(V24HE)TT=0
(VA4-E)II=0
(V2 E)TT=0

. (43)
where the arabic numeral subseripts, 1, 2, 3, distinguish the three media of propagation desecribed
by the wave numbers ky, k,, k5. The boundaries r=a, ¢ . . ., figures 2, 3, and 4, are then
introduced by equating the tangential 7 and 77 fields and perhaps the normal H fields im-
mediately on each side of each boundary such that these fields are continuous across the
boundary.

The boundary conditions for the particular example, figure 3, comprising a finitely-conduct-
ing sphere, a concentric plasma shell of infinite extent and uniform composition will now be
considered in detail. The tangential components of 7 and H fields, eq (5) derived from appro-
priate Hertz vectors, II; » 5 for the various media are equated at the boundaries. The medium
of wave number, k; is a magneto-ionic medium involving ordinary and extraordinary wave
numbers ks o, ks , which can be treated as constants so that the wave eq (43) and corresponding
Hertz vectors, 11y o, II; ,, can be used (see appendix). The distinction between the two upgoing
(z) propagation components and the downgoing (r) propagation components is not necessary
in this case since the medium of wave number k; is of infinite extent. Downgoing waves arise
from additional boundaries such as those illustrated, figure 4. The boundary conditions
[Stratton, 1941] can be written by expressing the equality of the tangential components of the
field on each side and in the immediate vicinity of the boundary,

Hy 1=Hy 30,0
v y
Yo1=Es 30.0
-

[io,l:Eo.Mﬂ,c)

113’1:][0,3(0.6)

H,,—1,,
Ifé.l :Eo.Z

Hy,=H,,

Ey,=FEy, (44)

Straightforward substitution of eqs (5) into (44) would result in two sets of uncoupled equations
for the electrical and magnetical solutions. Therefore, it is necessary to define the coupling
in accordance with certain rules of the magneto-ionic theory. This can be accomplished with
the @— L approximation [Johler and Walters, 1960],

QoS0 . ,  —sin¢; .
Mo “ Fo 1o COS 6 (#5)
&t _; p.ZfDéy (46)
. ' © m, cos 6, :

where sin ¢;=n» sin 6, and ,, ¢, are the ordinary and extraordinary components of — @,,, and
where the rectangular cartesian coordinates are related locally at the model ionosphere boundary
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to the spherical components,

E, E, , E. E, —sing¢;, -
— Qo= 1’41/ E’ 1 me'—E_E— R ) (47)
or,
Ey=Q,.Es~ Fi ? E,
E,:Pme_—Slgi" o 48)
IL}:Qeden
5L =1 A (49)

The coupling can be introduced into the boundary conditions by writing
Ey 1 =QE 3 (50)

at r=c¢. Equation (50), and the equated tangential fields, eq (44), can be written in terms of

i~
the Hertz vector II, assuming a vertical electric dipole transmitter, » II,° located in medium of
wave number £,

[ & (I +4-115) = k3 (115) ]

a (3 e _2 TTE
> (7Ho+rH1)—ar (rI15)

(51)
=117
O (12 i
_E,(TH1>Har (rIIZ) 4,
[ 1) = wiege L 2 )
10 .
o (TG0 = oo QTIY
(52)

10
= th ; E (/‘H%)

oo 2 (1) = Qg

where in the -L approximation,
ok ] P j",liz,
k2/k’ m

and p=sin®p, is the complex direction sine squared of propagation, and the minus sign (—) is
taken with the ordinary wave, ks, o, and the plus (+) sign is taken with the extraordinary wave
ks,e.

The quantity p, for the case of a plane wave incident upon the ionosphere, can be identi-
fied with a local angle of incidence, ¢;, at the model ionosphere boundary.

p=sin®¢,. (53)

However, in the case of the spherical waves incident on the ionosphere at r=c,

E . =1 2
¢z—[l+<ﬁf Vi o




a complex angle of incidence, which can be written explicitly for each spherical wave ¢, ¥,, as
shown in the appendix.
The solution of the wave eq (43) when oI
Eg'— )

1 o[ Om, . N
5 or L7 S i sig on L5 0 g [ HEI=0 55

depends upon the separation of variables, § and r,
O=f(r) F(6), (56)

whereupon,

l:sm = F(B):I %[ 2 %f(r)]-l—kzrzf(r) (57)
F(6) sin 6 J@)

in which Legendre differential equation is satisfied by the Legendre function,

F)=P, (cos 0), (58)
where,
])0 (COS 0):] y
P, (cos 6)=cos 0,
P, (cos 6)=%(3 cos? 6—1),

P; (cos 6)=3%(5 cos® 6—3 cos 0),

and the eigenva ues,

A=n(n+1),
=0, o2 8 o o o s (614
or,
‘ PN D
(1—2) P20, a8 g 1yP, 01, (60)
where z=cos 6.
Also, eq (57) [Stratton, 1941], since
,0f7 102
e e e
d?z ldz (n—l—l) o
et et =0 (1)

where z=+£f(r), t£=Fkr, which is Bessel’s equation.
Thus, the solution of eq (55) can be written as a series of zonal harmonics consisting of
terms of the form (Buyu(kr) +vu&n(kr)) X P, (cos 6), where 3, and v, are constants and

4@=yZ Tur(a), (62)

Ga(@)= H (@), (63)

Joi1p(2) and HP 1 5(2) are Bessel and Hankel functions (solutions of eq (61)) of order n--1/2
and argument z and the Hankel function H? is of the second kind [Watson, 1958]. The ¢-waves
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v /‘g
\ FiGure 5. Terrestrial sphere cross section with con-

centric plasma illustrating various types of progress-
m' ing spherical waves in the three media of propagation.
v

Outgoing ¢-waves and ingoing y-waves.

CENTER OF SPHERE

vanish at r= o, figure 5, and the y-waves vanish at »=0. In particular,

©

iy 25 (20-+1) 5,k b)s (kir) P cos 0), (r<b)

:7{?1'«7» % @n+1) ¢ (ki) (kiB) P (cos 6), (>>) (64)
iy 33 @n+ D [b38, (i) + i (ki) I, (cos 0 (65)
ML= s 3 DB k) 250 ki) 1P, (cos 0 (66)

Hg:ﬁ 32 @ Dag () Pu(cos 0), (67)
P g 5 @t Daiy ()P, (cos 6), (68)
Mgy 32 @t 1Ddic (k)P (cos 6), (69)
M=oy 3 @Dz, (k) Py (cos 6). (70)

The subscripts, 1, 2, 3, refer to the Hertz vector fields in the various media, ficure 3, and
a;, by, ete., are constants determined by the boundary conditions, eq (71).
The boundary conditions, eqs (51, 52), can be written in conecise form as the matrix equation:

ay, ay, a3 0 0 0 0 0 7] a2 [Tauo |
@2, 1 @y, 9 @, 3 0 0 0 0 0 b az0
0 az s a3, 3 0 0 0 0 as, g &, a3 o
0 Qy, - Uy, 3 0 0 0 0 Oy g d° @y, o
— (7
0 0 0 a5, 4 0 as g as, 7 0 ay 0
0 0 0 0 g, 5 @, ¢ g, 7 0 b 0
0 0 0 0 Az, 5 7, 6 arq 0 Gy 0
L 0 0 0 g, 4 0 dg s s, 7 0 J | d2] L0
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where,

ay, 0=—{ (ki)Y (ki)
ay, 1 =—Y, (k)
ay,2—

$n(kra)

\[/n (k 1 (l)

ay,3=

1 ;
(L-z,o—_——/?1 Calkyb) & (bera)

1
a2, 1= _7;2 ¥, (ko)
1,
Uy, 3= 7{';%(/\714)
1
(As¥a== E‘/’u(’ﬁ”’)

Wk iy=—"— g.n (klc)‘//n(klb)

a3 2= g-n (klc)
A3, 3= \012 (klc)
Gos= g Sal)

L.,
Ay, 0= —‘1;1 g‘n(klahbn(klb)

1
Uy 2= F $nlkie)

I
Ay, 3= E‘Pn(lﬁ(’)

‘.U-o'iw

04‘8:_]{34;)”,3 ?rr(kil(‘)
(65.4:“‘%; $u(kse)

#oiw

a’S. Bie k—? §‘11 (lf](’)
1
A5, 7= E !.Ln ('IC.'&C)
—1
g, 5= 76% ¥ (ko)
s, 6= ]{_lf g_n (kl(l‘)
1
s, 17— E ¥ (ka)
1,
as, SZ—E ¥, ()
1 ’
az, 6= El $ulheva)
1 ’
Go= 7 ¥, (kya)
ag 4— — Qemg‘n (k:}C)

ﬂ-oi w

Qg, 6= k_l ¥, (k)

#o’iw

(Ul = _l; f;z(/ﬁ(’)-

(72)

Under certain conditions, such as long wavelengths [Johler and Walters, 1960 ; Johler, 1961 ;
Johler, Walters, and Harper, 1960], the effect of coupling in the region between r=a and r=e¢,
figures 2, 3, and 4, can be neglected. This assumption reduces the matrix eq. (71) to,

—_\bn(k?a)
(R I
_k_z ‘l/n( Z(L)

0

0

g-n(kla/) \bn(kla’) 0 7] '_an_ —_§n(klb)¢n(k1a) 1
1 ’ 1 ’ =l ’

k—'; g‘n(kla) ]T.I \bn(kla) 0 bn Tl g‘,l(klb)lp,,(kl(lv)
g‘n(kIC) \[/n(kla’) [_(ﬂ(kSC)] (9 a _g‘n(klc>§[/,,<klb)
Eoe ko [—pamo]] (4] |5 adon
kl g‘n( 1€ kl \bn( 14 k& g‘n( 3C | _(’nJ B kl g'n( 1C) ¥y, (K ]

where an:a:u bn:bfm cu:c{r’u (ln:dfw k3:k3,0, k.’i.e-
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Ficure 6. Amplitude of the vertical electric field,

|E|, of the ground wave excited by a vertical electric
time harmonic dipole source current moment as a
function of distance, d, along the surface of the
terrestrial sphere, illustrating the standing wave at the
antipode of the transmitter resulting from two waves
traveling “‘around-the-world” in opposite directions.
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Ficure 7. Phase of the vertical electric field, arg E.,

of the ground wave.
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Ficure 8. Amplitude of the horizontal magnetic

field, |Hyl|, of the ground wave excited by a vertical
electric dipole time-harmonic dipole source current
moment as a function of the distance, d, along the
surface of the terrestrial sphere, illustrating the stand-
ing wave near the antipode of the transmaitter result-
ing from two waves traveling “‘around-the-world” in.
oppostite directions.
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Phase of the horizontal magnetic field,
arg Hg, of the ground wave.

This matrix (eq. 73) can be generalized for straification of the sphere and the continuoulsy

stratified concentric plasma,

X1,1X1,2X1,3
X, 1X2,2X2, 3
X3, 2X3, 3X3, 4X3, 5
Xy, 2X4,3X4, 4X4, 5
Xs, 4X5, 5X5, 6X5,7
Xs, 4Xs, 5X6, 6X6,7
Xz, 6X7,7X7,8X7,9
Xe, 6Xs, 7Xs, X3, 9

Xop+3,2p+2X2p+3, 2p+3X2p+3,2p+4
Xopt+4,2p+2Xop+4, 2p+3Kept4,2p4ad Ldpn 1 L

Xom+3, 2m+2X2m+3, 2m+3X2m+3, 2m+4Xom+3, 2m+5
Xom+4, 2m+2Xom+4, 2m+3X2m+4, 2m+aX2m+4, 2m+5

Tlaen 1 [
1,n
a’l,n
b, X3,0
Cp X4,0
a1z Xs5,0
el.n
2, n
dm—l,n

em—l. n

= (74)

40000 m, n

Cm,n

dp—l, n

ep—l,n




where

X,1=—¥n (k2,2 )

X1,2=n (ko 1 f)
Xy, 5= (k2,1.f)

1,
26 1= —k_z ‘2 (ks 2 f)
I
Xz,zz_k Cnlks,1 )
2,1

X, 3:]%1 VAURYD,
X3, 0=—{n (k1) Y (k1)

X3,2=—{n(k2,10)
X3,3=—¥n (k'z, 10/)
Xs, 4= (1)
Xs, 5=y, (kra)
1 ’
X4,o:_%‘ Co (kb)) o, (Reva)
1
—— - ghllks0)
Xy, 0= k“i'n 2,10

1
2= '—E‘l 4 (2%10)

X7 5= — {nlks,2C2)

X7,9=—¥n(k3,26)

I
Xg EZE Cnlkes,1c0)
[
Xs .7=E—1 Y (k3100)
LI
X8,8='—E‘; $ulles, oc2)

I
X8, 9= —E; ¥ (ks 2C2)

1
X“:E $n(kya)

[y
Xy, 5=]?1 Yo (ka)
Xs,0=— u(kse) ¥ (Frb)

X5, 4= ulkrcy)
Xs, 5=V (krc1)

X5, 6=— §nlks,1€1)
X5, 7= —¥u(ks 161)

1 .
XG,OZ_']?1 g-n(klcl)“lln(klb)
(1
X6,4:E§n (klcl)
1Py
X6,5:E¢n(klcl)
I
Xg, 6= s $nlkes,1e1)
I
X, 7:_/; Yn(ks,1c1)
X7, 6= o (ks 1C2)

Xz, 7=V, (ks, 1€2)

1
sz+4,2m+2'_—"kﬁ‘”“1 En(kes, m—16m)
3, m—

1
Xom 44, S S (ks 1)
3, m—1

1,
X2m+4.2m+4='—'—]? g‘n(kli,mcm)
,m

I
Xom+4,2m 45— —E— Y (ks mCm)
., m

Xopt3.2p+2={n (K3, p—1Cp)

Xop+3,2p+3=¥n (K3, p—1€5)
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Xom+3,2m+2= {n (K3, m—1Cm)
X2nL+3,2'm+3:‘l/n(k3, m»lcm)
X2m+3, 2m+4— g‘n (k3. mcm)

X2m+3, 2m+5"— _‘pn (ks, mcm>

Xop+3,2p+4=—

Xopt4,2p+27=
p+4,2p+ i

g‘n (k3,pcp)
I
7. g‘n(kli, 1)—161;)

3,p—1

1

X2p+4.2p+3:k——3 Yo(ks, p-ic,)

,p—1

_1 ,
X2p+4.2p+4zg Snlks, yC5).
» D

The inner sphere, figure 4, has wave number £,,,, radius f, and Hertz vector,

Hz =

the outer layer of the earth has wave number k,,;, radius a, and Hertz vector

1 @
2 2,,b Zl) (zn—l_l)a?,n‘pn(kz,Qr)Pn (COS 0)7
&, n=

)

H2,1=2—1r—b i (2n+1) [ar, ¥ (ko1 7) Ff1,n n (ko1 7) 1P, (cOS 0);

n=0

W=
12—
0
s
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©
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i
’
0 |
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Frcure 10.

Index of refraction, n=Ren-+ilmn, of

the model plasma for various electron densities, N,
and classical collisions, v, in the absence of a super-

posed magnetic field, Hy,=0.
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IGURE 11. Index of refraction, ny=Reny+ilmn,,

of the model plasma for various electron densities, N,
and classical collisions, v in the presence of a super-
posed magnetic field, Hy,=0.5 gauss, employing the

quasi-longitudinal approximation.
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Index of refraction, 7= Ren,+ilmy,,

of the model plasma for various electron densities, N,

and classical collisions, v in the presence of a super-
posed magnetic field, H,,=0.5 gauss, employing the

quasi-longitudinal approximation.



the air (k,) is as before; the mth layer of the ionosphere has wave number kj,,,, lower edge at
r=c¢,, and Hertz vector,

II.’{, m :':/"g'lTb i (2“’+ 1) I(ln. m g‘ll (kS m 7‘) —[_ gn, m ¢r1 (k;;_ m 7‘) ]])71, ((.OS 0) )

n=0

except for the outermost layer with wave number kj,,, which is infinite and thus has only
outgoing waves, i.e.,

il ©
H3y7):2b,.b Z (2]Z’+l)dn,pg‘n(k&pr)])n (COS 0)
3,p n=0

In each case, 11,=11,,+11;,,. Similarly, eq (71) can be generalized to take account of coupling
at each ionosphere boundary.

IOO[
90

(2n+1) 7,
f=100c/s

. h= 675 km
N=56, v=16xI0"

00—

60._
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Re ((2n+1)7,)
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|
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Im(2n+1) 7y

Fieure 13. Locus of the coeflicient eq (102), of the Legendre function P ,(cos ©) for spherical waves of order n mapped
into the (2n+1) yyu-plane, illustrating both amplitude and phase of the complex spherical wave coefficient.
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2.5. The Watson Transformation

The method proposed by Watson [1919] consisted of forming a complex integral for the

Hertz vector, II,

_ 1 <& by & () Fepn (hy7) ]
Hl—k%rb ngo (2n-+1) P, (cos 6) D, ) (76)
thus,
- vdy (603 &1 herr) Fe) sy (ear)]
Hl_—kirb ¢ COS v Foyj(—cosit) T (77)
around a suitable contour, €, and taking the sum of the residues at the zeros,
D,_;=0, (78)
D=1, (79)
—2r & vy D a(—cos )by & s (ki) te s (kir)] io
= irb ;1 oS vyr l:b +f_imf(v>dv’ (07
T
ov Sty
108 = -
i AMPLITUDE, IE | ]
Ve -
v=16xI07 ,N=56 E
Hm=0.5 GAUSS -
ToQ =;T1°T—c :

L

7500

10710 |
14 =
w =
= C
w
u -
< L
(%2}
4 C
S
—l_u:_ ____________
B =
10712 |—
10713 | | | | |
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STATUTE MILES
Ficure 14.  Amplitude of the vertical electric field, | E.|, at the surface of the terrestrial sphere (r=b=a) excited by

a vertical electric time harmonic dipole current source located on the surface of the terrestrial sphere at various

frequencies, as a function of distance, d=a®, on the surface (r=a) of the sphere.
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where the line integral along the imaginary axis is usually considered to be negligible, f(») is
defined by eq (77), and where

b:L 2
bn_ﬁ;’ (81)
C,,=g—"ny (82)

and D, is the determinant of the matrix eq (73), for example. Whereas the series, II,(v5), con-
verges rapidly in most practical computations, it would be necessary to evaluate the roots of
the eq (78), and form the derivatives of the ¢,-waves and y,-waves with respect to complex
order, ». to maintain the equivalent rigor of the series of zonal harmonics. The exact equiva-
lence of this procedure is of course assured by the theory of functions of the complex variable.

T T ] T I T I T [ T [ T I T {
PHASE LAG, ARG Hg
1000 = 15, o=0005 =
E h=675 km =
N:=56, v=16xI07 -
(2]
z
g
o
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4
-
< B
(]
x
<
]
. .
T T T T T T T T T T T T T 1]
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1000
2
S 100
o
<
[+ 4
o
e n -
< / c/s =
I
1 — :

[T I T [ T B
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
STATUTE MILES

Ficure 15.  Phase of the vertical electric field, arg
E., and arg Hy at the surface of the terrestrial sphere
as a function of distance.

3. Computations

In the particular case, figure 2, of a finitely conducting sphere (without a concentric
plasma), the total Hertz vector in the air for the restriction, r=a, b>a,

Htot:H0+H1) (83)
18,
—1 .=
=y m
I=pzr 3 @n+1)7,Ps (cos 0), (84)
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where,

u(krb -
e lflfbnw)za) e
.(n(kla’) ‘// (k ) g.n(kla)
where the Wronskian identity, [Watson, 1918],
¢n g‘n .
=—1, (86)
7 4

has been employed. From the definitions (62, 63) of ¢,(2) and ¢,(z) and the identity [Watson,
1958],

v
J;(Z) :Jv—l(z) —'g J,.(Z), (87)
it 1s easily shown that
e Ny n
‘/’n("):‘l/n—l(‘)—g ¢n(2)' (8831)
0" 1
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Freure 16.  Amplitude of the horizontal magnetic field, |Hy|, at the surface of the terrestrial sphere (r=b=
a) at various frequencies as a function of distance.
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Similarly,

Thus, v, can easily be computed by evaluating the functions ¢,(z) and ¢,(z2).

and

Similarly,

and

-9

S“I’t(z):g‘nfl(z)—g g‘n(2>- (881))
Now,
Yo(z)=sin z,
¥_,(2)=cos z,
2n-+ ) )
)n:‘ 1 ‘lbn(z):‘pn-(-l (5) +¢/:1—1(2)- (89)
Co(2)=1e7%,
G1(z)=—e"*(1—1/2),
n) , )
-“+1 §11<'2):fzz+l<2>+§r1—l(2)- (90)

=

||, voLTS/METER

AMPLITUDE, |E/|

€,=15, 0 = 0.005

h =675 km

N= 56 V:16xI0

Hm =0.5 GAUSS

4

Ho®

—— ZONAL HARMONICS
-15 - —— RESIDUE SERIES

A=

(L LA L AL

T T
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- RN
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Ficure 17.

Lo nul
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Amplitude of the vertical electric field, |E,|, at the surface of the terrestrial sphere (r=b=a) excited|by

a vertical electric time-harmonic dipole current source located on the surface of the terrestrial sphere, as a function
of frequency, f, at various distances, illustrating an “absorption band’’ between 300 c/s to 3 kc/s.
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Therefore it would appear that ¢,(z) and ¢,(z) could easily be found for all n. However, for
n> |z|, eq (89), loses precision with each recursion [Goldstein, and Thaler, 1959], and the series
(84) does not converge until n> |ka|. For n> |kal, the following method of Goldstein and

Thaler [1959] is employed:

For M |2, define Fyy1(2) =0, Fy(2)=1, and Fo_y(2) =221 Fo(2)— Fopa (2) for n< M.

2

Then, with fixed L>1, n<(M-L),

\bn(Z\) :aFn(2)+€<M), (91)
where a depends only on z and e can be made arbitrarily small by increasing M. « can be found
from

. Yn(2)
G T (2) y (92)

for some N for which ¢, is known, and then y,,(2), N<n<(M-L), can be computed using eq (91).
Since Im (k.a) is very large, ¥,(k.,a) and ¢, (k,a) are very large. Therefore, it is more

convenient to compute

(ks
\[/n(kZG’)
10" =
= ] IIHIW I THHH[ I Illlllll I | A
7 500 MILES /
A = / =
F— 1000 MILES ,/ =
— / —
| S 2000 M’LES -\ | _
- oy
10 Wi \J |/ ——
— / =
e = / " ]
E — \\ / /I ]
3l AN ,’ / ]
§ = \ \\\_ | / =]
i N Vi =
g 8 i -
W L \ | ]
e S / -
= |= 2719, T | =]
f — h=67.5 km. \\ | =
- N:56 v:1.6xI10 \ | —
I Hm = 0.5 GAUSS \\ l' —
=i
== - S —
== Tod = [y \\ ll E!
- ZONAL HARMONICS \ | 1
bt RESIDUE SERIES \ | =
| \\ | |
-1 \ |
10 = \\ | =
= o =
— [ -
| Ll ]
- Lot il il g
1 10 100 1000 10,000
FREQUENCY, ¢/s
Frcure 18. Amplitude of the horizontal magnetic field, |Hy| as a function of frequency for various distances,

illustrating an ‘“absorption band” between 300 c/s and 3 ke/s.
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Ficure 19. Primary—argHy, —argE; and secondary phase lag, or phase correction, — argE,/Ey, i, —argHs/Hs ori,
as a function of frequency.
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using,
Ro=cot (k) (94)
and,

koa n

Rn:ln’_kZaRn—l—E

(95)
for n>0. This recursion formula, which is derived from the well-known recursion formulas
for Bessel function [Watson, 1958] will lose precision for n> |k.a|, but for the computations
presented in this paper, n remained smaller than |k.a|.
The Legendre polynomials P,(z) can be computed from the recursion formula [Hobson,
1931],
M(2n+1)lpn (I)—n‘Pn—l (I)

P,l+1(17)—— ’7L+1 y (11‘21), (96)

starting with P(yr)=1 and P,(r)=ux.
The convergence of the series (84) is notoriously slow, but the sum can be found from a
more quickly convergent series. For 7> |k,a| [Watson, 1919],

@+ 1o~ —2ka (5)" (97)
For (<1, [Hobson, 1931]
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Ficure 20.  Amplitude of the vertical electric field, |E,|, at 100 c/s as a function of distance from the source, illus-
trating the primary field, the field disturbed by the terrestrial sphere (no ionosphere), and the field disturbed by both
the terrestrial sphere and the concentric plasma.
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so that

©
>
n=0

klab Z 2k

n=0

Therefore, adding (84) and (99),

Htot—ﬂ [

As a result of eq (97),

["P, (cos 8)=(1—11 cos 6-+1%) %,

(%) P,(cos 0):7:762 [1—2 (%) cos 0+%:I_“

“ os 0+ 2:IH kzl}zb > 2ka (b) —}-(‘)n,+l)'yn] P,(cos 0).

[‘Bkla <%>+ @n-+1) 7,1]—>o,

(98)

99)

(100)

as n gets much larger than £,a, so that the new series (100) converges more quickly than the
The £, and H, fields were computed at a given point, p,, by computing
the Hertz vector Il at seven points, p_s, p_s, P_1, P—oy P1, P2, Ps, Where p,=po+nAb for

original series (84).

fixed A6. The derivatives, eq (5),
oIl
3o‘fp=z»c
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Frcure 21.

STATUTE MILES

Amplitude of the horizontal magnetic field, |Hy|, at 100 ¢/s as a function of distance from the source,

llustrating the primary field, the field disturbed by the presence of the terrestrial sphere (no ionosphere), and the
field disturbed by both the terrestrial sphere and the concentric plasma.
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were then found numerically using the seven point Lagrangian formula [Kopal, 1955]. As a
check, the first two derivatives of an orthogonal least-square polynomial fitted to points p_,
-, po [Hildebrand, 1956] were computed and compared with the results of the Lagrangian
formula. The computed derivatives were then substituted into the appropriate eqs (5) to
find the £, and Hy fields.
For the model, figure 3, which includes the sharply bounded inosphere, computations
were made for the case r=a=>5, the Hertz vector for which can be written with the time
function exp (iwt) suppressed:

exp (—ikD) | 1 &

= < , D 0
Hlot —'LkD +k%a/2b2 7L=6 (271 +1)7n1 n((JOS 0); (101>
where now, -
Vn=[$n (k@) Byt (kia) C, 1D, ™ (102)
where
g1 1,0 ay,3 0
Ay 1 @2, ¢ @3, 3 0
Bn: )
0 a3, 3,3 A3, 4
0 4,0 4,3 Qy, 4
a1 y, 2 @y, 0 0 |
@2, 1 @2, 2 2, ¢ 0
= ,
0 a3, 2 3,0 A3, 4
0 Ay, 2 4,0 (g, 4
and
@y,1 ay, 2 Q.3 0
@2, 1 g, 2 @3, 3 0
D,—= ,
0 as, 2 3,3 a3, 4
0 Ay, 2 @y, 3 Ay, 4

for the a; ; defined in (72).
Or, explicitly,

Vo =190 { (ka0 (ki)W (kna) — ko R, € (i) ¥, (n@) [ 5 (ks (Rie) — £, (ki (Rva) | — i 0 (Rae) ¥ (Rya) |
— ¢ {[kikapnkes@) & (kie) — KR i, (kya) & (Rn@) 1 60 (Rr@) (Rey€) — £ (er€) i (@) | — ook & (v ) (Rrv) } ]
Xlgnu{ =kl (k@) ¥iki) =¥, (k@) & (kie) 14k R [ (ki) (ko) — ¢, (ki) o, (Ria) |}
o { kol S (ki) ¥ (ki0) — ¥, (ka@) §o (i0) | = RE R, [ € () ¥ (R i0) — & (o) (Rna) | ], (103)

where,

¢n: §'n(k3, OC) +§‘n (kB,ec) )

’ 1 / 1 4
¢,n=m Enlles oc) +E—e Snlks, 0),

and,
:‘P;(kza)
By )’

as before (93).
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The ¢ and ¢ functions were computed as before, eqs (88-92).
Clertain numerical characteristics of the series (101) make possible direct computation
of the derivatives using

oIl 1
w:kf? 2"20 (27[+1)7n Pn <(OS> 0
—sin § & '
=—5—>— 2 (2n+1)7,P, (cos 0), (104)
e 5=
, d
where P, (cos ) denotes Hoon) P, (cos 6).
Similarly,
02H " D/
Y /CZ g HZ," (2n-+1)5, [sin? OF; (cos 6) —cos 6P, (cos 0)]
%in 0 e cos 6 DH -
Ry Z (2n+1)v.P7 (cos 6)+— s o oo (105)
The derivatives of P,(x) can be found from eq (96),
n+l(r) I)n l(r) —i_ (Qn'_{"])])/l ('I.>,v (1()6)
and [Hobson, 1931]
n+1('1') [);L/—I(J)+(2r"'+1)1)7lz(:r)' (107)

The series, eqs (104, 105), converge even more slowly than the original series, eq (101).
However, for n> > |ka|, 2n-+1)y,~ika, so, as before, the series can be transformed to
improve convergence using [Hobson, 1931]

L AP, (cos0) 1.3, .- 2m—1DA"
,Z:,{t Y (cos )™ — (1—2h cos §-+h%)mt: ? (h<1)

(108)

Substitution of the derivatives into eq (5) yields the 72, and H, fields.

The number of terms required for graphical accuracy in |/,| varied from about 700 at
10 ¢/s to about 3,000 at 10 ke/s. The CDC-1604 computer could compute about 830 v,, eq
(102), per minute. Using these stored v, the fields could be found for 40 different values of 6
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