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A formal solution is obtained for the magnetic field produced by a vertical magneto-
static dipole which moves in free space at a constant velocity along the normal to a con-

ducting half space.

When the velocity of the dipole is much less than that of light, the

field in free space is governed by Laplace’s equation, and that in the conducting half space

by the diffusion equation.
in a small loop moving with the dipole.
expressions are obtained for the induction.

1. Introduction

The problem of a stationary vertical oscillating
magnetic dipole above a conducting ground has been
discussed by Wait [1951, 1953]. The analagous
problem of a vertical magnetostatic dipole approach-
g a conducting half space is considered in the
present paper. If the dipole moves with a constant
velocity which is much smaller than that of light,
then the magnetic field in free space will satisfy
Laplace’s equation while the field in the con-
ducting region will satisfy the diffusion equation.
Formal solutions are obtained for the magnetic
field in the two regions.

It is of interest to find an expression for the vol-
tage induced in a small loop moving with the dipole.
Such a result might have application in the design
of a device for measuring the close proximity of a
vehicle to a conducting surface or for measuring
the velocity of a vehicle just before impact with
such a surface. The solution for the reflected
vertical component of the magnetic flux density
in free space is used to find an expression in closed
form for the induction. This result simplifies
considerably for certain values of the parameters.
Numerical results are presented for certain cases.

2. Formal Solution

With reference to the coordinate system shown
in figure 1, the conducting medium of conductivity
o, permeability u, and permittivity e occupies the
half space defined by all negative values of z. The
upper half space has the characteristics of free
space, namely, zero conductivity, permeability u,
and permittivity &. A magnetostatic dipole of
moment m moves toward the conducting half
space with a constant velocity » along the z axis.
The dipole is situated instantaneously on the =z
axis at z=d and is oriented in the positive z di-
rection. The field point P, located at p, ¢, 2z, in

An expression in closed form is derived for the voltage induced
For certain values of the parameters, simplified
Numerical results are presented for certain cases.

cylindrical coordinates, is a distance » from the
dipole. The vector magnetic flux density B can
be represented everywhere in terms of a magnetic
vector potential A.

Thus,
where A, if 1<¢ (c=free space velocity  of light),
satisfies
v2A=0 (2)
for z>0, and
,= A
A=po — :
ViA=po 3)
for 2<20.
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Ficure 1. Magnetostatic dipole moving toward a conducting

half space.
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In the region z>0, the total vector potential is
assumed to consist of a primary potential A, plus a
reflected potential A,. The primary vector potential
of the magnetostatic dipole, shown in ficure 1, has
only a ¢ component which is given by

I-‘na

(i G) (4)

o1 .
The quantity S may be expressed [Smythe, 1950] as

4‘1¢0: -

= f 147y (ko) dk, (5)

where r= |p‘-‘_|_ ((]_ 2)2]1/2.
then reads

The primary potential

A —=m L

e M= T (kp)edk,
4r J,

(2>0).  (6)
Similarly, the reflected potential in the upper half
space, A, and the potential in the conducting half
space, Ag,, may be written as

Ag=m 3* f Filk) e 2] (kp)kdk,  (:2>0)
(7)
and
10)Am~ f fao(k)exPze=kaJ (kp) kdk, (2<0),
(8)

respectively.

The functions a(k), f; (k), and f:(k) are determined
from (2) and the boundary conditions at z=0 for the
normal magnetic flux density and the tangential
magnetic intensity.

Upon substituting the expression for A,, into (3),
the relationship

a?=k*+kuov (9)

is obtained where », the velocity of the dipole,

d .. . .
gt Application of the continuity condi-
tions for the magnetic field at the boundary z=0
yields

41%‘*‘44:1 Loy,

equals—

(normal B continuous)

(10)
and

A Ay A, e :
l’-}——é’: b (tangential H continuous).
(11)

The functions f,(k) and fy(k) are evaluated by
substituting the potentials given by (6), (7), and (8)
into (10) and (11). This results in

Mo Mo

 pk— pocx

fl(k) };Lk‘i_#a

(12)

and

Salk)=— 2o

wk+ pga (13)

The components of the magnetic flux density in
each region are then found from

10
8= y, 14
p ap (p rb) ( )
and
*_DAG,. o
8= 57 (15)

3. Voltage Induced in Loop Moving
With Dipole

3.1. Sclution in Closed Form
An interesting application of the solution for the
reflected magnetic flux density in free space is the
determination of the voltage induced in a small,
single-turn loop moving with the dipole along the
z axis. If the axis of the loop is vertical and the
permeability of both regions is taken as uy, the

voltage per unit loop area, V| is given by

where p?=peov. The integral in (16) is evaluated
in appendix 1 and can be written as

e ”“j:U'O ) < 2 ' h
v o [21) (1“+8(14+2P 8h2 )KO< >

+21’“(4h Sh? 01{* >K1<h>] L

where h=2p%.

Ve _dB,  m l*qu“ °
0

dt 27

e 3dle,

(16)

3.2. Solution for h«1

For h<1, the expression for the voltage given by
(17) 1s not useful for numerical computation due to
the fact that the sum of the first two terms is op-
posite in sign and very nearly equal to the sum of
the third and fourth terms. A more convenient
expression may be derived by substituting h=2p%*

ko . . - .
and L:F in the integral in (16). The equation

then reads

=mv = I:f ple ™ idx

+f 2])8x3(x—[ﬁ—i—.x]”)e‘”fdx:l- (18)
0
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Evaluation of the first integral in (18) is simple and
3 mou

yields 76 =g

The second integral is evaluated
in appendix 2 by neglecting terms of the order of A*
and higher. The expression for the voltage then
simplifies to

. Mot mopgy?
C32md® 32nd®

(19)

3.3. Spacial Case for 6=

For the case where the conductivity of the lower
half space becomes infinite, the solution for the vol-
tage may be obtained by either the method of images
or by using (16). The resulting expression is

V- 3

~ 16w

»
o g (0= o). (20)

4, Discussion of Numerical Results

When h<1, or equivalently when sed<< % < 107,
the expression for the voltage given by (19) may be
used.  Numerical results using this expression are
presented in figures 2 and 3 for the case where m=1
amp/m?  This value of the moment corresponds
to that of 1 em® of Alineo 5 in which there is an

60
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Ficure 2. Induced voltage as a function of height above a

conducting half space.

average flux density of 1.2 webers/m? 1In figure 2,
the voltage induced in a loop of unit area is plotted
2s a function of the height of the magnet above
surfaces of different conductivity. The velocity of
the loop and magnet is taken as 300 m/sec. Figure
3 shows the voltage per unit area as a function of
velocity for various hall space conductivities. The
values of induction in this figure correspond to a
one meter height of the loop and magnet above
the conducting surface.

The numerical results plotted in figures 2 and 3
show the induction to be quite small. Usable volt-
ages could be obtained just above earth or sea
water by employing large magnets and small multi-
turn loops moving with velocities near Mach 1.

5. Appendix 1

Using the substitution ;rzl%; the integral in (16)

1s written as

Fo

=
V=mv 5 f [2pBe 2P Ayt — 28 (2 4-x)1/2¢ ~ 25970y
JO

- phe 2 d .

(A1)

The first and third terms are readily integrated.
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Frcure 3. Induced voltage as a function of velocity towards a

conducting half space.
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Thus,

moug
21

f [2p8¢ —2epfyt | e —22p%3]
0

muv 3 3
= [t 49

The second integral can be written as

—mouep® (7 ;
— MOkep f B2+ 2x)2e Mdx
™ 0

yun® 3 @
:@,’%Z%h f (@P4-2)12edz, (A3)
0

. 1
where h=2p*d. If the substitution IZ% cosh B—-é

is made in the integral on the right side of (A3),
the integral reads

h
= g(cosh ﬁ_l)(lﬂ

f (x2+x)”2€_’”dx:lf sinh?Be
0 4 0

h
) cosh Bd

B.
(A4)

1 ’if“’
= P ) -
59 J), (cosh 28—1)e

Since K,(u), the modified Bessel function of the
second kind, is defined [Erdélyi, ed., 1953] by
K,,,(u)::f . —ucosh oosh npdp, (u>0),
0

(A4) can be written as

J;w (x2+:c)”2e"”dx:% eg I:Kg (g)—KO (g):l

IR
:2—}2/621{1 <§>

The third derivative with respect to h of the integral
in (A5) is obtained by using the following recurrence
relations:

(A5)

%Kl () =K (1) — Ko ()
Ky(u)=—K,(w)
K{(u):—[Ko(u)-i-éKl(u):I ,

where the primed quantities represent derivatives
with respect to u. The second integral of (Al) is
finally expressed as

— nd [®
_mvuopf (2 +x)2e"dx
™ 0
_moup® L (_1 i_§> (ﬁ)
- “[ a T ) K3

B ()] o

6. Appendix 2

By letting t=ha, the second integral in (18) can be
written as

] ©
ﬂ%ﬂ,ﬂf Plr— (224-2)V2]e " da
0

e [ ©
:mjrl;;])f [t — (- th)"*e”"dt. (A7)
0

The integral on the right of (A7) is written in two
parts, namely,

h
Ilzf 3t — (t2+th)?*|e~"dt
0
and

L= | Pli— (@l e,
h
The [I,] is at most of the order A° since

H1|=] fohts[t— (t2-th)V?le~'dt ]<f0ht3 (t—2V2h)dt

_h5 21/2h5

5z @8

For %<1,
1/2
(t*+-th) =t <1+?>
B h 1R
=t [1 2% 8¢

where 0<0(f) <1.

1A

67 (1 +9(l‘))_5/2] » (A9)

It follows that

e h 1 1
_ 3y 1 1970 = =
I2_f;. I: t 2—{—8ch 16 th*(1+0(t)) 5’2]6 tdt

N __3@ lzz:l—z
—fol: t2+8th e~ ldt

" 3 h 1 21,2 -
— —t §+—th e~'dt—R, (A10)
0 8
3 ©
where R=]h—6 t[146(t) |75%e'dt represents a re-
h

mainder term. The maximum the
remainder is found by letting 6(¢) =0.

value of
Thus,

3 @ 3 © 3
”<1h75 ) te"dt<1% te“dtzi}%- (A11)

Therefore,

0

I, +12:—3h+% B0 (k). (A12)
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The second integral in (18) is then written as

mouep® (a0 a1 Nisy—he =m”#07’8 [_é _1_]
B jo 2le— (2®+x)?le " dx h4+4h3

™

_mop [ 3 PP
T or 8d* 164

(A13)

The author thanks Dr. A. H. Van Tuyl of the U.S.
Naval Ordnance Laboratory, White Oak, Maryland
for his help in evaluating the integrals considered in
the appendices.

7. References

Erdélyi, A., ed., Higher transcendental functions, vol. II,
ch. 7, p. 82, McGraw-Hill Book Co. (1953).

Smythe, W. R., Static and dynamic electricity, second ed.,
ch. 5, p. 179, McGraw-Hill Book Co. (1950).

Wait, J.R., The magnetic dipole over the horizontally strati-
fied earth, Can. J. Phys. 29, 577-592 (Nov. 1951).

Wait, J.R., Radiation resistance of a small circular loop in
the presence of a conducting ground, J. Appl. Phys. 24,
No. 5, 646649 (1953).

(Paper 66D6-233)

735



	jresv66Dn6p_731
	jresv66Dn6p_732
	jresv66Dn6p_733
	jresv66Dn6p_734
	jresv66Dn6p_735
	jresv66Dn6p_736

