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A formal solution is obtained for t he magnetic field produced by a vertical magneto
static dipole which moves in free space at a constant velocity a long t he normal to a con
du cting half space. When t he velocity of t he dipole is much less t han t hat of light, t he 
fi eld in f ree space is governed by Laplace's equation, and t hat in t he condu cting half space 
by t he d iffusion equation. An expression in closed form is derived for t he voltage induced 
in a sma ll loop moving with t he dipole. For certain values of t he parameters, simplified 
expressions a re obtained for t he induction. Numerica l resul ts are presented for certain cases. 

1. Introduction 

The problem of a stationary vertical oscillating 
magnetic dipole above a conducting ground has been 
discussed by Wait [1951 , 1953]. The analagous 
problem of a ver ticalmagnetostatic dipole approach
ing a conducting half space is considered in the 
present paper. If the dipole moves wit h a co nstant 
veloci ty which is much smaller than tha t of light, 
then the magnetic field in free space will satisfy 
Laplace's equation while the field in the con
ductin g region will satisfy the diffusion equation. 
Formal solutions are obtained for the mag netic 
field in the two regions. 

cylindrical coordinates, is a distance T from the 
dipole. The vector magnetic flux density B can 
be represented everywh ere in terms of a magnetic 
vector po ten tial A. 

It is of interest to find an expression for the vol
tage induced in a small loop moving with the dipole. 
S uch a result might have application in the design 
of a device for measuring the close proximity of a 
vehicle to a conducting sur(ace or for measuring 
the velocity of a vehicle i ust before impact with 
such a surface. The solution for the reflected 
vertical co mponent of the magnetic Hux density 
in free space is used to find an expression inclosed 
form for the induction . This result simplifies 
considerably for certain values of the parameters. 
Numerical res ul ts are presen ted for certain cases. 

2. Formal Solution 

With reference to the coordinate system shown 
in figure 1, the conducting medium of conductivity 
(/", permeability M, and permittivity E occupies the 
half space defined by all negative values of z. The 
upper half space has the characteristics of free 
space, namely, zero conductivi ty, permeability Mo, 
and permittivity EO. A magnetostatic dipole of 
momen t m moves toward the conducting half 
space with a constant velocity v along the z axis. 

Thus, 

where A, if 'IJ «C (c = (ree space velocity of ligh t), 
satisfies 

for z>O, and 

(3) 

for z<o. 
z 

The dipole is situated instantaneously on the z X 
axis at z= d and is oriented in the positive z di- FIG UR E 1. Magnetostatic dipole moving toww-d a conducting 
rection. The field point P, located at p, cp , Z, III half space. 
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Tn the region z>O, th e total vector potential is 
assumed to consist of a primary potential .Ie plus a 
reflected potential .ie. The prim ary vector po tential 
of the magnetostatic dipole, shown in figure 1, has 
only a ¢ component which is given by 

A " =-m ~ ~ (~). 
o 47T' ap T 

(4) 

The quantity ~ may be expressed [Smythe, 1950] as 

~= i '" e-kld-z IJ o(kp)dk , (5) 

where 1'= [p2+ (d -z)2J1 /2. The primary potential 
then rea.ds 

A = m J.1.o ( '" e- k1hlJ (kp)kdk 
" 0 47T' J 0 1 , 

(z>O) . (6 ) 

Similarly, the reflected potential in the upper h alf 
space, A " l' :md the potential in the conducting half 
space, A <I>2' may be written as 

and 

A = m ~ ( '" t' (k)ea. (k)Ze-kdJ (kp)kdk 
<1> 2 47T' J 0 • 2 1, 

respectively. 

(z>O) 

(7) 

(z<O) , 

(8) 

The functions a (k ),fl (k ), andM k) are determined 
from (2) and the boundary conditions at z= O for the 
normal magnetic flux density and the tangential 
magnetic intensity. 

Upon substitu ting the expression fo], A <I>2 into (3), 
the r elationship 

(9) 

is obtained where v, the velocity of the dipole, 
ad 

equals-a t' Application of the contin uity con cli-

tions for the magnetic field at the boundary z= O 
yields 

and 

A <1>0 A <I> ] A <1> 2 - +-=-, 
J.1.0 J.1.0 J.1. 

(normal 13 eon tinuous) 
(1 0) 

(tangen tial H con tin u ous) . 

(11 ) 

The functions .ft(k ) and f2(k ) are evaluated by 
substituting the potentials given by (0), (7), and (8) 
into (10) and (11 ). This results in 

fl(k) J.1.k - J.1.oa 
J.1.k + J.1.oa 

(12) 

and 

(13) 

The componen ts of the m agnetic flux density III 

each region are then found frolll 

and 

1 a 
B z= - - (pA </» 

pap 

B =_ aA". 
p oz 

3 . Voltage Induced in Loop Moving 
With Dipole 

3 .1. Solution in Closed Form 

(14) 

(15) 

An in teresting application of the solutio n for t he 
reflected m agnetic flux density in free space is t he 
determination of the voltage induced in a small, 
single-turn loop moving with the dipol e along the 
z axis . If the axis of the loop is vertical and the 
permeability of both r egiolls is taken as J.1.0, the 
voltage per uni t loop area, V , is given by 

where p2= J.1.0(JV. The integral in (16) is evaluated 
in appen dix 1 :md can be written as 

3.2. Solution for h « l 

For h« l , the expression for the voltage given by 
(17) is not useful for numerical computation due to 
the fact that the sum of the first two terms is op
posite in sign an d very nearly equal to the sum of 
the third and fourth terms. A more convenien t 
expression mny be derived b.v substituting h= 2p2d 

and J, = \ in the integral in (16 ). The equation 
p 

then reads 
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E valuation of the first integral in (18) is simple and 

yields 1~7r m;::o. Th e second integral is evalu ated 

in appendix 2 b.I' neglecti Ll g terms of Lhe ord er of h,3 
and higher. Th e expression for the vol tflge then 
simplifies Lo 

2 , 2 ? V - mV/J-op _ m<T/J-olr 
- 327rd3 - 327rd3 • 

(19 ) 

3.3. Spacial Case for <T = 00 

For the case where the conductivity of the lower 
Imlf space becollles infinite, the sol ution for the vol
tage may be obtained by either th e method of images 
or by using (16). The r esul ting expression is 

(20) 

4. Discussion of Numerical Results 

, ,yhen h« l , or equivalently wh en <Tvd« }~ X 107, 

t he eXpJ"ession [or the volLage given by (19) may be 
used. Numerical results using this expression ale 
presented in flgures 2 and 3 [or tbe case wh ere m = 1 
amp/m2. This value of the moment corresp onds 
to that or ] cm3 of Alinco 5 in whi ch t here is an 
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FIGUR E 2 . Induced voltage as a function of height above a 
conducting half space. 

average flux density of l.2 ,,,ebers/ m2• In figure 2, 
the voltage induced in a loop of uni t area is plotLed 
2.'3 a function o f t he height or the Ill ag net above 
surfaces of different conciuetivity. The ve loc ity of 
t he loop and magnet is taken as' 300 Ill /SCC. Figure 
3 shows the voltage pel' unit a]'cft as a rUll ction of 
vclocit~r [ IJr various hal[ space conductiviti es. Th e 
valu es of induetioni 11 this figure COlTcsponcl Lo a 
one meter heigllt of the loop and m agn ct above 
the conducting smface. 

The numerical results plotted in figures 2 and 3 
show the induction to be quite small. Usablc volt
ages could be obtained just above earth or sea 
water by employing large magnets and smalllllulLi
turn loops moving wit h velocities ncar IVIach l. 

5. Appendix 1 

Using th e substitution x=!" the integral in (16) JT ~ 

is IvriL ten as 

V = mv ;; i oo [2p8e- 2Xp2(!x4_ 2p8(x2+ x) J/2e - 2Xp2d.r3 

+ p8e- 2Xl)2f/ r jdx. (Al ) 

The first and t hird terms arc readily in tegra ted. 
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FIG UHE 3. Induced voltage as a function of velocity towanls a 
conducting half space. 
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Thus, 

(A2) 

The second integral can be written as 

-mvJ.Lop8i '" ;il(x2+ x)I /2e- hxdx 
7f 0 

= mVJ.Lop8 !!!.... i '" (X2+ x) 1/ 2e- hxdx (A3) 
7f dh3 0 ' 

where h= 2p2d. If the subs titution x=~ cosh ,B-~ 
is made in the integral on the right side of (A3), 
the in tegral reads 

i '" Ii "" -~(coshll- I ) (X2 + X)I /2e - hXdx=- smh 2,Be 2 d,B 
o 4 0 

1 !'.i '" -~cosh II 
= 8 e2 0 (cosh 2,B-l)e 2 d,B . 

(A4) 

Since K n(u) , the modified Bessel function of the 
second kind , is defined rErdelyi, ed., 1953] by 

K n(u) = 50: - u cosh ~ cosh n,Bd,B, (U> O) , 

(A4) can be written as 

50'" (x2+ x) 1 /2e -hXdx=~ e~ [ K2 G)-Ko G)] 
(A5) 

The third derivative with respect to h of the integral 
in (A5) is obtained by using the following recurrence 
relations: 

2 - K I(u) = K 2(u)-Ko(u) 
u 

K~(u) =-KI(u) 

K;(u) = - [ Ko(u)+~KI(u)J , 

where the primed quantities represent derivatives 
with respect to u. The second integral of (AI) is 
finally expressed as 

- mvJ.L pSi '" _--,-~o ~ ;il(x2+x)I/2e-hXdx 
7f 0 

= mv;op8 e~ [( -4~+8~2-la)KoG) 

+(4~-~~2+2~3- ~:) KI G)]· (A6) 

6. Appendix 2 

By letting t= hx, the second integral in (18) can be 
written as 

mVJ.Lop8f '" x3[x- (x2+ x)1/2] e-hXdx 
7f 0 

= m~~p8 f o '" t3[t - (t 2+ th)1 /2e - tdt. (A7) 

The integral on the right of (A7) is written in two 
parts, namely, 

and 

The 1111 is at most of the order h5 since 

h 
For -<l 

t ' 

where o:::;e(t):::;l. It follows that 

h3f '" where R = 16 h t[l + e(t) t 5/ 2e- tdt represents a re-

mainder term. The maximum value of the 
remainder is found by letting e(t) = 0. Thus, 

(A12) 
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The second integral in (18) is then written as 

mVJ1.0p8J "' x3[x- (x2 + x) 1/2]e- lIxdx= mV}.Lop8 [_1.+_1_J 
7r 0 7r h4 4h3 

(A13) 

The author thanks Dr. A. H . Van Tuyl of the U.S. 
Naval Ordnance Laboratory, White Oak, Maryland 
for his h elp in evaluating the integrals considered in 
the appendices. 
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