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In the preceding paper , t he authors have presented an asympto tic solution for t he 
fi eld in the illuminated region of a large circula r cylinder whose s urface impedance a round 
t he periph ery deviates from a constant value by a s inusoida l variation of small ampli t ude 
." . T o 0 (.,,) , t he r eflected fi eld co mprises a specula rly reflected ray a nd two first-order dif­
fracted rays ch aracteristic of a curved convex reflection grating. If the surface impeda nce 
varies " slowly," these t hree r ays can be combined in to a single spec ularly r eflected ray 
hav ing a reflection coeffi cien t which depends solely o n t he local impeda nce at the reflection 
point. The " slowness" co ndi t ions necessary for t he validity of th is local reflect ion prin ciple 
of geometrical optics a rc investigated a nd interprcted in ph ys ical term s. The resul ts a re 
presented in a ma nn er which suggests t heir appli cab ili ty to ge nera l, gently curved surfaces 
with slowly vary in g impedance propert ies. 

1. Introduction 

A plane electromagnetic wave incident on a large 
cylinder with a spatially periodic surface impedan ce 

I around the p eriph ery gives ri se to a reflected field 
which may be in terpreted as comprising a spectrum 
of rays appropriate to a curved convex reflection 
grating. These conclusions ar e presented in the 
preceding article wherein we have considered a 

I circular cylind er whose surface impedance h as a 
I peripheral sinusoidal variation of small ampli tude a 
superimposed upon a cons tant value [11arcinkowski 
and Felsen, 1962, henceforth referred to as III] . If 
the impedance varies slowly over a d istance in terval 
equal to the wavelength of the incident field, i ts 
periodic aspects in the v icinity of the specular 
reflection poin t lose t heir importance, and the 
specular and diffracted grating rays reachi ng a 
prescribed observation point are nearly parallel. 
From geometric-optical considerations it is r ea­
sonable to suppose that this ray bundle can b e 
combined into a single specularly refl ected ray 
having a reflection coefficien t identical wi th that for 
a cylinder whose constant surface impedance is 
equal to the value of the variable surface impedance 
at the point of reflection. Such an assump tion may 
be designated as the local reflection hypothesis of 

) geometrical optics, and the conditions under which 
it obtains for the specular and the first order dif­
fracted (grating) rays in III are discussed in this 
paper. These r equirements are then phrased in a 
form which suggests their applicability also to im­
pedance variations other t han the one considered 

I herein. 

I To avoid unn ecessary r ep etition, all suitable 
definition s are to b e found in III. The reflected 

I Sponsored by t he Air Force Cambridge Research Laborato]'ies under Contract 
No. AF- 19(604)-4113 . T he work presenLccl here is based on a dissertation sub­
mitted by one of the authors (C. J . M .) in partial fulfillment of the requirements 
for the Ph. D. degree. 

rays considered here comprise a single, specularly 
reflected ray and two first order diffracted rays. 
Their analytical form is recalled in sec tion 2, and 
the desired local refiection formula for a slowly 
varying surface impedance is presented. Section 3 
contains, in outline, a derivation of the conditions 
req uired for the validi ty of the local r efiection hy­
pothesis. Som e phys ical in terpretations of th ese 
requirements are provided in section 4. While these 
conditions are derived from the periodic impedance 
function Z(cp), th e effects of periodicity in the n eigh­
borhood of the point of reflection playa minor role 
when Z(cp) varies very slowly. Hence, a formu­
lation as in section 5, which expresses t he require­
ments for the validity of the local r efiection 
hypothesis in a manner which makes no r eference to 
the specific form of Z(cp), may also be expected to 
apply to other slow impedance variations. 

2 . Geometric Optical Fields to Order a 1 

To O(a) in the perturbation solution,2 the total 
field at a poin t in the illuminated r egion can be char­
acterized in terms of an inciden t ray (the magnetic 
field vector H is assumed to b e parallel to the cylinder 
axis), a specularly reflected ray of O(aO), and two 
grating rays of O(a). The axial magnetic field com­
ponen t is then given by 

G(p, cp , cp' ) = Gi(p, cp , cp') + Gr( p, cp, cp' ), (1) 

where the subscripts i and r iden tify the inciden t and 
reflected fields which are, to O(a), 

Gi( p, cp , cp' ) = e-ikp cos (</>-</>') (2a) 

Gr(p, cp , cp' ) = G~(p, cp, cp' ) + a[ G}(p, cp , cp' ,p) 

+ G:( p, cp, cp' ,-p)]. (2b) 
2 a is the amplitude of t he surface impedance variation , and all fields are ex­

pressed as a power series in a [see III, and Felsen and M arcinkowski, 1962, hence­
forth referred to as I l. 
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Via the geometrical optics interpr~tation .in pI, 
the specularly refl ected ray of O(aO) IS the 1 ~mIhar 
one associated with a constant Impedance cylmder 

(3) 

while a typical first order grating ray is 

The Ao IeI'm g ives the phase of the incident plane 
wave at the point of reflection , Ro and R t are t il e 
reflection coefficients, the D's are the divergence 
coefficients, and (iko) represents the pil!:l:se 3:10ng a 
reflected ray. We define the nonneg~tlve mteg'~r 
p = 27ra/L , wh ere a is the . cylmder radIUs. an~ L IS 
the spatial period of the smusoldally varymg Imped­
ance. From this definition it follows that p /lea = A/L 
where le = 27r/A and A is th e wavelength oJ the inciden t 
plane wave. All of these quanti ties have been pre­
viously employed in III , eqs (6) , (10) ,. and (12). 

If t] le surface impedance 01 the cylmd er IS slowly 
varyino. a considera tion cr fig ure 1, and of the grating 
law (7)'of J IJ , shows that almost every point in the 
lit region (0 ~ lJi<7r/2) is reached by the bundle of 
three reflected rays comprising Or in (2b) . I n a 
typical situation, illus trated in ~gure 1, the thre~ 
nearly parallel rays are reflected Jr~Hn the three dli ­
ferent points R, F, and 0 on the cylmder to the same 
point of observati(;)l1 p ep, cf» . Unde~' t]le local refl~c­
tion hypothesIs, It should be possible to combme 
these three rays into a single specularly reflected ray 
(IJr= lJ i) emanating from the point of retlection F. in 
figure 1. This ~pecular. ray s h o~ld have n: refl ectIOn 
coefficient assocIated With a cylmder havmg a con-
stant impedan ce equal to Z ($) defined by (2) in refer­
ence J[] where the angle ~= cf>' ± lJ i, IJ~ ~O, is the 
value of 'ct> at the point of specular reflection, F. The 
value of Z(~) remains constant as the observation 
point P in figure 1 is moved along the ray FP, but 
changes for other locations of F on the cylinder. 
Under these conditions the local reflection coefficient 
R l(lJ i ) has exactly the same form as Eo in (3) except 
for the substitution Z~Z[l + a cos p(~- cf>o)]. 
Therefore, we seek to combine the three reflected 
rays in (2b) into the single, specular ray, 

having a reflection coefficient 

cos lJi- Z[l + a cos p '¢ - cf>o)] 

cos lJ i+ Z[l + a cosp(¢- cf>o) ] 

(5) 

(6) 

Since (5) represents the result expected from con­
ventional geometrical optics considerations applied 
to variable impedance surfaces [Keller, 1956J, the 
conditions assuring its validity can be interpreted as 
requirements for conventional geometrical optics. 

3. Requirements for the Validity of the 
Local Reflection Principle 

Sin ce a detailed derivation of t]le condi tion s ror 
the validity of tIle 10cn1 reflection hypol b es is is 
somewhat lengthy, only an outline is presen t~d in 
this section; the complete cnlculations are aVfulable 
elsewhere [M ar cinkowski and Felsen, 1961 , hen ce- , 
forth referred to as II]. In the analysis, the geo­
metric optical parameters for the grating rays are 
expressed in terms of small deviations from the 
corresponding parameters 1'01' til e specular ray ; for I 

example, the pa th length OP in figur e 1 is given b y ! 

s( p)= s+ .1s(p) , with 0 falling below F' for p > O. I 

Thus, we define 

IJ;( p ) = lJ i + .18;(Z) ) , 

1J, (p ) = IJ i+ .1lJr (p ), 

s (p) =s+.1s (p ) , (7) 

and note that e,= lJ i for the specuhlrly reflected ray. 
From the geometr~T of the problem and the r e­

quirements of the grating law (7) in III, it may b e 
shown that 

ILlIJ i(p) 1= 0 (-l!a)« l 

1.1lJ r(p) 1= 0 (fa) (8) 

uniformly in p and cf> , provided that one imposes the 
restriction 

p 
lea« cos8i~1, 

Therefore, these approximations break down ne!:l:I' 
the shadow-lit boundary where lJi~7r/2 . (In thIS 
same transition r egion, the formula (2b ) also be­
comes invalid, see IlL ) U pon utilizing (7), (8) , · 
and (9), one may show that to o (p /lea ), 

.1lJ i (p )"'-' + lea ::as lJ i 2s-+- a-S"'co- S- IJ- / 

.11J (p)"'-' ± p s+ a cos lJ i , 
r lea cos lJ i 2s+ acoslJ i 

a6.lJ i(p) sin 2 lJ i 
.1s(p ) ~ 

sinlJi + LlIJr(p) cos IJ / 

IJ~:< O (lOa) 

IJ~:<O ( lOb) 

(lOc) I 

where 8~ = ± lJ i if cf> - cf>':<O. Since LlIJi( + p) ~ I 
- .18i (- p), it is evident that the ray bundle in figure i 

1 is located symmetrically about the specularly re- I 

flected ray (EF''''-' FO), For an observation poin t 
pep, cf» wlJich approaches the surface of the cylinder 
(s~O) , (10) shows that .1lJ i (P)~O and /::"s(p )~O, I 

while /::"lJr (p)~O(p/lea) ~O. Consequently, even for I 

the limiting condition of an observation point 
arbitrarily close to the surface, the bundle of three 
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P(p,cPl 

ONI, ON 2 , ON 3 - THE SURFACE 

NORMALS 

FIG U R E 1. R eflected l 'a!JS to order a for a slow ly varying 
swface impedance. 

rays has a finit e, nonvanisIling angular deviation of 
O(p /ka ). This l' cslilt is a direct co nseq uence of th e 
gr ating law given b~~ (7) in III. 

If' the resul ts of (10) arc substituted in to (6) (7) 
(12) and (23) in III, all the necessary grating r a.y 
parameters Ao, HI, D, (3;, (J r, and s may be evalu ated. 
Th e calcula t ions show that the fractional chan O'es 
of the geometric opti c parameters, in passing fr~m 
the speclilar to th e gratin g rays, are f'ls(}J) /s"-' f'l r(p) /r 
"-' f'lD (p) /D "-'O(p /ka). Use of Lllese es timates and 
~he results of (10) allows the transformation of (2b) 
m to 

Gr( p, ¢ , ¢' )~AoH oDei k s + O'.AoR' De iks 

. [ ei]J (~- ¢o) e if(+ I) + e - iP ( ~- ¢o l e if(- I) 1 (11) 

where 

j (p )~kf'l8 (p ) + 1caMi(p ) si n (J i ± Pf'lf) i(P) , (J~~ O 

[ sin (J i cos fJ i p J ,-..""kaf'l(Ji (p) . (J ( ) f'l(J, (p )±, 
sm r p lea 

R'= Z cos (J i 
(Z + cos (JY' 

(l2a) 

(12b) 

(12c) 

The restriction Re (7.) ;::::0, already previously im-
I plied in the requirement for time-average power flow 

into the cylind er , has been imposed here to ensure 
the validity of the power series expansion of the de­
nominato~' of HIC?) in (12) of III. In deriving (ll), 
the amplI t ude of the per turbat ion parameter 0'. has 
been explicitly related to the relative periodicity 
(p /ka) = ( A/L ) by the neglect of all terms of 0(0'.2). 
This requirement implies that 
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(13) 

A similar estimate has b een u tilizcd by H csscl [1960] 
[or an analogous study on an infin itc plHnc surface 
with a sinusoidall.v varying sUl'f~tce till pecbul cc. If' 

I j(p) I ~O (fa} (14 ) 

it is readily shown that (11 ) may be simplifi ed to 
yield, to 0 (0'.), the local refl ection formula in (5). We 
conclude, therefore, that the requirement prescribed 
by (14) is a ne.cessary condition for the validity of 
the 10cairefl ectlOn hypothesis. 

4. Interpretation of Local Reflection 
Requirements 

Th e co ntrib utions to f (p ) in (12a) arise frOIll three 
differentia.l effects which are not always of the same 
order of impor ta.nce. The first two terms of order 
uni ty, are mu ch larger than the last term or O(p /lea) . 
:rhe contributi?n dcscribed by the first term kf'l s(p) 
IS du e to the dlfferentl<tl phase shift produ ccd by the 
pRth difference f'ls(p) of the difl:erent rays l' eltching 
the same observation point p ep, ¢) in figm e l. The 
second contribu tion, described by the lcaf'lfJ i (p ) s in (J i 
term in (12a), arises from the A 1(P) tcr lll whi ch 
defin es the p hase of the in cident phtn e wavc aL the 
poin t of refl ection. Because of the cvlindric~tl O'eom­
etry, the phase of t he in cid ent pht'n e wavc ,~t the 
threc points of reflection E F ~U1 d G in fio'me 1 is 
diff.er~nt , thereby in trodu cing' :1 difrerenti~l ph ase 
shd L In Lo the r efl ccted 1'l1yS. Th e third con Lribut ion 
± pMi(p) in (12a) is due to the an gle r$ (p) in thc ex­
pon entia,l of (12) in III which provides the phasc 
shift o[ the reflection coefficient RI(p), 

. A considerfttion of th e geometric optic~11 solution 
gIven by (4) and shown in figure 1 indicates t hat the 
differential phase shif t produ ced by th e pftth differ­
ence tends to cancel th e differential ph ase shif t pro­
du~ed by the incident plane wave. Th is may be 
venfied by making use of (10) in (12a) . As a result 
?f this can cell~tion , the fu'st two terms of order uni ty 
111 (12a) combme to form the first term of O(p/ka) in 
(12b). In the very narrow back-scattering region 
where (J ;<p /ka, this firs t term in (12b) is of O((J i) 
and th er efore tends to vanish ftS (J i--70. This agrees 
with physical expectations since the increments due 
to d~ffe~'ences in the path leng ths and in the phase of 
the lllCldent plane wave both tend to be smallcr in 
the vicinity of fJ i=O. (The apparent singubl'i ty pro­
du ced by the vanishing of the denomin~ttor does not 
arise since sin (Jr(P) --7f'l(J r(P) as fJ , 0.) In this region 
the domin.an t contribu t ion to f(p) is the phase shift 
term com1l1g from the reflection coefficient HI (p). 

Th.is contribution depends upon the angle ¢ at the 
pom t of I:eflection but is independent of the asym­
metry (WIth respect to ¢') produ ced by the phase 
angle ¢o in the variable impedance 7(¢ ). 



To obtain an overall pictUl'e of the b.ehavi.or of 
j(p) , it is de~ir~ble to make the followmg sImple 
estlmates, valld for most fJ ;, 

cos fJ i = O(l ) 

fJ r(p) = O(fJ i} 

AfJr(p) = 0 (:a) 
(15) 

In view of the approximate natur:e of these estimates, 
the requirement on j(p) prescnbed by (14) .seems 
overly precise and will be replaced by the sunpler 
condition 

/j(p) /«l. (16) 

Use of (15) in (12b) permits (16) to be written as 

(17) 

where we define 
(18) 

Lo is the distance EFG in figUl'e 1, measUl'ed along 
the sUl'Jace of the cylinder, and can therefore be 
interpreted as the lellgth of the cy!i:.ndrical surface 
along which the variable impedance Z (¢) is sampled 
by the three rays reflected from the points E, F, and 
G. The inequality (17) .sta~~s that t~e lo~al re­
flection phenomenon obtams 11 the .v~nable Impe~­
ance interval Lo sampled by the dIffracted rays IS 
much smaller than the spatial period L. From (8) 
it is recalled that all the estimates in this section are 
subject to the basic restriction plka= AIL« l. 
Therefore, if the sampling distance Lo < A/27r, then 
(17) becomes ineffective an~ is replace~ by the 
estimate L» A. The relatIOn (17) gIves one 
equivalent of the restriction impo~ed by (16). 

Another and perhaps more useful statement may 
be obtained by substituting the relations for M i(P) 
and AfJr(p) in (lOa) and (10b), and. the fi~'st two 
estimates in (15) , into (12b). The mequalIty (16) 
is thereby transformed into a relation w~icl~ ex­
plicitly involves the wavelength A of the mCldent 
plane wave, 

(19) 

This provides an estimation of the lower. bound of t~e 
relative periodicity L IA of the ~ariable llnpedance 111 

terms of the distance s= FP 111 figure 1 and the 
radius of CUl'vature "a" of the cylinder. The im­
pOI'tant behavior is given by the (kS~1 / 2 term since th.e 
remaining terms are slowly vary1l1g. If (19) IS 
evaluated for three different ranges of observation 
points s, one obtains the simpler relations 

L»A(2ks}I/2 if 4~ ~s«a (20a) 

(5 ) 1/ 2 (5 ) 1/ 2 
L»A 9 ks ~A 9 ka if s~a (20b) 

( 3 ) 1/ 2 
L»A "4 ka if s»a. (20c) 

It is seen that L I A changes slowly from a depend­
ence on the relative distf\,llce (ks )1/2 in the near field 
s « a to a dependence on the relative size of the 
cylinder (ka)1/2 in the fHI" field s ~.a. r~his behavior 
is in accord with physlCal expectatIOns Sll1ce only the 
relative distance ks would be expected to playa role 
near the surface, while the relative curvature (ka )- I 
would be expected to become impor.tan~ far fron1. the 
cylinder. If the point of observatIOn. IS so cl<?se to ' 
the cylinder that s < A/47r then the sImple estImate 
L» A replaces the no longer effective estimate in 
~O~. . . . 

The relation (19) involves explICItly the radIUs of 
CUl'vature a. In the limit a-"> co, the cylindrical sur­
face transforms into an infinite plane (19) then goes 
over exactly into (20a), thereby .suggesting .t~lat 
this latter estimate should also predIct the condItIOn 
to be imposed on L IA in order to have the local 
reflection hypothesis apply on a plane s1!rface.. :for 
verification we note that (20a) agrees WIth a SImIlar 
result obtained by Hessel [1960] who investigated an 
infinite plane with a sinusoi<:Jally varying s~rf.ace 
impedance. This agreement.lughlIghts t~e neglIgIble 
influence of the curvature of a large cylmder on the 
reflection phenomenon in the near field . . 

However, the restrictions for the plane and cylll1der 
differ significantly in the far field (s> > a). For 
the infinite plane, the length L o, along whIch the 
impedance is sampled by the three rays, becomes 
infinite as s becomes infinite. This follows from the 
geometry of the infinite plane and the req1!irements 
of the grating law. From the geometry It follows 
that the angle of incidence of each of th.e three 
incident rays is the same. From the gratmg law 
it follows 'that the angles of reflection differ by 
O(AIL). Therefore, as we move a dist~nce ~ along ] 
the specularly reflected ray, the samplmg dIstance , 
Lo must con tinually increase so that, as S-7 co, I 

Lo-"> co for the infinite plane. 
The corresponding limiting behavio~' for t.he I 

cylinder is quite different. As a result ot th~ cylIn­
drical curvature, all of the a,:gles of the dIfferent 
incident and reflected rays dIffer by O( AIL) . As 
we move a distance s along a specularly reflected I 
rav it is only necessary that th ere be 11,11 angular ' 
de"v'iation of the angles' of incidence and reflection 
of O(AIL) to change t1le directi?r~ of a grat~ng raY' 
by the amount necessary to satls(y the gmtmg la~ 1 
and pass through the point p ep, ¢) m figure 1.. TIns 
angular deviation is easily secured by changmg the 
point of reflection by the angular amo~nt M i(P) = I 

O( AIL) which results in only a smal~ fractiOnal change 
on the circumference of the cylmder. Ther~fore , I 

as S-7 co, the sampling distance for the cylll:der 
LO-7aO( AIL) which is a finite number as venfied 
upon substituting t~e ~xpressio~l f~H' . . AfJ i (p) fr<?m 
(lOa) into (18). ThIS dIfference llllllllltlllg behaVIOr 
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for the infinite plane and the cylinder is expressed 
mathematically by the different expressions (20a) 
and (20c). Evidently, if s> > a, thc upper bound 
r equired by (20a) for the infinite plane is mu ch 
larger than that required by (20c) for the cylinder . 
Therefore, far away from the surface, mu ch more 
rapid changes in surface impeda,nce ar e permissible 
for the cylinder than for the infinite plane, within 
the confines of the local r eflection hypo th esis . This 
is a direct r esult of the mu ch smaller sampling 
distance L o for the cylinder than for the infinite 
plane. 

It has been noted that as S varies from s< < a to 
s> > a , the lower bound on L I A given by (20) 
changes from (kS)1!2 to (ka )1!2 in a t ransition region 
where s"'a. It is in teresting to obtain the value So 
of s in this transition region in terms of parameters 
which do not involve the period L . Since (17) and 
(20) represent the same phenomenon, the lower 
bounds on L given by (17) and (20b) must be of the 
same ord er of magnitude. This provides the 
estimate 

(21) 

The expression for So in terms of Lo and A lIas the 
same fun ctional form as that for the distance from 
an aperture (having It diameter Lo) to the r egion 
wherein the radiation pattern undergoes a transition 
from the (near-field) Fresnel to the (far-field) 
FraunhoJer type (a standard estimate in this case 
is so",2LU A). 

If the sampling distance L o< A/27r or if the length 
of the reflected ray s< A/47r then Lo and s can no 
longer provide significan t estimates of the require­
ments for th e validity of the local reflection phenome­
non. Under these conditions L o and s are replaced 
by the wavelength A in the single estimate L > > A 
wherein the wavelength itself provides the r es triction 
on L because of (8) and (9). 

The rays r eflected from the points E, F, and Gin 
figure 1 also have a certain resemblan ce to rays 
propagating through a random, inhomogeneous me­
dium. If It geometric optical approximation is to 
be valid for such propagating rays it would be 
reasonable to expect that there should be certain 
restrictions on the exten t of the inhomogeneities . 
In making a comparison of these restrictions with 
our results, the distance of propagation in the 
medium is analogous to s while the range of the 
inhomogeneities is analogous to L. Chernov [1960] 
has considered the conditions under which a geomet­
ric optical approximation is valid in a medium with 
spatially random inhomogeneities. It is interesting 
to observe that Chernov gives the conditions A< < L 
and ,,/ AS< < L as necessary conditions for the 
validity of such an approximation. The first re­
quirement is precisely the basic approximation pika 
< < 1 introduced in (9) and used in (14). The 
second requirement is given by (20a) if we set all 
numerical factors equal to unity. 

5 . Extension to More General Types of 
Impedance Variation 

Although the investigation herein i concerned 
with a cylinder having a periodic surface impedance 
variation, the effect of periodici ty is obscured when 
plka « l. S uppose that p = l wi th lea » 1. In this 
instance the surface impedance as expressed by (2) 
in III goes through only one spatial period around the 
periphery of the cylinder. Viewed locally , one 
detects in any limi ted region of the cylinder surface 
an impedance varia tion devoid of any aspects of 
periodicity. It is reasonable Lo suppose, Lilerefore, 
that th e preceding restrictions delimiting the validity 
of the local r efl ection principle of geometrical optics, 
if properly rephrased, might apply as well to surface 
impedances with arbitrary, slow variations on a 
gently curved surface . The desired condition for 
local reflection should be phrased as a limi tation on 
the allowed rate of impedance variation. H ence. 
we first determine the maximum relative rate of 
change of impedance occurring for the sinusoidal 
impedance variation Z (cp), for which the geometrical 
optics approximation r etain s its validity subj ect to 
restriction (19). 

Use of (2) in III for Z (cp ) and of the relation a= 
O(A/L ) in (13) yields 

~ dz(x) = 0 (~)2 
k dx L ' 

z(x) m 

A 
L « 1, (22) 

where z(x) is tile variable surface impedance and x 
= acp is the distance measured along the surface ; the 
subscript m denotes the maximum value. We now 
seek to express (AIL ) in a manner which makes no 
reference to th e sinusoidal impedan ce variation from 
which it has been derived. One such formula tion 
utilizes the inequality in (19) which, when substitu ted 
into (22), leads to 

A dz(x) 
dx A (2s + a)2 --- « - , 

z(x) s a(3s + 2a) 
(23) 

A s> - . - 47r 

The expression on the left hand side of this estimate, 
representing the relative impedance variation in 
an interval of one wavelength, is compared with 
quantities on the right hand side which contain th e 
geometrical distance s along th e reflected ray and the 
radius of curvature a at the point of reflection. 
Hence, this formulation of the restriction required 
for the validity of the conventional optics approxi­
mation is phrased in a mann er independent of any 
specific functional variation of z(x) and might there­
fore be expected to apply to an arbitrary, slowly 
changing surface impedance on a gently curved 
surface. The restriction s 2: A/h follows from the same 
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restriction in (20a) . For s<">-.. /47r (23) is superseded 
by (22) in which the replacement o C>-.. /L) 2---'7< <1 
is made for reasons analogous to those discussed 
in the previous section . It should be emphasized 
that z(x) is assumed finite in this expression and that 
the inequality becomes meaningless as Z---'70, co . As 
before it is of interest to examine (23) for various 
ranges of s/a. If we omit all numerical factors of 
order unity, then (23) becomes 

A clz(x) 
clx A -- « -

z(x) s 

A « ­
a 

'f A 
1 47r~ s«a (24a) 

if s? a (24b) 

Evidently the allowed impedance variation is more 
rapid for s«a than for s?a. The reason for th is 
behavior is connected with the negligible influence of 
surface curvature in the near fieJd and its apprec iable 
effect in the far field . 

The limited applicability of the local reflection 
hypothesis of geometrical optics to vari able imped­
ance surfaces stems from the fact that the reflected 
field is influenced not only by the surface properties 
at, but also in the vicinity of, the specular reflection 

point. For periodic variations, the diffracted rays 
provide a means of "sampling" the nature of the 
surface in the neighborhood of the point of reflection. 
For a surface with monotonic impedance variation, 
it is perhaps suggestive to construct a quasi-periodic 
equivalent for the region under consideration and to 
use the associated diffracted rays to sample the 
surface properties near the specular reflection point. 
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