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In the preceding paper, the authors have presented an asymptotic solution for the
field in the illuminated region of a large circular eylinder whose surface impedance around
the periphery deviates from a constant value by a sinusoidal variation of small amplitude
a. To O(a), the reflected field comprises a specularly reflected ray and two first-order dif-

fracted rays characteristic of a curved convex reflection grating.
these three rays can be combined into a single specularly reflected ray

varies “slowly,”

If the surface impedance

having a reflection coefficient which depends solely on the local impedance at the reflection

point.

of geometrical optics are investigated and interpreted in physical terms.

The “slowness” conditions necessary for the validity of this local reflection principle

The results are

presented in a manner which suggests their applicability to general, gently curved surfaces

with slowly varying impedance properties.

1. Introduction

A plane electromagnetic wave incident on a large
cylinder with a spatially periodic surface impedance
‘around the periphery gives rise to a reflected field
which may be interpreted as comprising a spectrum
of rays appropriate to a curved convex reflection
grating. These conclusions are presented in the
preceding article wherein we have considered a
‘circular cylinder whose surface impedance has a
peripheral sinusoidal variation of small amplitude «
superimposed upon a constant value [Marcinkowski
and Felsen, 1962, henceforth referred to as III]. If
the impedance varies slowly over a distance interval
equal to the wavelength of the incident field, its
periodic aspects in the vicinity of the specular
reflection point lose their importance, and the
specular and diffracted grating rays reaching a
prescribed observation point are nearly parallel.
From geometric-optical considerations it is rea-
sonable to suppose that this ray bundle can be
combined into a single specularly reflected ray
having a reflection coefficient identical with that for
a cylinder whose constant surface impedance is
equal to the value of the variable surface impedance
at the point of reflection. Such an assumption may
be designated as the local reflection hypothesis of
geometrical optics, and the conditions under which
it obtains for the specular and the first order dif-
fracted (grating) rays in III are discussed in this
paper. These requirements are then phrased in a
form which suggests their applicability also to im-
pedance variations other than the one considered
herein.

To avoid unnecessary repetition,
definitions are to be found in III.

all suitable
The reflected
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rays considered here comprise a single, specularly
reflected ray and two first order diffracted rays.
Their analytical form is recalled in section 2, and
the desired local reflection formula for a slowly
varying surface impedance is presented. Section 3
contains, in outline, a derivation of the conditions
required for the validity of the local reflection hy-
pothesis. Some physical interpretations of these
requirements are provided in section 4. While these
conditions are derived from the periodic impedance
function Z(¢), the effects of periodicity in the neigh-
borhood of the point of reflection play a minor role
when Z(p) varies very slowly. Hence, a formu-
lation as in section 5, which expresses the require-
ments for the validity of the local reflection
hypothesis in a manner which makes no reference to
the specific form of Z(¢), may also be expected to
apply to other slow impedance variations.

2. Geometric Optical Fields to Order o'

To O(a) in the perturbation solution,? the total
field at a point in the illuminated region can be char-
acterized in terms of an incident ray (the magnetic
field vector H is assumed to be parallel to the cylinder
axis), a specularly reflected ray of O(«°), and two
grating rays of O(«). The axial magnetic field com-
ponent is then given by

G(p,(i),(ﬁ’):Gi(p,qﬁ,(ﬁ’)+G7(p,¢,(I)I), (1)

where the subscripts 7 and 7 identify the incident and
reflected fields which are, to O(«),

Gu(p, 8, 8') = =t 205 59"
G.(p,$,9")=G)(p,¢,¢') +alG}(p,¢,9",p)
+G;(py ¢; 4’,7_17)] (2b)

2 @ is the amplitude of the surface impedance variation, and all fields are ex-
pressed as a power series in « [see ITI, and Felsen and Marecinkowski, 1962, hence-
forth referred to as IJ.

(2a)
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Via the geometrical optics interpretation in IIT,
the specularly reflected ray of O(a) is the familiar
one associated with a constant impedance cylinder

G p,p,0")=Ag By D ™, (3)
while a typical first order grating ray is
Glr(p}¢:¢l7p>:[10(p>]?l(p)D(1)>€ik8(p\’~ (4>

The A, term gives the phase of the incident plane
wave at the point of reflection, R, and 2, are the
reflection coefficients, the [’s are the divergence
coefficients, and (iks) represents the phase along a
reflected ray. We define the nonnegative integer
p=2ma/L, where a is the cylinder radius and 7 is
the spatial period of the sinusoidally varying imped-
ance. From this definition it follows that p/ka=N/L
where k=2x/\ and X is the wavelength of the incident
plane wave. All of these quantities have been pre-
viously employed in 111, eqs (6), (10), and (12).

If the surface impedance of the cylinder is slowly
varying, a consideration of figure 1, and of the grating
law (7) of 111, shows that almost every point in the
lit region (0<6,< w/2) is reached by the bundle of
three reflected rays comprising &, in (2b). In a
typical situation, illustrated in figure 1, the three
nearly parallel rays are reflected from the three dif-
ferent points 7, I, and G on the cylinder to the same
point of observation P(p, ¢). Under the local reflec-
tion hypothesis, it should be possible to combine
these three rays into a single specularly reflected ray
(,=0;) emanating from the point of refiection /" in
figure 1. This specular ray should have a reflection
coefficient associated with a cylinder having a con-
stant impedance equal to Z(®) defined by (2) in refer-
ence 111, where the angle ¢=¢" +6;, 6, =0, is the
value of ¢ at the point of specular reflection, /. The
value of Z(®) remains constant as the observation
point P in figure 1 is moved along the ray F/°, but
changes for other locations of /' on the cylinder.
Under these conditions the local reflection coefficient
R,(6,) has exactly the same form as 2, in (3) except
for the substitution Z—Z[14+ a cos p(d—gy)].
Therefore, we seek to combine the three reflected
rays in (2b) into the single, specular ray,

G (p, 9,0 )~Ay R, 0) D e*, (5)

having a reflection coefficient

Bip) =2 Lltacspodl]
cos 0,+Z[1+a cos plo—a¢y)|

Since (5) represents the result expected from con-

ventional geometrical optics considerations applied

to variable impedance surfaces [Keller, 1956], the

conditions assuring its validity can be interpreted as

requirements for conventional geometrical optics.

3. Requirements for the Validity of the
Local Reflection Principle

Since a detailed derivation of the conditions for
the wvalidity of the local reflection hypothesis is
somewhat lengthy, only an outline is presented in
this section; the complete calculations are available
elsewhere [Marcinkowski and Felsen, 1961, hence-
forth referred to as II]. In the analysis, the geo-
metric optical parameters for the grating rays are
expressed in terms of small deviations from the
corresponding parameters for the specular ray; for
example, the path length GP in figure 1 is given by
s(p)=s-+As(p), with G falling below F for p>0.
Thus, we define

0,(p)=0,-+26,(p),
0,(p)=0,+A40,(p),

s (p)=s+Aas(p), 7)

and note that 6,=0, for the specularly reflected ray.
From the geometry of the problem and the re-

quirements of the grating law (7) in IIT, it may be
shown that

20, |=0 (£ )<<

140,(p) | =0 (ﬁ) (%)

uniformly in p and ¢, provided that one imposes the
restriction

£<< cos 0;<1,  0<6,<w/2. (9)
Therefore, these approximations break down near
the shadow-lit boundary where 6,—x/2. (In this
same transition region, the formula (2b) also be-
comes invalid, see II1.) Upon utilizing (7), (8),
and (9), one may show that to O(p/ka),

(1)~ 14 S > .
Ml(p)*$lca, cos 0, 2s+a cos 0, =R 08)
- p  stacosb; =
Aer(p)_ilm cos 0, 2s+a cosf, 9= 08 (10D)
. aAgi(p)sin® 6, )
As(p) ~ sin 6,-46,(p) cos 6, (10c)
where 6,=+6;, if ¢—¢’=0. Since Af(+p) ~

—AfG,(—p), 1t 1s evident that the ray bundlein figure
1 is located symmetrically about the specularly re-
flected ray (HF~FG). For an observation point
P(p, ) which approaches the surface of the cylinder
(s—0), (10) shows that A6,(p)—0 and As(p)—0,
while A6,(p)—0(p/ka)#0. Consequently, even for
the limiting condition of an observation point
arbitrarily close to the surface, the bundle of three
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ON|,ON, ,ON, - THE SURFACE
NORMALS

Ficure 1. Reflected rays to order o« for a slowly varying

surface impedance.

rays has a finite, nonvanishing angular deviation of
()(p/ka) This result is a direct consequence of the
gmtlnu law given by (7) in II1.

If the 1('sull\ of (10) are substituted into (6), (7),
(12) and (23) in I1I, all the necessary grating ray
parameters A,, 12, D, 6, 6,, and s may l)(‘ ev aluato(l
The calculations show that the fractional changes
of the geometric optic parameters, in passing [rom
the specular to the grating rays, are As(p)/s~Ar(p)/r
~A1)(p)/[)~()(p%u) Ise of these estimates and
the results of (10) allows the transformation of (2b)
mto

Gr(p,¢,0" )~ RDe™ +ad R De'™

| e I»I;((;*(p“) e if(+p) +(/ Wl'p((;'-qs(,)(, if(- lz)J (] 1 )
where
Sf(p)~kAs(p)+kard;(p) sin 6, +pAb,(p), 8,=0

(12a)
~kard,(p) [Si“ 6 08 b pg ()£ (12b)

SRASTAL sin 6,(p) P E g

v Z cos 8;

IR = (Zcos 6,)2 (12¢)

The restriction Re (7) >0, already previously im-
plied in the requirement for time-average power flow
mto the cylinder, has been imposed here to ensure
the validity of the power series expansion of the de-
nominator of R,(p) in (12) of I1I. In deriving (11),
the amplitude of the perturbation parameter « has
been explicitly related to the relative periodicity
(plka)=(N/L) by the neglect of all terms of O(a?).

This requirement implies that

« U({;)Z 0(a?)
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A similar estimate has been utilized by Hessel [1960]
for an analogous study on an infinite plane surface
with a sinusoidally varying surface impedance. i

rwizo(L)

it is readily shown that (11) may be simplified to
vield, to O(a), the local reflection formula in (5). We
conclude, therefore, that the requirement prescribed
by (14) is a necessary condition for the validity of
the local reflection hypothesis.

(14)

4. Interpretation of Local Reflection
Requirements

The contributions to f(p) in (12a) arise [rom three
differential effects which are not always of the same
order of importance. The first two terms, of order
unity, are much larger than the last term of O(p/ka).
The contribution described by the first term kAs(p)
is due to the differential phase shift produced by the
path difference As(p) of the different rays reaching
the same observation point ’(p, ¢) in ficure 1. The
second contribution, described by the kaAf,(p) sin 6;
term in (12a), arises from the A,(p) term which
defines the phase of the incident plane wave at the
point of reflection. Because of the cylindrical geom-
etry, the phase of the incident plane wave at the
three points of reflection £, /, and G in figure 1 is
different, thereby introducing a differential phase
shift into the reflected rays. The third contribution
-+ pAb,(p) in (12a) is due to the angle ¢(p) in the ex-
ponential of (12) in III which px()\l(l(\s the phase
shift of the reflection coeflicient 72,(p).

A consideration of the geometric optical solution
given by (4) and shown in figure 1 indicates that the
differential phase shift produced by the path differ-
ence tends to cancel the differential phase shift pro-
duced by the incident plane wave. This may be
verified by making use of (10) in (12a). As a result
of this cancellation, the first two terms of order unity
in (12a) combine to form the first term of O(p/ka) in
(12b). In the very narrow back-scattering region
where 6;,< p/ka, this first term in (12b) is of 0(6;)
and therefore tends to vanish as 6,—0. This agrees
with physical expectations since the increments due
to differences in the path lengths and in the phase of
the incident plane wave both tend to be smaller in
the vicinity of ;=0. (The apparent singularity pro-
duced by the vanishing of the denominator does not
arise since sin 6,(p)—A0,(p) as 6,—0.) In this region
the dominant contribution to f(p) is the phase shift
term coming from the reflection coefficient F,(p).

This contribution depends upon the angle ¢ at the
point of reflection but is independent of the asym-
metry (with respect to ¢’) produced by the phase
angle ¢, in the variable impedance 7(¢).



To obtain an overall picture of the behavior of
f(p), it is desirable to make the following simple
estimates, valid for most 6;,

cOos 01‘: 0(])

8,(p)=0(0,)
A, (p)=0 (ﬁ)

In view of the approximate nature of these estimates,
the requirement on f(p) prescribed by (14) seems
overly precise and will be replaced by the simpler
condition

f(p|<1. (16)

Use of (15) in (12b) permits (16) to be written as

where we define

Ly=2a|A6,(p)|. (18)
Ly is the distance KFG in figure 1, measured along
the surface of the cylinder, and can therefore be
interpreted as the length of the cylindrical surface

along which the variable impedance 7 (¢) is sampled
by the three rays reflected from the points £, F, and
G. The inequality (17) states that the local re-
flection phenomenon obtains if the variable imped-
ance interval [, sampled by the diffracted rays is
much smaller than the spatial period L. From (8)
it 1s recalled that all the estimates in this section are
subject to the basic restriction p/ka= NL < 1.
Therefore, if the sampling distance L, <\/2m, then
(17) becomes ineffective and is replaced by the
estimate [>N.  The relation (17) gives one
equivalent of the restriction imposed by (16).

Another and perhaps more useful statement may
be obtained by substituting the relations for A6,(p)
and A6,(p) in (10a) and (10b), and the first two
estimates in (15), into (12b). The inequality (16)
is thereby transformed into a relation which ex-
plicitly involves the wavelength X of the incident
plane wave,

[a(3s+2a)]?
2 I77A\Y° T =7/1

L>X\(ks) s Ta (19)
This provides an estimation of the lower bound of the
relative periodicity L/\ of the variable impedance in
terms of the distance s=/PF in figure 1 and the
radius of curvature “a’” of the cylinder. The im-
portant behavior is given by the (ks)'? term since the
remaining terms are slowly varying. If (19) is
evaluated for three different ranges of observation
points s, one obtains the simpler relations

L3>\ (2ks)V? if 4% <s<a (20a)

5 1/2 5 1/2 .
L>\ 9 ks> ~\ <§ lca) if s~a (20b)

3 1/2

if $>a. (20c)

It is seen that /N changes slowly from a depend-
ence on the relative distance (ks)Y? in the near field
s < a to a dependence on the relative size of the
cylinder (ka)'? in the far field s>a. This behavior
is in accord with physical expectations since only the
relative distance ks would be expected to play a role
near the surface, while the relative curvature (ka)=!
would be expected to become important far from the
cylinder. If the point of observation is so close to
the cylinder that s < N/4m then the simple estimate
L > X\ replaces the no longer effective estimate in
(20a).

The relation (19) involves explicitly the radius of
curvature @. In the limit a— =, the cylindrical sur-
face transforms into an infinite plane (19) then goes
over exactly into (20a), thereby suggesting that
this latter estimate should also predict the condition
to be imposed on L/X in order to have the local
reflection hypothesis apply on a plane surface. For
verification we note that (20a) agrees with a similar
result obtained by Hessel [1960] who investigated an
infinite plane with a sinusoidally varying surface
impedance. This agreement highlights the negligible
influence of the curvature of a large cylinder on the
reflection phenomenon in the near field.

However, the restrictions for the plane and cylinder
differ significantly in the far field (s>>a). For
the infinite plane, the length Z, along which the
impedance is sampled by the three rays, becomes
infinite as s becomes infinite. This follows from the
geometry of the infinite plane and the requirements
of the grating law. From the geometry it follows
that the angle of incidence of each of the three
incident rays is the same. From the grating law
it follows that the angles of reflection differ by
O(N/L). Therefore, as we move a distance s along
the specularly reflected ray, the sampling distance
L, must continually increase so that, as s—o,
Ly— = for the infinite plane.

The corresponding limiting behavior for the
cylinder is quite different. As a result of the cylin-
drical curvature, all of the angles of the different
incident and reflected rays differ by O(MNL). As
we move a distance s along a specularly reflected
ray, it is only necessary that there be an angular
deviation of the angles of incidence and reflection
of O(N/L) to change the direction of a grating ray
by the amount necessary to satisfy the grating law
and pass through the pomt P(p, ¢) in figure 1. This
angular deviation is easily secured by changing the
point of reflection by the angular amount A8;(p)=
O(N/L) which results in only a small fractional change
on the circumference of the cylinder. Therefore,
as s—oo, the sampling distance for the cylinder
Ly—aO(\/L) which is a finite number as verified
upon substituting the expression for Af6;(p) from
(10a) into (18). This difference in limiting behavior
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for the infinite plane and the cylinder is expressed
mathematically by the different expressions (20a)
and (20c¢). Evidently, if s> >a, the upper bound
required by (20a) for the infinite plane is much
larger than that required by (20¢) for the cylinder.
Therefore, far away from the surface, much more
rapid changes in surface impedance are permissible
for the cylinder than for the infinite plane, within
the confines of the local reflection hypothesis. This
is a direct result of the much smaller sampling
distance [/, for the cylinder than for 1]1(\ infinite
plane.

It has been noted that as s varies from s<<a to
s>>a, the lower bound on L/\ given by (20)
changes from (ks)"? to (ka)"? in a transition region
where s~a. It is interesting to obtain the value s,
of s in this transition region in terms of parameters
which do not involve the period L. Since (17) and
(20) represent the same phenomenon, the lower
bounds on L given by (17) and (20b) must be of the

same order of magnitude. This provides the
estimate
T
\‘,~47r70- (21)

The expression for s, in terms of L, and X has the
same functional form as that for the distance from
an aperture (having a diameter Z,) to the region
wherein the radiation pattern undergoes a transition
from the (near-field) Fresnel to the (far-field)
Fraunhofer type (a standard estimate in this case
18 So~2132/N).

If the sampling distance Ly< )\/)71- or if the length
of the reflected ray s<\/4rx then L, and s can no
longer provide significant estimates of the require-
ments for the validity of the local reflection phenome-
non. Under these conditions 7, and s are replaced
by the wavelength X\ in the single estimate 72 >>\
wherein the wavelength itsell provides the restriction
on L because of (8) and (9).

The rays reflected from the points £, F, and @ in
figure 1 also have a certain resemblance to rays
propagating through a random, inhomogeneous me-
dium. If a geometric optical :1pp10\1nmt10n is to
be valid for such propagating rays it would be
reasonable to expect that there should be certain
restrictions on the extent of the inhomogeneities.
In making a comparison of these restrictions with
our results, the distance of propagation in the
medium is analogous to s while the range of the
inhomogeneities is analogous to L. Chernov [1960]
has considered the conditions under which a geomet-
ric optical approximation is valid in a medium with
spatially random inhomogeneities. It is interesting
to observe that Chernov gives the conditions A< <L
and +As< <L as necessary conditions for the
validity of such an approximation. The first re-
quirement is precisely the basic approximation p/ka
< <1 introduced in (9) and used in (14). The
second requirement is given by (20a) if we set all
numerical factors equal to unity.

5. Extension to More General Types of
Impedance Variation

Although the investigation herein is concerned
with a cylinder having a periodic surface impedance
variation, the effect of periodicity is obscured when
p/ka<1. Suppose that p=1 with ke >1.  In this
instance the surface impedance as expressed by (2)
in 111 goes through only one spatial period around the
p(‘uphely of the cylinder.  Viewed locally, one
detects in any limited region of the cylinder surface
an impedance variation devoid of any aspects of
periodicity. It is reasonable to suppose, therefore,
that the 1)10(‘0(]1n<r1(‘s111< tions delimiting the v :111(]11\'
of the local reflection principle of ”(‘()lll(‘lll(dl optics,
if properly rephrased, might applv as well to surface
impedances with dll)lll«ll\, slow variations on a
gently curved surface. The desired condition for
local reflection should be phrased as a limitation on
the allowed rate of impedance variation. Hence,
we first determine the maximum relative rate of
change of impedance occurring for the sinusoidal
impedance variation Z(¢), for which the geometrical
optics approximation retains its validity subject to
restriction (19).

Use of (2) in III for Z (¢) and of the relation a=
O\/L) in (13) yields

1dz(x)| A
lzm‘ ( ) <L (2

Z (l) 1 m

where z(z) is the variable surface impedance and z
=ag¢ is the distance measured along the surface; the
subseript m denotes the maximum value. We now
seek to express (N\/L) in a manner which makes no
reference to the sinusoidal impedance variation from
which 1t has been derived. One such formulation
utilizes the inequality in (19) which, when substituted

into (22), leads to
dz(x)
de | _\ (2s+a)? 23)
2(x) s a(3s+2a)’ o
A
§> o

The expression on the left hand side of this estimate,
representing the relative impedance variation in
an interval of one wavelength, is compared with
quantities on the right hand side which contain the
geometrical distance s along the reflected ray and the
radius of curvature ¢ at the point of reflection.
Hence, this formulation of the restriction required
for the validity of the conventional optics approxi-
mation is phrased in a manner independent of any
specific functional variation of z(z) and might there-
fore be expected to apply to an arbitrary, slowly
changing surface impedance on a gently curved
surface. The restriction s> \/4x follows from the same
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restriction in (20a). For s<\/47 (23) is superseded
by (22) in which the replacement O(N/L)*—< <1
is made for reasons analogous to those discussed
in the previous section. It should be emphasized
that z(z) is assumed finite in this expression and that
the inequality becomes meaningless as z—0,. As
before it is of interest to examine (23) for various
ranges of s/a. If we omit all numerical factors of
order unity, then (23) becomes

dz(x)
S
1 2(.1‘) <<: lf Z*SS«(Z (2421)
A .
< u if s>a (24b)

Evidently the allowed impedance variation is more
rapid for s<a than for s>a. The reason for this
behavior is connected with the negligible influence of
surface curvature in the near field and its appreciable
effect in the far field.

The limited applicability of the local reflection
hypothesis of geometrical optics to variable imped-
ance surfaces stems from the fact that the reflected
field is influenced not only by the surface properties
at, but also in the vicinity of, the specular reflection
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point. For periodic variations, the diffracted rays
provide a means of “sampling’” the nature of the
surface in the neighborhood of the point of reflection.
For a surface with monotonic impedance variation,
it 1s perhaps suggestive to construct a quasi-periodic
equivalent for the region under consideration and to
use the associated diffracted rays to sample the
surface properties near the specular reflection point.
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