JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation
Vol. 66D, No. 6, November-December 1962

Periodic Impedance Properties'
Chester J. Marcinkowski and Leopold B. Felsen

(Received May 14, 1962; revised June 14, 1962)

In a previous publication, a two-dimensional Green’s function has been derived for a
circular cylinder whose surface impedance around the periphery deviates from a constant
value by a sinusoidal variation of small amplitude a. Here, this solution is evaluated
asymptotically in the illuminated region under the assumption that the cylinder radius is
large compared with the wavelength of the incident field. The asymptotic result is inter-
preted in terms of geometrical opties generalized to apply to cylindrically curved, convex
reflection gratings, and comprises the first and higher-order diffracted rays associated with
a plane grating, together with geometrical divergence coefficients accounting for the surface
curvature. General properties of the spectrum of reflected rays are observed. The behavior
of the first-order diffracted rays, and in particular their domain of existence as a function of
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surface periodicity, is discussed in detail.
1. Introduction

In the theory of diffraction at high frequencies, a
lowest-order approximation to the scattered field
solution can be constructed by the methods of
geometrical optics. If a plane wave represented by
a continuum of parallel rays falls on a perfectly con-
ducting, gently curved convex object, the reflected
geometrical optics field comprises rays which emerge
from the obstacle surface at the angle of incidence;
a reflected ray lies in the plane of incidence and has
an amplitude along the ray direction governed by
a divergence coeflicient which accounts for the
spreading, due to the surface curvature, of a narrow
reflected ray bundle. If the surface properties are
characterized by a constant surface impedance Z,
the geometrical optics approximation assumes that
the reflected ray amplitude is, in addition, deter-
mined by a reflection coeflicient which is the same as
for an infinite plane surface with impedance Z; tan-
gent to the object at the reflection point. To
verify the validity of these approximations for a sur-
face with constant curvature, one may examine the
rigorous solution to the problem of diffraction by a
constant impedance cylinder in the high-frequency
limit [Wait, 1959]. If the surface properties of the
scatterer are not constant but are characterized by a
spatially varying surface impedance Z,, geometrical
optics predicts that the scattered field can be con-
structed as before provided that one now employs
the appropriate impedance at the specular reflection
point in calculating the ray reflection coefficient
[Keller, 1956]. Implicit in all geometric-optical
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approximations is the requirement that any varia-
tions in surface characteristics—whether changes in
the radii of curvature, or in the local impedance
properties—are ‘“‘small’” within an interval of length
equal to the wavelength of the incident field.

To gain a deeper insight into the simultaneous
influence of surface curvature and variability of
surface properties on the field diffracted by an object
at high frequencies, the authors have studied the
problem of diffraction by a large circular cylinder
whose surface impedance around the periphery
deviates from a constant value by a sinusoidal varia-
tion of small amplitude a (see (2)). Apart from the
relative simplicity of the mathematical analysis lead-
ing to a solution of this problem, the sinusoidal
variation is highly desirable since an appropriate
choice of the periodicity permits the simulation of
either slow monotonic changes, or of rapid fluctua-
tions. In the former range, a conventional geo-
metric-optical interpretation of the dominant portion
of the high-frequency diffracted field is expected to
apply. Its domain of validity as a function of both
the surface curvature and the rapidity of impedance
variation can be assessed by studying the high-fre-
quency asymptotic solution for arbitrary values of
periodicity. In this manner, one may arrive at
estimates for the magnitudes of the ‘“small” terms
mentioned at the end of the preceding paragraph,
which delimit the range of applicability of geo-
metrical optics.

The above discussion suggests a division of the
asymptotic analysis of the rigcorous solution into two
parts: (a) the evaluation of the high-frequency fields
for arbitrary periodicity of the surface impedance,
and (b) the transformation of this solution into the
previously mentioned geometric-optical form when
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the periodicity is very slow. Part (a) of this
program is carried out in the present paper wherein
it is shown that the asymptotic solution of the
scattered field is interpretable via the geometrical
optics of a curved, convex reflection grating, and
that it can be constructed in terms of the specular
and diffracted rays familiar from the theory of the
plane grating, modified by geometrical divergence
coefficients to account for the surface curvature
(sec. 2). An interesting feature is the dependence
of the domain of existence of each diffracted ray on
both the periodicity of the surface impedance and on
the radius of curvature, as discussed in section 4.
Phase (b) of the investigation, presented in the
companion paper, is concerned with the case where
the period of the surface impedance variation is very
large compared to the incident wavelength, thereby
obscuring the periodic aspect of the surface proper-
ties. As noted above, one then expects the reflected
field to be derivable from geometric-optical consider-
ations applied to surfaces with locally constant
characteristics. The reducibility of the first-order
asymptotic solution to the geometric-optical formula
deduced from a “local reflection’” argument can thus
be employed to furnish some bounds on the range
of applicability ol conventional geometrical optics
when used in connection with gently curved surlaces
possessing a variable surface impedance.

The formal solution to the diffraction problem
mentioned above [Felsen and Marcinkowski, 1962,
and Marcinkowski and Felsen, 1961. These refer-
ences will henceforth be called I and 11, respectively.
A related study for a slightly noncircular cylinder
has been carried out by Clemmow and Weston, 1961]
has been obtained by a Green’s function procedure
wherein the problem of determining the amplitudes
in a harmonic series expansion of the scattered field
G, is reduced to that of solving an inhomogeneous,
second-order difference equation with variable co-
efficients. The solution of the latter has been found
by assuming the expansibility of G as a power series
in the small perturbation parameter «. While we
discuss in detail only the first-order perturbation
(sec. 3 and appendix), the form of the asymptotic
solution is readily ascertained to any order in « and
leads to the expressions in section 2. Stress is
placed throughout on the physical interpretation,
rather than the detailed derivation, of the mathe-
matical results; the interested reader will find
additional information in reference IT.

The physical configuration and choice of coordi-
nates are shown in figure 1. While the circular
cylindrical coordinates (p, ¢, z) are employed in the
derivation of the formal solution and its asymptotic
representation, the coordinates 6; 6, and s are
convenient for the geometric-optical interpretation
of the result. A plane wave of wavelength A with a
magnetic field /, along the positive z axis is incident
on the cylinder along the ray 0@ identified by the
angle ¢’. The field reflected by the cylinder is
observed in the (p, ¢) plane at the point P(p, ¢).
On the surface of the cylinder (p=a), the magnetic
field 71.(p, ¢, ¢’) is required to satisly the boundary
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with the variable surface impedance Z(¢) given by

— 1/2
Zo=z[£] Dtacospo—ail. @

e and p are the permittivity and permeability of the
medium, and Z is an arbitrary complex number.
For a passive surface impedance, the restriction
Re Z(¢)>0 is imposed. In (2), a small, sinusoidal
variation with complex amplitude « (0 <|a|<<1) is
superimposed upon the constant 1mpedance
Z(u/e)t?.  The periodicity of the surface properties
is described by a finite, positive integer p=2wa/L,
where I is the spatial period of the impedance

variation. This provides the wuseful parameter
plka=X\/L involving the propagation constant
k=2x/\. For the sake of convenience the angle of

observation ¢ and the arbitrary real phase angle
¢, are restricted to the ranges —7<(¢—¢’)<m and
—7<(pp—¢’) <m. The units are rationalized MKS,
and a time dependence exp(—iwt), where 7 is the
imaginary unit, o the angular {requency, and ¢ the
time, is suppressed. As mentioned previously, the
formal solution of this boundary value problem has
been presented in references I and II. We proceed
now to its asymptotic evaluation in the illuminated
region of the cylinder.

2. Spectrum of Reflected Grating Rays
The total axial magnetic field H, in the illuminated
region may be decomposed into incident and reflected

contributions,

G(P,¢,¢,>:Gi(P,¢,¢’)+GT(P,¢,¢/>, <3>

700



where the subscripts 7 and 7 identify the incident and
reflected parts, respectively. The incident plane
wave is given by

Gip, ¢, ¢")=ete c0® (4797, 0<0,m/2. (4)

A detailed asymptotic evaluation of G, by the
saddle point method has been carried out to O(a)
and is summarized in the appendix and in section
3. However, the main properties of the asymptotic
solution to any order in « can be inferred from the
first-order results by repeated application of a re-
cursion relation derived in references I and II.
These more general relations are presented in this
section. Their interpretation in geometric-optical
terms is facilitated by the use of the geometric-
optical coordinates 6;, 6, s in figure 1.

0, is the angle between the incident ray M’M and
the normal ON to the cylindrical surface at the
point of reflection M(0<0,<w/2). 0, is the angle
between the reflected ray MP and the same normal
ON (—w/2<6,<x/2). The coordinate s is the
straight-line distance along a reflected ray MP from
the point of reflection M to the point of observation .
To permit a simple interpretation of the asymptotic
results, it is necessary to admit nonspecularly re-
flected rays so that the angle of reflection 6, need
not be equal to the angle of incidence 6;; this gen-
eralization of conventional geometrical optics allows
the inclusion of the diffracted rays associated with a
periodic structure or grating. 6, is considered posi-
tive when the reflected ray lies on the side of the
normal ON opposite the incident ray as shown in
figure 1; when both incident and reflected rays lie
on the same side of ON then 6, is considered negative.
If 9,<<—0; and s is sufficiently large, the observation
point P(p, ¢) may lie below the line O@. Under
these conditions the ray MP is reflected from a
point M on the cylinder where ¢—¢’ >0 and is
observed at a point P in space where ¢—o¢'<0.

With these definitions, the reflected field in the
illuminated region may be shown to comprise a
spectrum of reflected waves determined as follows:

Gr(p,9,8")= > Aulnp) (D Dap)e™ P (5)

where
A[)(TZ])) — e—ika cos Bi(np)

Rn(P)=2] R(n, m,p) ™", m=0,1,2, . ..
m=0

() 112
o {11202
. cos f,(np)
r(np)=a _1_}_@7(”])2;
de;(np) (6)

and
sin 6,(np)=sin 0;(np) +£n %, 6,20, (7)

with 0<8;(np) <w/2 and —=/2<0,(np) <x/2.

Each reflected ray associated with each integer
n will in general emerge from a different point M
in figure 1 [with a different 6,;(np)] to reach the same,
prescribed observation point P. The exponent in
the term Ag(np) gives the phase of the incident
plane wave at each reflection point, while Z#,(p)
gives the reflection coefficient associated with each
reflected ray. It is well known that a parallel
bundle of rays incident on a cylinder produces a
divergent bundle of reflected rays [Bremmer, 1949
and Keller, 1956]. These rays appear to come from
a point located by the focal length 7(np) which is
measured along that part of the segment MP in
figure 1 extended behind the reflection point
M (r(np)=MF). The resulting decrease in ampli-
tude along a reflected ray is described by the diver-
gence coefficient D(np). D(np) and r(np) above
are generalizations of analogous geometric optical
parameters for the rays reflected specularly from a
cylindrical surface with constant impedance. In
the derivation of these parameters from purely
geometrical considerations, the cylindrical surface
and its tangent have been assumed to be con-
tinuous functions of p and ¢, and 6,(np) and its
first derivative have both been assumed to be
continuous functions of 6;(np). The term ks(np)
in the exponential gives the phase of a reflected
ray propagating from the point of reflection M to
the observation point P(p, ¢). The saddle point
evaluations show that the angles of incidence and
reflection for an nth order reflected ray are related
by the well-known grating law in (7), familiar from
the theory of a plane grating. The angle 6, in (7)
is the angle NO¢ which the normal ON in figure 1
makes with the incident ray ¢’(|6,/=6;(np), 6,>0
in fig. 1). The explicit form of Ay(np), D(np) and
r(np) in (5) and (6) is obtained easily by comparing
the integral expressions for the higher-order (in «)
reflected contributions (see ref. Il) with the O(«a)
expressions in the appendix. For the explicit
evaluation of the reflection coefficients #,(p), how-
ever, a detailed asymptotic evaluation of the higher
order integral contributions is required and is not
included here.

From (5) it is evident that a finite number of
reflected rays reaches a prescribed point P(p, ¢).
The orders of the reflected rays range from —n; to
—+n,, where n; and 7, are nonnegative integers which,
in general, are not equal. They are the largest
values of n for which (7) can be satisfied subject
to the indicated restrictions on 6;(np) and 6,(np).
The perturbation procedure produces reflection
coefficients #,(p) which are expressed as power
series in « involving terms of the form «**1"l. The
coefficients of these series, and therefore the reflec-
tion coefficients #,(p), are independent of the
radius of the cylinder. Therefore, it is reasonable
to expect that these reflection coefficients will be
identical with those obtained for a plane surface
with the same sinusoidally modulated surface im-
pedance, where the plane surface is taken to be
tangential to the cylinder at the point of reflection.
This supposition has been verified to O(a') by com-
paring our reflection coefficient in (12) with that
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obtained by Hessel [1960] for the plane, sinusoidally
modulated impedance surface. For an nth order
reflected ray (n>0), the leading term of the reflec-
tion coefficient #,(p) is of O(«”) in the perturbation
parameter. For any prescribed O(a”) there are a
total of n-+1 rays of O(a”), a result which may
be derived from the recursion relation appearing in
the solution (ref. I).

It is significant to emphasize that the asymptotic
reflected field representation in (5), expressed in
terms of the geometric-optical coordinates (6;, 6,, s),
depends only on the local properties of the surface
in the vicinity of the point of reflection of a given
ray. Hence it appears reasonable to assume that
the dominant contribution to the reflected field in
the illuminated region of a general, gently curved
cylindrical convex surface with periodic impedance
properties can be constructed as in (5), provided
that the constant eylinder radius “@’”’, appearing in the
focallength r(np) and hence in the divergence coeffi-
cient D(np), is replaced by the radius of curvature of
the surface at the point of reflection of a given ray.
For curved surfaces with nonperiodic, slowly varying
properties, the above assumption was put forth by
Keller [1956] and verified by Keller and others
[Keller, Lewis, and Seckler, 1956] for various spe-
cific obstacle configurations, in which the reflected
field comprises the usual specularly reflected rays
only. The results herein suggest a direct extension
to mclude as well the nonspecularly reflected rays
associated with periodic surface properties.

3. Reflected Rays to Order «!

To O(a') in the perturbation, the reflected fields
in the illuminated region consist of three rays whose
properties are described here:

G (p,$,¢")=G(p,b,0)
+olGr(p, 0,0, )+ G1(p,0,0",—p)]. (8)

In terms of the geometric optic parameters, the
reflected field to O(a®) is given asymptotically by:

@p, b, ¢ )=As Ry D e™, 00,2, (9
with a reflection coefficient
, _cos 8,—Z (10)

1o=—" =
" cos 0,7

For this specularly reflected ray (n=0), the simpler
notation 0,(np)—0; is used, together with analogous
simplifications for the other relevant parameters:
6, = 6; and d6,/d§; = 1. Any point P(p, ¢) in the
lit region may be reached by a specularly reflected
ray for which 0<6,<x/2. These results are, of
course, well-known from the theory of scattering
by a constant impedance cylinder [Imai, 1954;
Franz, 1957, 1954; Franz and Beckmann, 1956;
Keller, 1956].

The corresponding solution of O(a') in (8) com-
prises two reflected waves for which n = £1. The

field for n = -1 is given asymptotically by (see
appendix)

G (p,¢,0" . p)=Ao(p) B (p)D(p)e™™,  (11)
where the reflection coefficient is found to be
T (1) pip(d(D) =69
Ry(p)—= Z cos 0;(p)eire® —¢ . (12)

[Z+-cos 0,(p)|[Z+cos 6,(p)]

The angle at the point of reflection is (;S (p)=
¢’ +0:(p) for 6,=0. IKach of the two reflected rays
of O(a') in (8) satisfies the grating law given by (7),
with n=41. From the grating law it follows that
the ray geometry of these two reflected rays is
invariant to the simultaneous substitutions p——p
and 6,—~—6,. As a result, the ray geometry is
symmetrical about the incident ray ¢’ in figure 1
regardless of the phase angle ¢, in (2) provided that
a ray with the index n=-41(—1) for 6,>0 is com-
pared with a ray of index n=—1(41) for 6,<0, for
the same angle of incidence 6,(p)=16,/. However,
the symmetry of the reflected fields is, in general,
different from the symmetry of the corresponding
ray geometry due to the presence of the reflection
coefficient R2,(p), given to O(a') by (12). 'This
coefficient depends upon the phase angle ¢, through

the term exp[ip(¢(p)—ao)]=explip(¢’—po=+0:(p))]
for 6,=0. If ¢, has the special values p(¢’—
¢o)==+mm, where m=0 or a positive finite integer,
then both the ray geometry and the reflected fields
are symmetrical about the incident ray ¢’. This
symmetry property follows directly from the
symmetry of the variable surface impedance pre-
scribed by (2). To O(«!) in the perturbation and
asymptotically in ka for ka >">1, it is easy to verify
that (8) satisfies the variable impedance boundary
condition in (1).

If the periodicity parameter p is small or if the
angle of incidence 6;(p) is large, the angle of reflec-
tion for both grating rays in (7) will be positive
(6,(£p) >0). Withrespect to the surface normal ON
in figure 1, reflected rays of this kind lie on the side
opposite the incident ray. This situation will occur
simultaneously for both rays n=+11in (7). This is
illustrated in Regions A and D of figure 2, where the
three reflected rays to O(a?) in the perturbation have
been drawn in four different situations which can
arise in the lit region. On the other hand, if the
periodicity parameter p is large or il the angle of
mcidence 6,(p) is small, the situation may arise
where 6,(—p)<0 for 6,>0. This is illustrated in
figure 2 for ray 3 in Region B and ray 2 in Region C.
Let us consider the behavior of ray 3 as the surface
normal ON passing through the point of reflection
moves from Region A to B. The angle of reflection
0,(—p) changes continuously from a positive value in
Region A to a negative value in Region B. When
the surface normal ON lies on the dashed line which
bounds Regions A and B, then 6,(—p)=0. Under
this special condition the reflected ray lies along the
surface normal ON. Similar conclusions hold for
ray 2 in Regions C and D. From (7), the angle of
incidence 6;(p)=0, appropriate to the special
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, 8o=20°

sin 8, = -kea—

Fraure 2. Reflected rays to order «.

limiting condition 6,(4p)=01s given by the equation

sin 00:}‘ (13)
Figure 2 has been drawn to scale for 6,=20°.

Let us consider an angle of incidence such that
all three reflected rays are in Region A. As the
normal ON in figure 2 is varied continuously from
Region A to D, all three rays change their position
continuously. It is evident that the ray geometry
is symmetric about the incident ray ¢’ providing the
roles of rays 2 and 3 in figure 2 are reversed upon
reflecting about ¢’. If p=0, the three rays coalesce
into one specularly reflected ray (6,=6;) and Regions
B and C disappear. For this special condition, a
single reflected ray is obtained from (8) by adding
the three reflected rays into one specularly reflected
ray. To O(a') it is easy to verify that the resulting
reflected ray gives the expected asymptotic solution
for ka™>">1 for a constant impedance cylinder with
the surface impedance 7Z'=7(u/e)"*(1+a).

4. Domains of Existence of the Reflected
Rays of Order «o!

The domains of existence of the reflected grating
rays are those illuminated or “lit” regions wherein
we find geometric-optical field contributions com-
prising real rays. For these regions, real angles
of incidence and reflection exist which simultaneously
satisfy the grating law given by (7), and the associ-
ated limitations on 6;(np) and 6,(np). In view of
these limitations, the lit regions for the grating
rays will depend upon N/L and may be considerably
smaller than the lit region for specularly reflected
rays. Ior the two reflected rays of order o' this

(c) &=

REFLECTED_RAY n=-I
A

N ——LIMITING RAY n=+I

=== LIMITING RAY n=-1|

_ 2ma
REFLECTED RAY n=+| P== 20

(&) X=2

Ficure 3. The domains of existence of the real
reflected grating rays n=—=-41.

dependence is examined in this section as a function
of N/L, the relative periodicity of the variable surface
impedance. The corresponding properties of the
higher order grating rays may be obtained by
appropriate generalizations of these simpler results.

Each of the two grating rays n= 41 has its own
lit region. As described previously in connection
with figure 2, the region illuminated by the ray
n=-1 1s the mirror image of the region illuminated
by the ray n=—1 reflected about the incident ray
¢’. The ranges of the lit regions associated with
the two reflected rays n= 41 are shown in figure 3
for N/L=0, 1/2, 3/2, and 2. (It should be noted
that the saddle point evaluations, and therefore the
asymptotic solutions herein, are not valid on the
limiting rays or in the transition regions surrounding
the limiting rays.)

For the constant impedance cylinder, \/L=0.
For this special condition, both rays n= -1 have
the same lit region as the specularly reflected ray
n=0 (fig. 3a). As M\/L increases from X\/L=0 to
NL=2, the extent of the lit regions associated with
each ray progressively decreases as shown in figures
3a to 3e. When N/ L=2, each of the two lit regions
degenerates into a single line as shown in figure 3e
and the associated reflection coefficient for each ray
ranishes from (12). If NZ >2, the grating law
annot be satisfied for real angles, and the lit regions
for the rays n= -1 disappear.

For each ray family n= 41 there are two charac-
teristically different limiting rays which define the
shadow-lit boundaries. For one limiting ray, the
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incident ray always arrives at grazing incidence,
0,(£p)=m/2. Since the angle of incidence is fixed,
the corresponding reflected ray always emerges from
the same point on the cylinder with an angle of
reflection which varies with X/L in the manner
prescribed by the grating law. There is one limiting
reflected ray of this type for each of the two ray
families n= 41 as shown in figure 3. For the other
limiting ray, the roles of the angles of incidence and
reflection are reversed and the reflected ray always
leaves the cylinder surface at a grazing angle (grazing
reflection).  In this instance the angle of incidence,
and therefore the point of reflection, varies with
N L according to the grating law as shown in figure
3. There is one limiting ray of this type for each
ray family n=+1.

The domains of existence of the reflected rays
n=-+1 described above can be understood from a
consideration of the first-order diffracted rays on
a plane reflection grating which are governed by the
grating law in (7). In fact, the various regions
depicted in figure 3 are precisely those which would
be obtained for a plane grating of the same relative
periodicity N/L if the incident wave sweeps out the
entire range from normal to grazing incidence.
Jonsider, for example, the case N/L=3/2 in figure
3d whence for the ray n=—1, with 6, >0, sin §,=
sin 0;,—3/2. The diffracted ray does not emerge from
the plane of the grating until sin6;>1/2; for the
maximum angle of incidence (i.e., grazing incidence)
sin #;=1, whence sin 6,=—1/2. Thus, the domain
of existence of the first order diffracted ray is the
angular region w/2>—60, >7/6 (see fig. 4), with
—0,=w/2 and —60,=x/6 corresponding to 6,=m/6
and 6,=m/2, respectively. This illuminated region
for the plane grating is exactly equivalent to that
shown for the ray n—=—1 in figure 3d, if the curved
periodic surface is approximated at the point of
reflection by a plane surface. This is in accord with
the previously mnoted quasi-optic expectation (ka
>1) that the field at any point in the illuminated
region of a curved surface with periodic properties
can be constructed from the geometric-optic results
for a plane surface wherein diffracted rays arising
due to the periodicity are included. The effect of
surface curvature is accounted for by a divergence
coefficient. This discussion of the domains of
existence of the illuminated regions has been restrict-
ed to the two grating rays arising in the perturbation

N

SPECULARLY

REFLECTED <|\TCIDENT
RAY 30° RAY
5 N
gi ILLUMINATED REGION FOR
FIRST ORDER DIFFRACTED RAY
9 FIRST ORDER
r DIFFRACTED RAY

PLANE/ °

— x
GRATING

Fi1Gure 4. The plane grating for \/1L=3/2.

solution to O(a'). Nevertheless, the conclusions
obtained here may be easily extended to the higher
order rays by making the substitution N/L-—sn\/L
for an nth order ray. Consequently, if NL=1/2,
then figure 3 may also be interpreted as representing
the extent of the illuminated regions for the specular
rays and for the first four orders of the grating rays
(n=1, 2, 3, 4). In this case, no real diffracted rays
exist for n>4. The regions outside those shown
illuminated in figure 3 represent “grating shadow”
regions whose properties remain to be investigated.

5. Appendix

This appendix contains a summary? of the deri-
vation of the geometric-optical formula (11) from the
rigorous integral expression for the reflected wave
G}, given by (see ref. IT)

Gi(p,da,qb’,p):;% . <¢,_¢”_§>

dv (14)

| &)

J_. a(v)-a(v+p)
a(v)=H,(ka)+1ZH,(ka).

where

Hy indicates a Hankel function of the first kind and
the prime denotes differentiation with respect to the
argument. If the appropriate large argument
asymptotic approximations are substituted for the
Hankel functions, then this integral becomes

G (08,6, 0= [ Qup e or a1
where
f(Vyp)=<¢'—¢——7§r—'y> cos y-Fsin vy
a . a 5
_; (Sln Y1— 71 COS 71)_; (sin y,—7v; cos v2)  (16)

ip( ¢'—o T>+'”
—gg—T )i T
—Ze 2 4

o S1n vy S1I Yo =
Q0: P) =7 s ) (Zsin 70 [ RN ] (17)
cos 'yzklpy cos 72:1[—:7])
cosylzkla, 0<Re (v,yi or vo)<w.  (18)

The contour ¢ runs from — o to - o passing
above the real » axis for Re(y)<—Fka and below for
Re(y) >ka. The integrand in (15) contains a rap-
idly varying exponential term and the slowly vary-
ing function Q(r,p). Therefore, it is in a suitable
form for an asymptotic evaluation by the saddle
point method when kp>ka™>"> 1 (for simplicity it

2 Details of the evaluation can be found in reference II.
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is assumed that arg(k)=0). From the definitions

given by (18) it follows that

COS Y= C0S 71+I£;- (19)

The contour ¢ in (15) may be deformed into a
steepest descent path passing through the saddle
point v=w, on the real » axis. The equation for the
ocation of this saddle point is

¢’*¢—?2[“70+710+720:0 (20)

where vy, vip, and vy are defined in (18) by letting
V="1y.
The asymptotic approximation to G} is thus given

by

J

727,. 12
o 0% (vo, ) : "
G~ ikp /av) P Q (v, p) 0! e P (21)
0
which involves the angles v, v and . Ap-

propriate transformations (whose details are omitted
here) replace (18) by the simpler restrictions 0 <6;<C
/2, —m/2<0,< /2 defining the illuminated region,
and furthermore

ikp f(vo, p) =1iks(p)—ika cos0,+ip (7; + 0,);
6,=0 (22
where

s(p)=p sin yp—a sin vy,

=p cos [£ (¢ —¢)+0,+0,]
—a cos 0,, 6,=0.

(23)

When evaluated at the saddle point, the relation
(19) transforms into the grating law given by (7).
The focal length 7 previously defined is given here
by the equation

where

aZf(Vm LA S R R
[ i kp) )(26,)

SIN 7y @ SIN v, @ SIN 7y

By means of (16) to (26) the asymptotic result in
(21) may be transformed into the simple geometric
optical formula (11). The approximate expressions
used in (15) for the Hankel functions break down in
the transition regions where 6; or |6,/ =7/2. To de-
scribe the transition phenomena in the narrow re-
gions surrounding the limiting rays in figure 3, it is
necessary to employ a more “detailed analysis than
that presented above.
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while the divergence coeflicient D arises from
e 1/2
1 s1n SIn vy
D(p)=r
(P) kp sin y, sin 72(,[ (v, ])):I
s(p) 12
=| 1+—-= 25)
[ r(p) ( (Paper 66D6-229)
705

648645—62 5




	jresv66Dn6p_699
	jresv66Dn6p_700
	jresv66Dn6p_701
	jresv66Dn6p_702
	jresv66Dn6p_703
	jresv66Dn6p_704
	jresv66Dn6p_705
	jresv66Dn6p_706

