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In a p revious publication, a t wo-dimensional Green's fun ction has been deriv ed for a 
c ircula r cylinder whose su rface impedance aroun d t he peripher y deviates from a constan t 
value by a s inusoidal va riation of small amplit ude u. H ere, t his solut ion is eva luated 
asymptoticall y in t he illuminated region under t he assumpt ion t hat t he cylinder radius is 
la rge co mpared with Lhe wavelength of t he in ciden t fi eld . The asymptotic resul t is i nte r­
preted. in te rms of geometrica~ opt ics generalized to ap ply to cylindrically curved, convex 
reflect ion grat ings, and comprIses t he first a nd higher-o rder diffracted rays associated wit h 
a plane grating, together with geometrical divergence coe ffi cien ts acco unting fo r t he surface 
curvature. Genera l properties of the spectru m of reflected rays a re observed . T he behav ior 
of t he firs t-order diffracted rays, a nd in part icular t heir domain of ex isten ce as a fUllet ion of 
s urface pe riod icity, is discussed in detail. 

1. Introduction 

In the theory of diffraction at high frequencies, a 
lowest-order approximation to the scattered field 
solution can be constructed by the methods of 
geometrical opt ics. If a plane wave represen ted by 
a continuum of parallel rays falls on a perfectly co n­
ducting, gently curved convex object, the reflected 
geometrical optics field comprises rays which emerge 
from the obstacle surface a t the angle of incidence; 
a reflected ray lies in the plane of incidence and has 
an ampli tude along the ray direction governed by 
a divergence coefficien t which accounts for the 
spreading, due to the surface curvature, of a narrow 
r eflected ray bundle. If the surface properties are 
characterized by a constant surface impedance Z., 
the geometrical op tics approximation assumes t hat 
the reflected ray amplitude is, in addition, deter­
mined by a reflection coefficien t which is the same as 
for an infinite plane surface with impedance Z. tan­
gen t to the object at the reflection point. To 
verify t he validity of these approximations for a sur­
face with constant curvature, one may examine t he 
rigorous solution to the problem of diffraction by a 
constant impedance cylinder in t he high-frequency 
limit [Wai t, 1959]. If the surface properties of the 
scatterer are no t constan t but ar e characterized by a 
spatially varying surface impedance Z" geometrical 
op tics predicts that the scattered field can be con­
structed as before provided that one now employs 
t he appropriat e impedance at the specular reflection 
point in calculating the ray reflection coefficien t 
[K eller , 1956]. Implicit in all geometric-optical 
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approximations is the requirem en t t hat any varia­
tions in surface characteristics- whether changes in 
the radii of curvature, or in t he local impedance 
proper ties- are "small" wi thin an in terval of length 
equal to the wavelength of t he inciden t field . 

To gain a deeper insigh t into t he simultaneous 
influence of surface curva ture and variability of 
surface proper ties on the field diffracted by an obj ect 
a t high frequencies, the au thors have studied the 
problem of diffraction by a large circular cylinder 
whose surface impedance around the periphery 
deviates from a constan t value by a sinusoidal varia­
tion of small amplitude a (see (2)). Apart from the 
relative simplicity of the mathematical analysis lead­
ing to a solution of this problem , the sinusoidal 
varia tion is highly desirable since an appropriate 
choice of the periodicity permi ts t he simulation of 
either slow monotonic changes, or of rapid fluctua­
tions. In the former range, a conven tional geo ­
metric-optical interpretation of the dominan t por tion 
of the high-frequency diffracted field is expected to 
apply. Its domain of validity as a function of bo th 
the surface curvature and the rapidity of impedance 
varia tion can be assessed by studying the high-fre­
quency asympto tic solution for arbitrary values of 
periodicity. In this manner , one may arrive at 
estimates for the magnitudes of the "small" terms 
mentioned at the end of the preceding paragraph, 
which delimit the range of applicability of geo­
metrical optics. 

The above discussion suggests a division of the 
asymp totic analysis of t he rigorous solution in to two 
par ts: (a) the evaluation of the high-frequ ency fields 
for arbitrary periodicity of the surface impedance, 
and (b) the transformation of t his solu tion into the 
previously men tioned geometric-optical form when 
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the periodicity is very slow. Part (a) of this 
program is carried out in the present paper wherein 
it is shown that the asymptotic solution of the 
scattered field is interpretable via the geometrical 
optics of a curved, convex reflection grating, and 
that it can be constructed in terms of the specular 
and diffracted rays familiar from the theory of the 
plane grating, modified by geometrical divergence 
coeffi cients to account for the surface curvature 
(sec. 2). An interesting feature is the dependence 
of the domain of existence of each diffracted rayon 
both the periodicity of the surface impedance and on 
the radius of curvature, as discussed in section 4. 
Phase (b) of the investigation, presented in the 
companion paper, is concerned with the case wh ere 
the period of the surface impedance variation is very 
large compared to the incident wavelength, thereby 
obscuring the periodic aspect of th e surface proper­
ties. As noted above, one then expects the reflected 
field to be derivable from geometric-optical consider­
ations applied to surfaces with locally constan t 
characteristics. The reducibility of the first-order 
asymptotic solution to the geometric-optical formula 
deduced from a "local reflection" argument can thus 
be employed to furnish some bounds on the range 
of applicability of conventional geometrical optics 
when used in connection with gently curved surfaces 
possessing a variable surface impedance. 

The formal solution to the diffraction problem 
mentioned above [F elsen and 1ifarcinkowski, 1962, 
and Marcinkowski and Felsen, 1961. These refer­
ences will henceforth be called I and II, respectively. 
A related study for a sligh tly noncircular cylinder 
has been carried out by Clemmow and Weston, 1961] 
has been ob tained by a Green's function procedure 
wherein the problem of determining the amplitudes 
in a harmonic series expansion of the scattered field 
Gs is reduced to that of solving an inhomogeneous, 
second-order difference equation with variable co­
efficien ts . The solu tion of the latter has been found 
by assuming the expansibili ty of Gs as a power series 
in the small perturbation parameter a . 'W'hile we 
discuss in detail only the first-order perturbation 
(sec. 3 and appendix), the form of the asymptotic 
solu tion is readily ascertained to any order in a and 
leads to the expressions in section 2. Stress is 
placed throughout on the physical interpretation, 
rather than the detailed derivation, of the mathe­
ma tical res ul ts ; the in teres ted reader will find 
addi tional information in reference II . 

The phys ical configuration and choice of coordi­
nates are shown in figure 1. 'iiVhile the circular 
cylindrical coordinates (p, cp, z) are employed in the 
derivation of the formal solu tion and its asymp totic 
representation, the coordinates Oi, Or, and 8 are 
convenien t for the geometric-optical interpretation 
of the result. A plane wave of wavelength 'A with a 
magnetic field H z along the positive z axis is inciden t 
on the cylinder along the ray OQ identified by the 
angle cp'. The field reflected by the cylinder is 
observed in th e (p, cp) plane at the point pep, cp). 
On the surface of the cylinder (p= a), the magnetic 
field H z(p, cp, cp' ) is required to satisfy the boundary 
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FIG URE 1. The geom etric optic parallwters . 

condition 

1 oHz( p,cp,cp') 
u.:;; op 

H z( p,cp,cp' ) 
= - Z (cp ), 

p = a 

(1) 

with the variable surface impedance Z (cp) given by 

(2) 

E and fJ- are the permittivi ty and permeability of the 
medium, and Z is an arbitrary complex number. 
For a passive surface impedance, the r estriction 
Re Z (cp) 2:: 0 is imposed. In (2), a small, sinusoidal 
variation with complex amplitude a (0 ~ lal< < 1) is 
superimposed upon the constan t impedance 
Z(fJ- /E) 1/2 . The periodicity of the surface proper ties 
is described by a fini te, positive integer p = 27ra/L , 
where L is the spatial period of the impedance 
variation. This provides the useful parameter 
p /ka= 'A/L involving the propagation constant 
k= 27r/'A. For the sake of convenience the angle of 
observation cp and the arbitrary real phase angle 
CPo are restricted to the ranges - 7r« cp - cp')<7r and 
- 7r ~ (CPo- Cp' ) ~ 7r. The units are rationalized MKS, 
and a time dependence exp ( - iwt) , where i is the 
imaginary uni t, w the angular frequency, and t the 
time, is suppressed . As mentioned previously, the 
formal solution of this boundary value problem has 
been presented in references I and II. We proceed 
now to its asymptotic evaluation in th e illuminated 
region of the cylinder. 

2 . Spectrum of Reflected Grating Rays 

The total axial magnetic field Hz in t he illuminated 
region may be decomposed into incident and r eflected 
contribu tions, 

G(p, cp, cp' ) = Gi( p, cp , cp' ) + Gr(p , cp , cp' ) , (3) 
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where the subscripts i and r identify the incident and 
reflected parts, respectively. The incident plane 
wave is given by 

Gt(p, ¢, ¢' )=e-ikp cos (<1>-<1>') , O~lJi<7r/2. (4) 

A detailed asymptotic evaluation of Gr by the 
saddle point method has been carried out to O(a) 
and is summarized in the appendix and in section 
3. However, the main properties of the asymptotic 
solution to any order in a can be inferred from the 
first-order results by repeated application of a re­
cursion relation derived in references I and II. 
These more general relations are presented in this 
section. Their interpretation in geometric-optical 
terms is facilitated by the use of the geometric­
optical coordinates IJ t , 1Jr) S in figure 1. 

lJ i is the angle between the incident ray M'M and 
the normal ON to the cylindrical surface at the 
point of reflection M(0~lJi< 7r/2). IJr is the angle 
between the reflected ray MP and the same normal 
ON (- 7r/2< lJ r < 7r/2). The coordinate s is the 
straight-line distance along a reflected ray MP from 
the point of reflectionM to the point of observation P. 
To permit a simple interpretation of the asymptotic 
results, it is necessary to admit nonspecularly re­
flected rays so that the angle of reHection IJr need 
not be equal to the angle of incidence IJ t ; this gen­
eralization of conventional geometrical optics allows 
the inclusion of the diffracted rays associated with a 
periodic structure or grating. IJ r is considered posi­
tive when the reflected ray lies on the side of the 
normal ON opposite the incident ray as shown in 
figure 1; when both incident and reHected rays lie 
on the same side of ON then IJ r is considered negative. 
If IJ r< -lJ i and s is sufficiently large, the observation 
point pep, ¢) may lie below the line OQ. Under 
these conditions the ray lItP is reflected from a 
point }.iI on the cylinder where ¢ - ¢'> O and is 
observed at a point P in space where ¢-¢' < 0. 

With these definitions, the reflected field in the 
illuminated region may be shown to comprise a 
spectrum of reflected waves determined as follows: 

n, 
Gr(p, ¢, ¢') = L; Ao(np) fYt,, (p)D (np) eiks(np) (5 ) 

where 

fY2 n(P) = L; R (n, m, p) a2m+lnl , m= O, 1,2, . 
m=O 

D (n )=[1 + s(np )] - 1/2 
P r(np) 

() cos IJr(np) 
r np = a . , 

. l+dlJr(np ) 
dlJ i (np) (6) 

i and 

Each reflected ray associated with each integer 
n will in general emerge from a different point M 
in figure 1 [with a different lJi(np) ] to reach the samc, 
prescribed observation point P . The exponent in 
the term Ao(np) gives the phase of the incident 
plane wave at each reflection point, while P/ln (p ) 
gives the reflection coefficient associated with each 
reflected ray. It is well known that a parallel 
bundle of rays incident on a cylinder produces a 
divergent bundle of reflected rays [Bremmer, 1949 
and Keller, 1956]. These rays appear to come from 
a point located by the focal length r(np) which is 
measured along that part of the segment MP in 
figure 1 extended behind the reflection point 
M (r(np) = MF). The resulting decrease in ampli­
tude along a reflected ray is described by the diver­
gence coefficient D (np). D (np) and r(np) above 
are generalizations of analogous geometric optical 
parameters for the rays reflected specularly from a 
cylindrical surface with constant impedance. In 
the derivation of these parameters from purely 
geometrical considerations, the cylindrical surface 
and its tangent have been assumed to be con­
tinuous functions of p and ¢, and IJr(np) and its 
first derivative have both been assumed to be 
continuous functions of lJ i (np). The term ks(np) 
in the exponential gives t he phase of a reflected 
ray propagating from the point of reflection M to 
the observation point pep, ¢). The saddle POillt 
evaluations show that the angles of incidence and 
reflection for an nth order reflected ray are related 
by the well-known grating law Ul (7) , familiar from 
the theory of a plane grating. The angle IJ~ in (7) 
is the angle NOQ which the normal ON in figure 1 
makes with the incident ray ¢'( I IJ~ I= lJ i (np), IJ~> O 
in fig. 1) . The explicit form of Ao(np) , D(np) and 
r(np) in (5) and (6) is obtained easily by comparing 
the integral expressions for the higher-order (in a) 
reflected contribu tions (sec ref. II) with the O(a) 
expressions in the appendix. For the explicit 
evaluation of the reflection coefficients fYt,, (p) , how­
ever, a detailed asymptotic evaluation of the higher 
order integral contributions is requu'ed and is not 
included here. 

From (5) it is evident that a finite number of 
reflected rays reaches a prescribed point pep, ¢) . 
The orders of the reflected rays range from - nl to 
+ n 2, where nl and n2 are nonnegative integers which, 
in general, are not equal. They are the largest 
values of n for which (7) can be satisfied subj ect 
to the indicated restrictions on lJ i (np) and IJr(np). 
The perturbation procedure produces reflection 
coefficients fYtn(P) which are expressed as power 
series in a involving terms of the form a 2m+ 1 nl . The 
coefficients of these series, and therefore the reflec­
tion coefficients i?J2n (p) , are independent of the 
radius of the cylinder. Ther efore, it is reasonable 
to expect that these reflection coefficients will be 
identical with those obtained for a plane surface 
with the same sinusoidally modulated surface im­
pedance, where the plane surface is taken to be 
tangential to the cylinder at the point of reflection. 
This supposition has been verified to O(al) by com­
paring our reflection coefficient in ( 12) with that 
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obtained by Hessel [1960] for the plane, sinusoidally 
modulated impedance surface. For an nth order 
reflected ray (n~ 0), the leading term of the reflec­
tion coefficient Ytn(p) is of O(an) in the perturbation 
parameter. For any prescribed O(an) there are a 
total of n + 1 rays of O(an), a result which may 
be derived from the recursion relation appearing in 
the solution (ref. I ). 

It is significant to emphasize that the asymptotic 
reflected field representation in (5), expressed in 
terms of the geometric-optical coordinates ((1;, Or, s), 
depends only on the local properties of the surface 
in the vicinity of the point of reflection of a given 
ray. H ence it appears r easonable to assume that 
the dominant contribution to the reflected field in 
the illuminated region of a general, gently curved 
cylindrical convex surface with periodic impedance 
properties can be constructed as in (5), provided 
that the constant cylinder radius "a", appearing in the 
focallength r(np) and hence in the divergence coeffi­
cient D(np), is replaced by the radius of curvature of 
the surface at the point of reflection of a given ray. 
For curved surfaces with nonperiodic, slowly varying 
properties, the above assumption was put forth by 
Keller [1956] and verified by Keller and others 
[Keller, Lewis, and Seckler, 1956] for various spe­
cific obstacle configurations, in which the reflected 
field comprises the usual specularly reflected rays 
only. The r esults herein suggest a direc t extension 
to include as well the nonspecularly reflected rays 
associated with periodic surface properties. 

3 . Reflected Rays to Order a l 

To O(al) in the perturbation, the r eflected fields 
in the illuminated region consist of three rays whose 
properties are described here : 

Gr( p, ¢, ¢') =-" G~ (p, ¢ , ¢') 

+ a[ G~(p ,¢, ¢' ,p) + G~(p , ¢, ¢' ,-p)]. (8) 

In term s of the geometric optic parameters, the 
reflected field to O(aO) is given asymptotically by: 

with a reflection coefficient 

R cos Oi-Z . 
o cos Oi+Z 

(9) 

(10) 

For this specularly reflected ray (n = O), the simpler 
notation Oi(np) ----'70i is used, together with analogous 
simplifications for the other relevant parameters: 
Or = Oi and dOrldO i = 1. Any point p ep, ¢) in the 
lit region may be reached by a specularly reflected 
ray for which 0 ~Oi<7r/2. These results are, of 
course, well-known from the theory of scattering 
by a constant impedance cylinder [Imai, 1954; 
Franz, 1957, 1954; Franz and Beckmann, 1956; 
K eller, 1956]. . 

The corresponding solution of O(al) in (8) com­
prises two reflected waves for which n = ± 1. The 

field for n = + 1 is gIven asymptotically by (see 
appendix) 

G~( p, ¢, ¢', p) = Ao(p)Rl (p) D (p) eikS (p ) , (11 ) 

where the reflection coefficient is found to be 

R _ - Z cos Ot( p)etP(¢(Pl-¢ol 
I(P) - [Z + cos 8t(p)][Z + cos 8r(p)] (12) 

The angle at the point of reflection is ¢ (p ) = 
¢' ±8i (p ) for 8~~0 . Each of the two reflected rays 
of O(al) in (8) satisfies the grating law given by (7), 
with n = ± 1. From the grating law it follows that 
the ray geometry of these two reflected rays is 
invariant to the simultaneous substitutions p ----'7 -p 
and 0~ ----'7 - 8~. As a result, the ray geometry is 
symmetrical about the incident ray ¢' in figure 1 
regardless of the phase angle ¢ o in (2) provided that 
a ray with the index n = + 1 (- 1) for 8~>0 is com­
pared with a ray of index n = - 1 (+ 1) for 8~<0 , for 
the same angle of incidence Oi (p) = ! 8~ 1 . However , 
the symmetry of the reflected fields is, in general, 
different from the symmetry of the corresponding 
ray geometry due to the presence of the reflection 
coefficient RI (p), given to O(al) by (12). This 
coefficient depends upon the phase angle ¢o through 

A 

the term exp[ip (¢ (p )-¢o)] = exp[ip ( ¢' - ¢ o± 8i (p») ] 
for 8~~ 0. If ¢o has the special values p( ¢'­
¢o)=±m7r, where m = O or a positive finite integer , 
then both the ray geometry and the reflected fields 
are symmetrical about the incident ray ¢' . This 
symmetry property follows directly from the 
symmetry of the variable surface impedance pre­
scribed by (2) . To O(al) in the perturbation and 
asymptotically in ka for ka > > 1, i t is easy to verify 
that (8) satisfies the variable impedance boundary 
condition in (1). 

If the periodicity parameter p is small or if the 
angle of incidence 8i (p) is large, the angle of reflec­
tion for both grating rays in (7) will be positive 
(8 r ( ± p) > 0) . With respect t o the surface normal ON 
in figure 1, reflected rays of this kind lie on the side 
opposite the incident ray. This situation will occur 
simultaneously for both r ays n = ± 1 in (7). This is 
illustrated in R egions A and D of figure 2, where the 
three reflected rays to O(a l ) in the per t urba tion have 
been drawn in four different situations which can 
arise in the lit region. On the other hand, if the 
periodicity parameter p is large 01' if the angle of 
incidence 8i (p) is small, the situation may arise 
where 8r (- p )<0 for 8~~0. This is illustrated in 
figure 2 for ray 3 in R egion B and ray 2 in Region C. 
Let us consider the b ehavior of ray 3 as the surface 
normal ON passing through the point of reflection 
moves from R egion A to B . The angle of r eflection 
8r ( - p) changes continuously from a positive value in 
R egion A to a negative value in R egion B . When 
the surface normal ON lies on the dashed line which 
bounds Regions A and B, then 8r (- p) = 0. Under 
this special condition the r eflected ray lies along the 
surface normal ON. Similar conclusions hold for 
ray 2 in Regions C and D . From (7), the angle or 
incidence 8 i (P) = 80 appropriate to the special 
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FIGURE 2. R eflected rays to order <>. 

limiting condition IJr( ± p) = O is given by the equation 

(13) 

Figure 2 has been drawn to scale for 80 = 20 °. 
Let us consider an angle of incidence such that 

all thr ee reflected rays are in Region A. As the 
normal ON in figure 2 is varied continuously from 
Region A to D, all three rays change their position 
continuously. It is evident that the ray geometry 
is symmetric about the incident ray rf>' providing the 
roles of rays 2 and 3 in figm·e 2 are reversed upon 
reflecting about q/. If p = O, the three rays coalesce 
into one specularly reflected ray (8r = 8;) and Regions 
Band C disappear. For this special condition, a 
single reflected ray is obtained from (8) by adding 
the three reflected rays into one specularly reflected 
ray. To O(al) it is easy to verify that the resulting 
reflected ray gives the expected asymptotic solution 
for ka> > 1 for a constant impedance cylinder with 
the surface impedance Z ' =Z(!ll e)I /2 (l + a). 

4. Domains of Existence of the Reflected 
Rays of Order a l 

The domains of existence of the reflected grating 
r ays are those illuminated or "lit" regions wherein 
we find geometric-optical field contributions com­
prising real rays. For these regions, real angles 
of incidence and reflection exist which simultaneously 
satisfy the grating law given by (7), and the associ­
ated limitations on 8i (np) and 8r(np). In view of 
these limitations, the lit regions for the grating 
rays will depend upon 'AIL an d may be considerably 
smaller than th e lit region for specularly reflected 
rays. For the two reflected rays of order a l this 

Qi), 
-- LIM ITING RAY n=+1 

--- LIMITIN G RAY n= -I 

FIGURE 3. The domains of exis tence oj the real 
reflected grating rays n=± l. 

dependence is examined in this section as a function 
of 'AIL, the relative periodicity of the variable surface 
impedance. The corresponding properties of the 
higher order grating rays may be obtained by 
appropriate generalizations of these simpler resul ts . 

Each of the two grating rays n = ± 1 has its own 
lit region. As described previously in connection 
with figure 2, the r egion illuminated by the ray 
n = + 1 is the mirror i.mage of the region illuminated 
by the ray n = - 1 reflected about the incident ray 
rf>'. The ranges of the lit regions associated with 
the two reflected rays n = ± 1 are shown in figme 3 
for 'A IL = 0, 1/2, 3/2, and 2. (It should be noted 
that the saddle point evaluations, and therefore the 
asymptotic solutions herein, are not valid on the 
limiting rays or in the transition regions surrounding 
the limiting rays.) 

For the constant impedance cylinder, 'A IL = O. 
For this special condition, both rays n = ± 1 have 
the same lit r egion as the specularly reflected ray 
n = O (fig. 3a). As 'A IL increases from 'AIL = O to 
'A IL = 2, the extent of the lit regions associated with 
each ray progressively decreases as shown in figures 
3a to 3e. When 'AIL = 2, each of the two lit regions 
degenerates into a single line as shown in fig ure 3e 
and the associated reflection coefficient for each ray 
vanishes from (12). If 'AIL > 2, the grating law 
cannot be satisfied for real angles, and the lit regions 
for the rays n = ± 1 disappear. 

For each ray family n = ± 1 there are two charac­
teristically different limiting rays which define the 
shadow-lit boundaries. For one limiting ray, the 
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incident ray always arrives at gJ azing incidence, 
0;(±p) = 7r/2. Since the angle of incidence is fixed, 
the corresponding reflected ray always emerges from 
the same point on the cylinder with an angle of 
reflection which varies with A/L in the manner 
prescribed by the grating law. There is one limiting 
reflected ray of this type for each of the two ray 
families n = ± 1 as shown in figure 3. For the other 
limiting ray, the roles of the angles of incidence and 
reflection are reversed and the reflected ray always 
leaves the cylinder surface at a grazing angle (grazing 
reflection). In this instance the angle of incidence, 
and therefore the point of reflection, varies with 
A/L according to the grating law as shown in figure 
3. There is one linliting ray of this type for each 
ray family n = ± 1. 

The domains of existence of the reflected rays 
n = ± 1 described above can be understood from a 
consideration of the first-order diffracted rays on 
a plane reflection grating which are governed by the 
grating law in (7). In fact, the various regions 
depicted in figure 3 are precisely those which would 
be obtained for a plane grating of the same relative 
periodicity AIL if the incident wave sweeps out the 
en tire range from normal to grazing incidence. 
Consider, for example, the case A/L = 3/2 in figure 
3d whence for the ray n = - 1, with O~>O, sin 0,= 
sin 0;-3/2. The diffracted ray does not emerge from 
the plane of the grating until SinO i~ 1/2; for the 
maximum angle of incidence (i.e., grazing incidence) 
sin 0;= 1, whence sin Or=- 1/2. Thus, the domain 
of existence of the first order diffracted ray is the 
angular region 7f/2> - Or> 7r/6 (see fig . 4), with 
- O,= 7f/2 and - Or= 7f/6 corresponding to 0;= 7f/6 
and 0;= 7r/2, respectively. This illuminated region 
for the plane grating is exactly equivalent to that 
shown for the ray n = - 1 in figure 3d, if the curved 
periodic surface is approximated at the point of 
reflection by a plane surface. This is in accord with 
the previously noted quasi-optic expectation (ka 
» 1) that the field at any point in the illuminated 
region of a curved surface with periodic properties 
can be constructed from the geometric-optic results 
for a plane surface wherein diffracted rays arising 
due to the periodicity are included. The effect of 
surface curvature is accounted for by a divergence 
coefficient. This discussion of the domains of 
existence of the illuminated regions has been restrict­
ed to the two grating rays arising in the perturbation 

RAY 

PLANE 
GRATING 

FIGURE 4. 

N 

------- x 

The plane grating for ).. /L= 3/2. 

solution to O(a l ). Nevertheless, the conclusions 
obtained here may be easily extended to the higher 
order rays by making the substitution A/L -'m A/L 
for an nth order ray. Consequently, if A/L = I /2, 
then figure 3 may also be interpreted as representing 
the extent of the illuminated regions for the specular 
rays and for the first four orders of the grating rays 
(n= l, 2, 3,4). In this case, no real diffracted rays 
exist for n > 4. The regions outside those shown 
illuminated in figure 3 represent "grating shadow" 
regions whose properties remain to be investigated. 

5. Appendix 

This appendix con tains a summary 2 of the deri­
vation of the geometric-optical formula (11) from the 
rigorous integral expression for the reflected wave 
G~ , given by (see ref. II) 

Z iP(<P'-<po-:"::) 
G;(p,cp,cp',P) = 7rka e 2 

iv ( <p' -¢-~) 
[ +00 e 2 H v(kp) dv (14) 

• - 00 a (v)·a(v+ p ) 
where 

a(v) = H~(ka) + iZHv(ka). 

Hv indicates a Hankel function of the first kind and 
the prime dcnotes differentiation with respect to the 
argument. If the appropriate large argument 
asymptotic approximations are substituted for the 
Hankel functions, then this integral becomes 

G;(p,cp,cp',p) = i Q(v,p)e;kp[(v,P) dv (15) 

where 

f(v,p) = (cp' -cp-~-I') cos 1'+ sin I' 

a (. ) a (. - - sm 'YI-'h cos 1'1 - - Slll 1'2 -1'2 cos 1'2) 
p p 

_ Z eiP( ¢'-¢o-~) +i~ [ sin 1'1 sin I'2J1/2 
Q (v, p) = (Z + sin 1'1) (Z+ sin 1'2) 27rkp sin I' 

v + p 
cos 1'2 = kG: 

(16) 

(17) 

(18) 

The contour c runs from - 00 to + 00 passing 
above the real v axis for Re(v)< - ka and below for 
Re(v) > ka. The integrand in (15) contains a rap­
idly varying exponential term and the slowly vary­
ing function Q(v,p). Therefore, it is in a suitable 
form for an asymptotic evaluation by the saddle 
point method when kp~ka> > 1 (for simpljcity it 

2 Details of the evaluatiou can be found in reference II. 
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is assumed that arg(le) = 0) . Frolll t he definitions 
given by (18) it 1'ol1ows til a t 

cos 'Y ' = cos 'YI + T!..... . - lea (19) 

Thc contour c in (15) may b e deformed into a 
steepest descent path passing t hrough the saddle 
p oint V= Vo on t ire real v axis. The equation for the 
ocation o r this saddle p oint is 

(20) 

wh er e 'Yo, 'Y 1O, and 'Y20 are d efined in (18) by letting 
v= vo · 

The asymptotic approximation to G; is thus given 
by 

which involves t he angles 'Yo, 'Y lO and 'Y20' Ap­
propriate transform ations (wlrose d etails arc omi tted 
here) replace (18) b y the simpler r estrictions 0 '::;' fJ i< 
7r/2, - 7r /2< fJr< 7r j2 defining t he illuminated r egion , 
and f ur t h crill ore 

i lep.f(vo,p)= i les( p)-ilca C0 3 f) ·i+i p G ± fJ) 

fJ~~O (22) 
wh er e 

s(p) = p sin 'Yo- a sin 'Y10 

= p cos [± (<t>' - <t» + Oi+Orl 

fJ~~ O. (23) 

When evaluated at the saddle p oint, t he r elation 
(19) transforms in to the grating law giv en by (7) . 
The focal length r previously defined is gi ven h ere 
by the equation 

( ) SiD 'YIO 
r p = a . 

1 + s~n 'YtO 

sm 'YIO 

cos fJr( p) 
a J 

l+ dOr(P) 
dfJ i 

while the divergence coefficient D arises from 

(24) 

D ( )=~ f -sin "YI0 1 }/2 
p kpl s in Yosin'Y2 0 [o2f(v~ p ) ] 

I... ov P= Po 

[ s( p)] - 1/2 
= 1 + rep) (25) 

where 

[ 0 2f(VJP )] =~1~ (_1 ___ P ~ _ _ P ~). (26) 
ov2 P=PJ (kp)2 sin 'Yo a sin 'YI0 a s ill 'Y20 

By means or (16) to (26) the asymp totic )'cs uIL in 
(21 ) may be transformecl into the simplc gcom cLric 
optical formula (11) . The approximate exprcss ions 
used in (15) for the Hankel functions break cl own ill 
the transiti on regions where fJ i or IOrl ""' 7r j 2. T o dc­
scribe the transition phenomena in the n arrow r c­
gions surrounding the limiting rays in figure 3, i t is 
neCeSS3,1'~- t o employ a m orc de tailed analysis t han 
that pres en ted above. 
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