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Equations describ ing th e propagation of radio waves in a horizon tally stratified a niso­
trop ic ionosphere were developed by consider ing the limit.ing case of a la rge number of in­
finites imally t hin slabs of constant electron dens ity a nd collision frequency. The quas i­
longitud ina l approx imation was used. The propagation equations appeared as four co upled 
first-order linear different ia l equations, co upled by gradients in electron dens ity and collis ion 
frequency. The quasi-long it udina l a pproxima tion permi tted use of particula rl y s imple 
form s for t he co up ling coe ffi cients, t hese forms being a menable to simple analys is. Coupling 
between t wo ordinary or two extraordinary modes was found to be co nsiderably stronger 
than cross coupling between ordinary a nd extraord inary mode . Cross coupling was related 
to the rate of change of the direction of the phase normal. It was found t hat the r e flection 
of VLF radio waves from t he daytime ionosphere is re lative ly insensitive to t he angle of 
incidence on t he ionosphere except for high ly ob lique propagation. "Vhistler penetration 
was a lso found to be inse ns it ive to the angle of in cid ence on t he ionosphere. 

1. Introduction 

In this report, we shall consider the full-'wave solutions for a very low frequency radio 
wave propagating obliquely into a horizontally stratified ionosphere. The effects produced by 
the presence of the geomagnetic field and by electron collisions will be considered in some detail. 
Although ionospheric reflection coefficients have been accurately calculated by Johler and Har­
per [1962] for quite general conditions, the impetus for this study is to understand more fully 
the reflection processes of VLF radio waves and to understand the penet.ration of radio waves 
through the ionosphere. Wait [1960] and Barron and Budden [1959] have conducted extensive 
investiga tions of the reflecting properties of the ionosphere using the quasi-longitudinal ap­
proximation and the mode theory; however, the actual reflection proce ses of the ionosphere 
have not been investiga ted. 

This report will consider the propagation of four separate magneto-ionic modes in a hori­
zontally stratified ionosphere. The quasi-longitudinal approximation will be used in this 
analysis. The four modes have propagation constants given by the roots of the Booker quartic 
equation and represent two upward-propagating modes, ordinary and extraordinary, and two 
similar downward-propagating modes. 

The equations for the coupled modes will be developed through consideration of the iono­
sphere as a series of step functions where, in between the steps, the electron density and collision 
frequency remain constant. Expressions will be written for the electric field intensity for each 
of the four modes within each step. These expressions will be related to the electric field in­
tensity of a neighboring slab by means of the boundary conditions. Then the limit is taken 
as the width of each slab, and the change in electron density and collision frequency across each 
slab becomes infinitesimally small. Four differential equations are obtained for each mode, and 
they are coupled by gradients in the electron density and collision frequency. 

Although the general full-wave equations for ionospheric radio propagation are Imown 
[Budden 1961], they have not been studied in detail for oblique incidence because of the great 
complexity of the coupling coefficients. However, by using the quasi-longitudinal approxima-
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tion, remarkable simplifications can be made which permit the simple analysis of the behavior of 
VLF radio waves in the ionosphere. Limitations on the quasi-longitudinal approximation will 
also be discussed. 

The reflection processes will be discussed as the coupling of the upgoing modes to the down­
going modes. Explicit representations of this coupling will be given as a function of altitude 
for a typical daytime ionosphere. The reflectivity of the D region as a function of the angle of 
incidence will be qualitatively indicated. The penetration of very-low-frequency signals 
through the ionosphere will also be qualitatively discussed by examining how much of the wave 
is coupled into the down going modes and how much is attenuated when passing through the 
ionosphere. The optimum conditions for penetration from the ground into the ionosphere will 
be indicated. 

2. Development of the Propagation Equations 

2 .1. Basic Considerations 

In this section we shall begin by showing the equations for a wave propagating in a uniform 
magneto-ionic medium. We shall then express the boundary conditions for a wave incident 
upon a plane boundary where a discontinuous change in the propagation constant occurs. 

The quasi-longitudinal approximation for the propagation constant is given by 

k=- w2+ WWp , 1 ( 2 )1. 
C - w+ iv ± Wm cos e 

where 

w= 27rj, 
e2N w;,= __ e (square of the angular plasma frequency) , 
Eom 

v= electron collision frequency, 

wm= eBo electron gyrofrequency (w m is negative because the electron has a negative charge), 
m 

m = electron mass, 
e= electron charge, 

N e=ionospheric electron density, 
B o=magnetic induction of the earth's field , 

O= angle between direction of wave normal and direction of the geomagnetic field , 
c= velocity of light. 

Equation (1) is valid in the limit that [Budden, 1961, p. 119] 

(1 ) 

(2) 

Suffice it to say for the present that (2) holds for VLF propagation provided that 0 is not II too 
near" 90 degrees. Equa tion (2) will be investigated in more detail later in this paper. 

Returning now to (1), we see that because of the presence of a magnetic field through the 
term W m, there are two modes of propagation and the medium is also anisotropic. Let us denote 
k of (1) as kl when the plus sign is used and k2 when the minus sign is used. We notice that if 
the conditions of (2) are satisfied and if cos 0> 0, a wave of propagation constant leI will gen­
erally propagate and a wave of propagation constant k2 will be heavily damped . 

Before writing analytic expressions for the propagating waves, we shall adopt the coordinate 
system shown in figure 1. The magnetic field Bo is confined to the x-z plane and is inclined at 
an angle 0 to the x-axis. The electron density and collision frequency is to vary only in the z 

~ 

direction. The direction of propagation is denoted by the vector h at an angle if; to the z-axis 
~ 

and with an azimuthal angle 4>. The unit vector 1k is therefore given by 

~ ~ ~ ~ 

1k= 1z cos if;+ (1" cos ct+ 1y sin cf» sin if;. (3) 
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------~~~--_r~----------------------~ x 

--B 

FlGURlc 1. Coordinate system . 

The geomagnetic field vector may be represented by 

--) -7 --) 

B o= Bo(- I . sin 8+ I x cos 8). (4) 

It is now easy to compu te cos 8 in (1). It is given by 

cos 8= -cos 1/; sin 8+ sin 1/; cos 8 cos ct>. (5) 

In the quasi-longitudinal approximation, mode 1 will be right-handedly circularly polarized 
--) --) 

and mode 2 will be left-handedly circularly p olarized. Let I y ' and 1., be two vectors forming 
--) 

a righ t-handed orthogonal coordinate set of unit vectors with I k • Then, in gen eral, the electric 
vector of a plane-propagating up going wave in a homogeneous medium may be represented by 

--) --) --) 

E U(x, y , z)=E1(lv,+il z') exp {-ikl [cos fl z+sin 1/;l (Y sin ¢+x cos ct> )]} 
--) . 

+ E 2(Iy ,-il z') exp {- ik2 [cos 1/;2z+sin f 2(Y sin ct>+x cos ¢)]} (6) 

where El and E2 are constants. 

--) 

Let us further define I VI as being parallel to the xy-plane; then 

--) -7 -7 

I y,= I y cos cj:> - Ix sin cj:> , (7a) 

--) 

so that I " may be determined ; namely, 

--t -4 ~ -4 -7 -7 

1" = l kX l y'= 1. sin f - (Ix sin cj:> + Ix cos ¢) cos f . (7b) 

--) --) --) 

Therefore, when Ik points along the x-axis, then l v' is along the y-axis and I " is along the z-axis 
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2 .2. Reflection From a Plane Boundary 

When a wave is incident on a boundary between two regions with differing refractive 

indices, part of the wave will be transmitted across the boundary and part will be reflected. 
The reflected wave corresponds to two more modes with propagation constants. 

k _ l [ 2+ WW~ ] - c W - w+ iv ± wm (cos if; sin o+ sin if; cos 0 cos cf» , (8) 

where we shall say k3 is the mode corresponding to the minus sign, and k4 is the mode corre­
sponding to the plus sign. Equation (8) differs from (1) in that the sign on cos if; has been 
changed. (Wherever cos if; or sin if; appears, it will always be understood that the real part 
is positive.) 

The electric field of the downward propagating waves is given by 

--; --;--; 

Etl=E s(1 y,+il .,) exp {ik3 [cos if;3z+sin if;3 (y sin cf> + x cos cf>)]} 
~ --; 

+ E 4 (l y,- i l .,) exp {ikdcos if;.z+sin if;4 (y sin cf> + x cos cf>)]). (8a) 

When using this expression, it must be remembered that k4 is the propagating mode and k3 
is the evanescent mode, under the condition that the sign on the projection of the direction 
of propagation on the geomagnetic field, cos 0, has changed from that appearing in the upgoing 
modes. This will usually be the case for VLF propagation in temperate and polar la titudes. 
When cos 0 does not change sign between the incident and reflected modes, mode 4 is evanescent 
and mode 3 is propagating. 

Let us now consider a plane boundary in the x-y plane located at Zi' Let the propagation 
constant at z<z; be k;, and at Z>Zi, k;+ l wherej= I,2,3,4, corresponding to the two reflected 
(down going) and two incident or transmitted (up going) waves. Fmther consider another 
boundary at Z=Zi+1 such that both above and below the boundary at Zi there are two upgoing 
and two downgoing waves. 

--; ~ 

The boundary conditions are that the tangential component of E and of VX Ebe continuous 
--; ~ 

across the boundary. Therefore, by equating the x and y components of E and VX E we 
obtain four equations relating E J to E j+ l. Thus the boundary conditions can be expressed in 
the form 

[a:, ai2 al3 a:] [E ] [a:t' 
ai +1 ai +1 

a:t '] [E:+] 
12 13 

ag2 a~3 a~4 ai+ l ai +1 ai +1 E~+l a21 E~ a~t l 22 23 24 

a~1 a~3 a~3 a~4 E ~ a~t l ai+ 1 ai+ l a i +1 m +1 
32 33 34 

a!, a!2 a!3 a!4 E ! alt l ai +1 ai +1 ai+ l E !+I (9) 42 43 44 

where 

and where 

~(1)= 1, ~(2)= 1, ~(3)=- 1, ~ (4)=- 1. 

--; --; 

The elements of the square matrices are computed from the x and y components of (l y, ± il .,) 
and from the x and y components 

--; --; --; --;--; 

l kj X (l y' ± il ., )kj = (l ., =F il y, k j (10) 
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The matrix clements, akil may be written 

a;i= - sin ¢+ i( - 1) j€(j) cos ¢ cos 1/;; 

a~i= cos ¢+ i( - l) j€(j) sin ¢ cos 1/;; 

a~j= [- €(j) cos ¢ cos 1/;j+ i (- I) j sin ¢]kj 

a!j= [- €(j ) sin ¢ cos 1/;;- i( - l) j cos ¢]kj. 

(lla) 

(llb) 

(l1c) 

(1] d) 

In order to satisfy the conditions of (9) at any point (x,y) in the Z=Zj plane, the auxiliary 
condition 

kj sin 1/;j=<:!. sin 1/;0 
e 

(12) 

must be satisfied for all values of j and at all levels in the ionosphere where 1/;0 is the zenith 
angle of the wave below the ionosphere. Thus when an electromagnetic wave enters the 
ionosphere it will split into four modes, two transmitted and two reflected, all propagating in 
different directions. However, the azimu thaI direction for the phase normals must be the 
same for all four modes. 

The problem of determining the angle 1/; j is by no means trivial because from (1), (5) , and 
(8) it can be seen that le j is an irrational function of sin 1/;;. The solution of (12) for sin 1/;; or 
cos 1/;; is equivalent to solving the Booker quartic equation for the four roots le; cos 1/;; given 

the value of <:!. sin 1/;0' However in practice, a simple iterative solution for sin 1/;} can be found. 
e 

For example, if sin 1/;; is lmown and it is desired to fmel sin 1/;;+1 then we let sin 1/;;Y be the lth 
step in the iterative process described by the equation 

where 

w . 
- sm 1/;o 
e 

This simple routine will converge in a very few steps. 
Returning now to (11) we notiee that 

- a: j sin ¢+a~j cos ¢= 1 

afj cos ¢+ aL sin ¢= (- I )j€(j) cos 1/;; 

aL sin ¢- a! j cos ¢= (- 1) Jk; 

aL cos ¢+ a!j sin ¢= - € (j) cos 1/;;k; 

(13) 

(14a) 

(14b) 

(14e) 

(14d) 

which results in a considerable simplification over (11), so that (9) may be written in the form 

[ 
1 1 1 1] [E!] - cos ",r cos",~ cos ",1 - cos"'! E~ 

ki -k~ k~ - k! E1 

- ki cos ",i - k~ cos "' ~ k1 cos ",1 kl cos ",1 E! 

where E ; is now understood to mean E; exp [- i€ (j)le; cos 1/;;zJ 
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2 .3 . Transition to the Continuous Ionosphere 

In the preceding section, we considered plane waves incident on a sharp boundary be­
tween regions of different electron density. Let us now examine a large number of steps 
which approximate continuous ionospheric conditions in a manner shown in figure 2. Let 
each of the intervals in figure 2 be of width ll z and let the index "i" in (15) refer to the ith 
interval. Then the quantities in the (i+ 1) interval may be represented in terms of the ith 
interval, provided that the change between the intervals is small , by the r elations 

and 

x 
w 
o 
;; 
w 
> 
>= 
~ 
a: 
u. 
w 
a: 

E i+1= E i+ dEJ ll z 
J j dz 

ALTITUDE 

FIGURE 2. RepTesentation of a continuous 
ionosphere as a step functi on . 

Upun combining (16a) and (17) and neglecting terms of order (ll z)2 we get 

(16a) 

(16b) 

(16c) 

E i+1 E i [ . (.) 1 i .f) 1+ [ . (') ki i 1 [ . ( ')E i d (ki i) d E iJ j = j exp -~E J ILi cos 'I'j Zi exp -~E.J j cos if; jZi -~E J 1 jZi dz j cos if;j + dz j ll z, 

which may be written in the more desirable form , 

(18) 

Upon substituting (16b), (16c), and (18) into (15) and using the variable z instead of the 
subscripted variable Zj we get a coupled set of differential equations which express the bound­
ary conditions between layers infinitesimal thickness ll z: 
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[ 

1 

- cos 1{1, 

k, 

- k, COS f , 

1 

- cos f, ] ~ [!:] 
- k, dz E3 

k, cos 1{1, E, 

cos 1{12 cos f 3 

- Ie, k3 

- k2 cos ,/;2 k3 cos f 3 

[_ik' eo, ., - ik, cos 1{1 2 ik3 cos f 3 

ik, ,., "lJ ik, COS2 >/;, - le2 COS2 f 2 ile3 COS2 of3 - k~ COS2 of, E 2 

= - iler cos of, ik~ cos of2 ik~ cos of3 - k. cos of. Ea 

ik~ cos >/;~ ik~ cos 1{12 ik~ cos >/;a ik; cos >/;, E4 

[ 

1 

d - cos 1{1, 

- dz k, 

- k, cos 1{1, 

1 

cos 1{1 , 

- kz 

- k2 cos of, 

1 

] [E'] - cos of, E, 

- k. E3 

k, cos >/;, E, 

(19) 

This equation is somewhat awkward in that the derivatives of the Ej are mixed. The 
form of these equations can be considerably simplified if we note that the first term on the 
right-hand ide of (19) can be factored 

[ 1 

1 1 1 

] [ - " eo, f, 
0 0 0 

- cos of, cos >/;2 cos of3 - cos 1{1, 0 - ik2 cos of z 0 
o ] k, - k2 k3 - Ie, 0 0 ik3 cos of3 

= AQ 

ik, c:s 1{1, - k, cos of , - k, cos 'h k3 cos of3 k, cos 1{1, 0 0 0 
(20) 

-7 

where Q is the diagonal matrix. If we let E be the column matrix containing E j t hen (19) 
has the form 

-7 

A E'=(AQ- A') E (21) 

'where the prime denotes differentiation with respect to z. The form of (21) may be consider­
ably simplified if we multiply through on the left by A - I obtaining 

-7 -7 -7 

E' = QE- A -1A' E. (22) 

Since Q of (22) is diagonal, we see that the elements of the matrix A - IA couple the modes 
together. We further see that coupling is dependent upon gradients in the electron density 
and collision frequency. If the coupling matrix is small, then all modes propagate alm ost 
independently and 

(28) 

If we let (A-l)ij represent an element of A - I, then the (i, j)th element in the coupling matrix 
A - IA= C may be written 

Here we notice that the coupling between modes is produced by gradients in elec tron density 
and collision frequency, and also that when the ionosphere is homogeneous, the modes propa­
gate independently with solution given by (23). 
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3. Coupling Matrix 

The coupling coefficients corresponding to the matrix C have been computed by Heading 
(see Budden [1961]) for the general case corresponding to the full Applet on-Hal'tree formula 
without approximation . His expressions for C are qui te complicated and difficult to interpret 
except by computing numerical examples. The usc of the quasi-longitudinal approximation 
permits considerable simplification of the coupling matrix to the point where physical inter­
pretations are possible without making use of detailed computations. 

In order to simplify the notation used here, let us write 

Then we may begin the computation of Cij by finding the determinant of A, namely 

A -I is then computed by finding the cofactor of A, making use of (25). The elements of C 
are then found by substituting A- I into (24) and rearranging terms; thus 

IAICll =C~[(kl + k4) (k2+ k3) (C2+C4) - (kl - k3) (k2- k4) (C2-C3)] 
+ k;[ (k2+ k3)(CI + C3) (C2+C4) - (k2-k4) (CI-C4) (CZ-C3)] (26a) 

IA ICI2= C~(k~-k4) (k2+ ka) (Ca+C4) +k~ (ka+ k4) (C2-Ca) (C2+C4) (26b) 

IAICIS= -C~(k3+k4) (kz+ ka) (C2 + C4) +k~(k2-k4) (C2-CS) (Ca+C4) (260) 

IA I C!4= c~(ks+ k4) (k2- k4) (C2-C3) -k~(k2+ ka) (C2+C4) (C3+ C4) (26d) 

IAIC21 = c~ (kl - k3) (kl + k4) (Ca+ C4) +k~ (ka+k4) (CI + cs) (CI-C4) (26e) 

IA IC22 = e;[(k2+ k3) (kl + k4) (el + C3) - (k2- k4) (kl- ka)(cl-e4)] 
+ k;[(kl + k4) (e2+c4) Cel + cs) - (kl- k3) (c~-ca) (CI-C4)] (26f) 

IA IC23= C~(ka+k4) (lel - ka) (CI-C4) -k~(kl + k4) (Ca+ C4) (CI + ca) (26g) 

IA IC24= -c~(ks+ k4) (kl + k 4) (CI + ca) +k~ (kl - k3) (Ca+ C4) (CI-C4) (26h) 

lA ICal = -c~ (kl + k4) (kl + k2) (C2+C4) +k~ (k2 - k4) (CI + C2) (CI-C4) (26i) 

IA [Ca2 = c; (k2-k4) (kl + k2) (CI-C4) -k~(kl + k4) (CI + cz) (C2+C4) (26j) 

[A I C3S=C~[ (kl + k 4) (k2+ ka) (C2+ C4) + (kl - ka) (k2- k4)(C1- C4)] 
+k~[(kl + k4) (CI + C3) (C2+C4) + (k2- k 4) (C2-C3)(CI-C4)] (26k) 

IAI C34= -C~(kl + k4) (k2- k4) (CI +C2) -k~(kl + k2) (C2+C4) (CI-C4) (261) 

[A [C41 =C~ (kl + kJ (kl-- k3) (C2-C3) -k~ (k2+ k3) (CI + C2) (CI + cs) (26m) 

IA jC42 = -c;(kl + k2) (le2+ k3) (CI + ca) +k~(kl-ka)(CI +C2) (C2-C3) (26n) 

[A I C43= -C~(kl-k3) (lC2+ k3) (Cl +C2) -- k~(kl + k2) (CI + C3) (C2-C3) (260) 

IA[C44=C~[(kl + k4) (k2+ k3) (CI + ca) + (kl -- ka) (k2- k4) (C2-C3)] 
+k~ [ (k2+ka) (C2+C4) (CI + ca) + (kl-- k3)(CI-CI) (C2-C3)]' (26p) 

The form of (26) is such that the effects of approximations and special cases can readily 
be seen. In the case of vertical propagation, we know that CI = C2=Ca= C4 = 1, c;= O, and 
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kr = k4= kx and k2 = le3= Tco· We thus get the simple form for the coupling matrix 

oJ 
Tc~ 0 0 Tc~ 
2lex - 2Tcx 

0 
k~ le~ 

0 
2leo -2leo 

(27) l 0 

k~ le~ 
0 -2Tco 2Tco 

le' Tc~ 
-2kx 0 0 

2lex 

From the above form of 0 we see that an up going ordinary wave is reflected into a downgoing 
ordinary wave and that an upgoing extraordinary wave is reflected into a downgoing extraor­
dinary wave. We see that modes 1 and 3 propagate independently of modes 2 and 4. 

In order to discuss other special cases and approximations for oblique incidence, it must 
be kept firmly in mind that modes 1 and 4 are propagating and modes 2 and 3 are nonpropa­
gating or evanescent. In the light of our previous discussion, this means that cos e in (5) 
must, upon r eflection, undergo a change in sign. 

A simple example is propagation in a plane perpendicular to the magnetic meridian. 
Under these conditions cos ¢ of (5) and (8) is zero, so that Cr = C4= Cx, ler= le4= lex, C2= Ca =Co, 
and~k?= lc3= leo. As a result of these simplifications, the coupling matrix becomes 

0 = 0 1+02 

where 
I 

-c~ (kx- leo) - c~ (lex+ lco) Cx 

o 1 Co + Cx 2lex(co+ Cx) 2lex (co + Cx) 

-c~CTco- lex) c~ 
0 

-c~(lex+ leo ) 
2leo(co+Cx) Co+ Cx 2leo(co + Cx) 

(J1= 

J 
-c~(leo+ lcx) 

I 

c~ Clex- leo) 0 
Co 

2leoCco+ Cx) Co+ Cx 2IcoCcx+co) 

-c~ (lco + lex ') c~(lco- lex) I 

0 
Cx 

2 lex CCo + cx) 2Icx(co+ cx) co + cx 
and 

~J 
le~ 

0 0 
k; 1 2lcx -2:, . 

0 
lc~ lc~ 
2lco -21co 

(28) l 0 

Ic~ le~ 

o j -21co 2lco 

lc~ 0 0 le~ 
- 2lex 2lcx 

The form (28) will be identical for the case of a vertical magnetic field and oblique propa­
gation in any direction. We notice that O2 has a form identical to that of (27) and that the 
effects of cross coupling between ordinary and extraordinary modes on oblique propagation in 
the plane perpendicular to the magnetic meridian are proportional to the rate of change of the 
cosine of the zenith angle of the phase normal. 
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l __ 

In order to gain further insight into the properties of the coupling and thus the interaction 
of the various modes of propagation in a nonhomogeneous ionosphere, we shall calculate the 
values of kj and Cj for a typical ionosphere. Figure 3 shows the electron density of a normal 
daytime ionosphere for middle latitudes along with a collision frequency. Daytime conditions 
are chosen so as not to impose too much of a violation on the quasi-longitudinal approArimation. 
We shall also assume a constant magnetic field strength of 0.45 X 10- 4 weber/m2, a dip angle of 
60 degrees, and a propagation frequency of 10 kc/s. The values of k j and C j as a function of 
altitude are computed from (1), (5), (8), and (13) and the magnitudes of kj and C j are shown in 
figure 4 (a- h) and the arguments in figure 5 (a- h) for several initial values of >/; and cp. Figures 
4 and 5 show that the conditions imposed by propagation in a plane perpendicular to the mag­
netic meridian represent generally valid approximations for propagation in any direction be­
cause of the very small differences between Cl and C4, and C2 and C3' 
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The second term in (28) is quite easy to interpret because it is made up of logarithmic 
derivatives of the propagation constant. Let us write ko.x in the form Iko .xlei-y where Ikl is the 
magnitude of k and "I is its argument, shown in figures 4 and 5, respectively. Then the nonzero 
matrix elements of 0 2 in (29) may be expressed as 

(29) 

Thus "I' is the slope of the curve on figure 5 (a- h) and In' Ikl is the slope of the curve shown in 

figure 4 (a- h) since Ikl is plotted on a logarithmic scale. Similarly c+~,x which appears in all the 
Co Cx 
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nonzero elements in 0 1 of (2 ), may to a good approximation be written in the form 

~ ~1/2In/ l c l+ 1/2 i-y' 
co+ c'" c, 

(30) 

where 'Yc is the argument of the cosines. Equation (30) is valid to within about 10 percent 
b ecause the magnitudes and arguments of Cj are approximately equal. 

The coupling that produces reflection between the two ordinary modes and b etween the 
t\VO extraordinary modes is the strongest and also it is relatively independent of the angle of 
incidence from below the ionosphere. The coupling between modes 2 and 3 is stronger than 
b etween modes 1 and 4 because modes 2 and 3 undergo a large change in argument between 
the altitudes of 65 and 80 km.1 

Cross-coupling terms shown in matrix 0 1 are relatively weak except for highly oblique 

incidence. Factors of the type k;~k", have a magnitude that varies between 1 and 1/-/2 and 
0,,, 

an argument that varies b etween 0 and 1f/4. Thus t erms r epresenting coupling between modes 
1 and 3, and modes 2 and 4 are characterized by the logarithmic derivative of the c's. However, 
reflective coupling due to the clements of 0 1 occurs primarily b etween the altitude of 65 and 75 
km, whereas reflective coupling due to the elements of 0 2 is more in the 70 to 80 km r ange. 
Thus careful observation of the polarization of th e reflected wave should allow observation of 
two differ ent regions of the ionosphere. 

Co upling b etwecn the two upgoing modes and two downgoing modes, represented by the 
matrix clements (0:2' 0;,) and (O~4' 0!3) , contain factors of the type (lco-lc") /2ko,,, . Thc 
magnitude of this factor varies from zero at low altitudes, to 1/-fi at high al titude . Thus i t 
is to b e expected tha t coupling between the upgoing modes or between the downgoing modes 
be somewhat less than reflective coupling betwcen ordinary and extraordinary modes. 

4 . Some Comments on the Conversion of Spheric s Into Whistlers 

As a wave penetrates th e D region of the ionosphere, some of the wavc energy is converted 
in to other modes, which resul ts in th e process of reflection, while some of th e energy is dissip ated 
by electron collisions with th e neutral particles. In order to obtain an estimate of how much a 
p enetrating wave is attenuated, we shall compute the attenuation coefficien t of the vVICB 
solution of mode 1 given by 

E l= Eo exp [ -ii zk1 cos 1ft1clz} 

where the attenuation coefficient is given by 

exp - [iZ 1m (lei cos 1ftl) dzJ 

where 1m (x) denotes the imaginary part of x. T able 1 shows some attenuation coefficients of 
mode 1 for several initial values of 1ft and ¢. 

T ABLE 1. Attenuation of the WKB solutions f or the u pgoing propagating mode as a function of the angle of incidence 

Angles of incidence Amplitude Energy 

deo 
1>= 180 >/-=15 

=180 =RO 
=180 =45 
= 180 =60 
= 180 = 75 
= 135 =15 
= 13;; =30 
= 0 =15 

atten uation ab~orbed 

Neper" 
1. 52 
1. 54 
1. 59 
1 71 
1. 91 
1. 06 
1. 58 
1.72 

db 
13.2 
13.4 
13.8 
14.8 
16. f) 
13. Ii 
13.7 
14.9 

1 Figure 5 (a-h) is scaled such t hat a distance of one radian is t he d istance represented by a facto r of e on fignre 4 (a-h) . 
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It can be seen from table 1 that the total absorption of, say a whistler signal, is relatively 
independent of the angle of incidence. It increases only gradually with increasing zenith 
angle. The favored azimuthal direction is in the same azimuth of the magnetic field. The 
optimum angle of incidence for minimum attenuation is somewhere between the zenith and 
the direction of the magnetic field. The small variation of total attenuation as a function 
of the zenith angle (much less than a sec 1j; variation) results from the sharp change in the 
direction of the wave normal toward the zenith as the refractive index of the ionosphere increases. 

Also, as indicated in the previous section, the conversion of mode 1 into the downgoing 
modes, 3 and 4, is somewhat less for more-nearly-vertical incidence. Therefore we may con­
clude with some reservation that the optimum direction for the penetration of very low fre­
quency energy into the ionosphere is that of a nearly vertically-propagating wave; however, 
the angles of optimum penetration have a rather broad maximum. 

The complete picture of the injection of whistler energy into the ionosphere must await 
the complete solution of the coupled equations shown in (22). However, from figure 4 (a-h) 
we see that, as far as the direction of the phase normal is concerned and regardless of the 
initial direction of the incident spheric signal on the ionosphere, the whistler is injected into 
the ionosphere with its phase normal propagating vertically upward. Therefore, once the 
electron density gradient above 105 km flattens out, the ray path as shown by Storey [1953] 
will have a direction given by 

tan a~-!~ cot 0 

where a is the zenith angle of the group velocity vector. Therefore the ray path will assume 
a direction between the zenith and the magnetic field direction above the E layer. Figure 6 
shows some probable ray paths in the magnetic meridian generated by a lightning discharge. 
Since with a vertical dipole source most of the energy is radiated obliquely into the ionosphere 
and since reflection and absorption of mode 1 is not critically dependent upon the zenith angle 
of injection into the ionosphere, whistler sources may be quite distant from their apparent 
sources determined by tracing magnetic lines of force. Studies of whistler propagation [Helli­
well and Morgan, 1959] have shown this to be the case. 

FIGURE 6. P robable whistler my paths through 
the ionosphere. 

5 . Limitations on the Quasi-Longitudinal Approximation 

The great simplifications made in the analysis were possible because the very-Iow-fre­
quency wave was assumed to be circularly polarized. If this were not the case, then the 
matrix A would not have had its simple form, and its inverse would have been even more 
complicated so that the coupling matrix A-IA' would have been very difficult to analyze. 

The condition that the quasi-longitudinal approximation be valid is that 
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11 0 

This condition is compatible with the requirement that cos e change sign on reflection. Figure 
7 shows the angles e for which 1,13 [2= 1 and 0.1 computed from the model shown in figure 3. 

It is seen that the quasi-longitudinal approximation becomes doubtful between 75 and 
95 km with our present model ionosphere. At lower altitudes where the collision frequency is 
much greater than the gyrofrequency and at higher altitudes where the electron plasma fre­
quency is greater than the gyrofrequency, the quasi-Iongitudianl approximation is useful. 
Since daytime reflection of VLF radio waves usually occurs below 75 lun [Bracewell et aI. , 
1951] and since most of the absorption occurs below 75 km, this analysis is useful for a qualita­
tive discussion of these effects. 

At altitudes around 85 km the breakdown in the quasi-longitudinal approximation is 
somewhat more serious. For here [.812= 0.6 for vertical propagation. However, it can be 
seen from figures 4 and 5 that the elements in the coupling matrix C are small in this altitude 
range, so the accwnulative effect of the error would not be too great. 

Caution should be used in treating cases with highly oblique propagation, however; the 
quasi-longitudinal approximation is improved by the fact that as the wave propagates beyond 
70 km, its wave normal becomes more vertical. This analysis would break down rather badly 
using a nighttime model ionosphere because there would be a wide range of altitudes at which 

the quantity "+W~ 2 would be considerably greater than unity. However, during times of 
11 Wp 

enhanced D-region ionization produced by solar flares, auroral, and PCA events, the quasi­
longitudinal approximation is more generally applicable. Also at higher geomagnetic latitudes 
where the magnetic field is closer to the vertical, the usefulness of quasi-longitudinal approxi­
mation is improved. 

I thank Miss Estelle Guilbaul t for her able assistance in carrymg out the numerical 
computations. 
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6 . Appendix. List of Symbols 
A = matrix [see eq (20)] 
A' = derivative of the matrix A 
a;k = [see eq (11)] 
Bo = magnetic induction of the earth's field 
o = coupling matrix=A-IA' 
0 1 = coupling matrix [see eq (29)] 
0 2 = coupling matrix [see eq (29)] 
0 0 = elemen t of 0 
c = velocity of light 
c = cosine of zenith angle 
E =electric field strength 
E = E exp (-ik cos if;z) 
e = electronic charge 
e = base of naturallogari thm 
f = propagation frequency 
k = propagation constant 
m =electron mass 
N. =electron density 
Q = diagonal matrix of elements kj cos if;j 
z = altitude 
a = angle between phase normal and ray direction 
o = dip angle of magnetic field 
E = integer function 
8 = angle between direction of propagation and magnetic field 
if; = zenith angle of phase normal 
v = electron collision frequency 
¢ = azimuthal angle of phase normal 
'Y = phase angle 
W = 27ff angular frequency 

e2N 
w~=--' square of electron plasma Itngulal' frequency 

Eom 
Wm = electron gyrofrequency 
-'7 

h = unit vector in direction of phase normal 
-'7 

h = unit vector in direction of magnetic field 
-'7 

lv' = unit vector to specify polarization of electric field (see fig. 1) 
-'7 

1" = unit vector to specify polarization of electric field (see fig . 1) 
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