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The propagation of a spherical wave t hrough a medium containing anisotropic random 
irregularities is considered. The formulation follows closely that of Karavainikov. The 
mean sq uare deviations and the correlation functions of the phase and of t he logarithmic 
ampli t ude are derived by assuming t hat the autocorrelation function of the dielectric con
stant is Gaussian with ellipsoidal symmetry. This form of a utocorrelation function is 
chosen because experimentally it has been found that irregularities in the ionosphere at 
heights of 300 kilometers are cigar-shaped with approximately Gaussian ellipsoidal sym
metry. Methods of generalizing to other correlation functions are a lso indicated. 

The t heory is applied to a problem which is of particular interest in the investigation 
of ionospheric irregulari ties by means of radi o transmissions from satelli tes. Specifically 
t he dependence of scinti llation (phase and logari thmi c amplitude) on t he height of t h e trans
mi tter above a slab of irregula ri t ies and t he dependence of t he autocorrelation function s are 
investigated. The t heo ry explains that t he scint illation index should be relatively in ensi
t ive to t he zenith angle of the satelli te posit ion for a temperate latit ude station, in agreement 
with t he prese nt p reli minary observatio ns. The t heory a lso suggests t hat the observation 
of phase scin t illation may y ield information co ncerning the p hysical location and t he thick
ness of t he region of irregul arit ies. 

1. Introduction 

The study of wave propagation in a random medium is not only theoretically interesting, 
but also has wide applications in many branches of physics, including acoustics, ionospheric 
and atmospheric physics, and astronomy. The random irregularities would scatter waves 
and hence cause wave interference. As a result the amplitude an d the phase of the wave 
fluctuate. The study of these fluctuations can yield certain statistical properties of the medium 
al though, unfortunately, it usually cannot be done uniquely. 

The early foundation of the theoretical work was laid by Bergman [J 946], who used ray 
theory, and Pekeris [1947], who studied the problem of scattering. Since then, many papers 
have appeared in the literature and Keller [1960] has even classified the mathematical methods 
used into " honest" and "dishonest" methods. :More recently, Silverman has translated the 
books of Chernov [1961] and T atarski [1961], which largely represent the Russian contribution 
to the field. The present study is motivated by the observation of scintillation of radio signals 
received on the ground from an orbiting satellite-transmitter [Yeh and Swenson, 1959]. It 
is hoped that this paper will demonstrate that new information can be obtained by studying 
these scintillations and their relation to ionospheric irregularities. 

The analysis in this report is carried out with the application to wave propagation through 
ionospheric irregularities in mind. The region of irregularities is found to be above about 300 
km [Swenson and Yeh, 1961]. There is indication that the region Illay even be as high as 
1,000 km in the auroral zone [Bn.sler and D e Witt, 1962]. Its occurrence as evidenced by the 
radio-star scintillation studies is correla ted with the spread F phenomenon observed in iono
grams [Lawrence, Jespersen, and Lamb, 1961]. These irregularities mainly appear near mid
night [Booker, 1958; Yeh and Swenson, 1959]. It should be pointed out that tropospheric 
llTegularities have negligible effects in the present problem. (For an excellent review article 
on tropospheric scattering, see \Vheelon, 1959. ) 

In this report it is assumed that the inductive permeability of the medium is that of free 
space, but the dielectric constant is a random variable of the position. The medium is char
acterized by the refractive index, 

621 



--+ --> 

N(x) =<n> [l + EjJ.(X)], (l} 

where < n> is the smoothed average background value and is assumed to be a constant, E is a 
small constant parameter and jJ. is a random variable of position. Accordingly, the average 
value of jJ. is zero. It shall be assumed that the correlation function of jJ. is only a function of 
the difference of coordinates. In a medium of weak random irregularities the percentage change 
of the refractive index from its average value is small . This mea,ns that E is small and may be 
used as an expansion parameter. 

The problem of interest is essentially that of the diffraction of a spherical wave by a slab 
of intervening medium consisting of random irregularities. These irregularities are assumed 
to be so weak that only fu'st-order scattering is of importance (Born approximation). In such 
a problem many characteristic lengths are involved. A brief discussion on these lengths is 
carried out in section 2. The formulation of the problem in section 3 follows closely that of 
Karavainikov [1951]. We start from the scalar Helmholtz wave equation and apply the method 
of perturbation. The solution is expressible in terms of a series in which the zeroth order term 
is the solution in the absence of the irregularities (i.e., the familiar spherical wave solution). 
The first-order term shows the effect of the wave being scattered once, and the remaining 
higher order term shows the effect of multiple scattering. In a medium whose property varies 
sufficiently slowly over one wavelength these higher order Born solutions may be neglected. 

For purposes of obtaining explicit expressions the autocorrelation function of the fluctua
tions of the dielectric constant must be assumed. In the ionosphere the exact form of this 
correlation function has not yet been accurately determined. Experiments have suggested 
that the irregularities have a prolate spheroidal shape [Spencer, 1955]. The ratio of the major 
to minor axis is approximately 5. The length of the minor axis is of the order of 1 km. Hence 
one of the most important points that should be emphasized here is that these irregularities 
are highly anisotropic. For convenience the autocorrelation function is assumed to be 

--> 

p~ (x) = exp - (x2Il: +y2 It: + z2Il:), (2) 

in sections 4, 5, and 6, in which expressions for the mean square values, and the transverse and 
longitudinal correlations are obtained, respectively. When the con'ela tion function departs 
from (2) some of these results are still useful. A method of generalization is presented in 
section 7. 

Applications of the theory to ionospheric studies are considered in section 8. For the 
numerical values chosen we fuld the scintillation of the logarithmic amplitude increases mono
tonically as a function of the height of the transmitter above the region of irregularities while 
that of the phase increases sharply at first when the transmitter is in the region and reaches a 
maximum near the top of the region and decays slightly above the region. Sample representa
tive curves for the autocorrelation functions are also plotted. The existing experimental 
results are still very sparse, but rough agreement between the theory and the experiments has 
been found . 

2. Characteristic Lengths 

The geometry of the problem is shown in figure 1 where a , b, and c respectively represent 
the distance between the transmitter and the top of the slab , the thickness of the slab, and the 
distance between the receiver and the bottom of the slab. The z-axis is in the direction AB. 
In case the transmitter is inside the slab we shall ignore the backscatterjng and hence the 
effective thiclmess is reduced accordingly. As a approaches infinity the problem reduces to 
that of scattering from a uniform plane wave. 

It is convenient to normalize the lengths by the wave nWllber lc defined by, 

lc = w< n>lc, (3) 

where w is the angular frequency of the wave and c the velocity of light in free space. Unless 

622 



otherwi se specified i t shall be understood that all lengths are measured in this dimensionless 
unit . 

In Lhe analysis of the scattering problem shown in figure 1 a Jew geometric parall1eters are 
or importance. Therefore, a brief discussion of them is in order. 

A 

yO 

1/2 

z- y' 

IRREGULARITIESOOO 
00 00 0 0 

A (TRANSMITTER) 

B (RECEIVER) 

}" l GU RE 1. Geometry of the p roblem. 

RECEIVER I '---=--t----,,:---' RECEIVER 2 

B 

FIG U RE 2. Scalle1'ing from a single irregllla1'ity . F I G URt: 3. Nf agnijication parameter . 

Consider the case of scattering from a single irreg ularity of size l as illustrated in figure 2. 
When the condition, 

(4) 

is satisfl ed the phase change of t he scattered waves at the receiver B introduced by t he path 
difference is small. The scattered waves form almost a parallel beam and the iiuctuation of the 
phase is predominately due to the change in refractive index along the irregularity. This case 
is usually referred to as Fresnel diffraction . On the other hand, when the converse of (4) is 
true it is then in the regime of Fraunhofer diffraction . 

For convenience define a wave parameter, 

In tenDS of this parameter the following equivalent statements can be made: 

region of Fresnel diffraction, and 
region of Fraunhofer diffraction. 

(5) 

(6) 

For anisotropic irregularities, since the scale of the irregularity depends on the direction it is 
then necessary to define several wave parameters. These are discussed in a later section. 

Another parameter that enters into the study of correlation functions can be seen as 
follows. In optics an object of size l has i ts shadow given by xo= zl/y' (see fig. 3). For this 
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reason one can define a "magnification" parameter, 

M = x/xo= x"I' jzl . (7) 

Therefore, in the language of geometric optics, for a given "I' we would expect that the correlation 
function of the diffraction pattern on the ground has appreciable value only for values of x such 
that M is of the order of unity. 

3 . Formulation 

In a slowly varying medium in which the property of the medium changes little in one 
wavelength the Helmholtz wave equation is approximately satisfied [Stratton, 1941]. In the 
normalized unit, it is written as (time dependence exp (jwt) has been assumed), 

(8) 

When the medium is homogeneous (i.e., ~= O) a particular solution of (8 ) for an isotropic point 
source yields the well-lmown spherical wave function, 

1/;0= (kAo/r) exp (- jr). (9) 

The problem is formulated by assuming the solution of the form, 

-) -) ~-) 

1/J(x) = 1/;o(x) exp - j[~4>1(X) + ~24>2(X) + ... ]. (10) 

Substitute (10) into the wave equation and equate coefficients of equal powers in~. The 
result is a chain of equations. With suitable substitutions [Karavainikov, 1957] each of these 
equations can be transformed into an inhomogeneous wave equation and solved in the regular 
manner. When transformed back, the 4>'s in (10) are given by 

-) 

cf>1 = (jr/2'lf-) f. J.Lr~~) exp [- j(r' + R - r)]d3;', (11) 

-) -) r (X') 2- [\1'A-. (X')]2 -) 
cf>2= (jr/4'lf) J. J.L 1" R '/'1 exp [- j(r' + R-r) )d3x', (12) 

where R is the distance connecting the source point (in this case the scatterer) and the observing 
field point (see fig. 1), i,e. , 

~ -) 

R =/x- x' /. (13) 

The expressions gIven by (11 ) and (12) are physically reasonable. Each element of the 
~ 

transmitted spherical wave exp (- jr') jr' is scattered at x' and reaches the receiver as another 
spherical wave exp (- jR)/R. Proper weighting functions have been introduced to take 
care of the amount of scattering. In (11 ) the weighting function is proportional to the 
percentage change of the refractive index. The weighting function in (12) bas two terms; both 
are of higher order. Because of the appearance of the gradient term in (12), the expression 
for 4>2 is rather complex. From here on it is assumed that the irregularit ies are so weak that 
4>2 can be neglected. Since, as shown in (14), 4>1 is related to the phase and logarithmic ampli
tude, the neglect of the gradient term in (12) is equivalent to the assumption that the change 
of these quantities be small in one wavelength. 

It is convenient to rewrite the wave function (10) as, 

~ ~ ~ 

1/J(x)= (kAo/r) exp [-j(l'+ ~4>l)]= [kA(x)/l'l exp - j [r+ Q(x»). (14) 
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Note t.hat when wl'itlen this way A represents the amplitude of the wave and Q the phase 
depalture. SubstituLe (11 ) into (14) and expand the exponential to the second order . For 
cases of scnHel'ing frOlLt a localized region the resulting expression can be shown Lo be identical 
to Lhn,L derived by Booker and Gordon [1950], except for the factor that Lakes into account 
the polarization of Lh e incident wave with respect to the direction of scat tering. Since the 
present analysis is primarily concerned with the scattering in the forward direction this factor 
reduces to l. 

Put (11 ) into (14) and equate separately the real and the imaginflry parts, 

... ... J' (') ... Q(x) =(1'~/27r-) • ~"~ sin (1"+R-1')d3x', (15) 

~ 

log (1)=(1'~/27r) I. ~\~) cos (l"+R-l')cf3~'. (16) 

It is known that a wave cannot be used to reveal structures much less than one wave
length [Ratcliffe, 1956]. The case of general interest is that in which the characteristic scale 
of the irregularities is much larger than one wavelength. In the case of the ionosphere the phys
ical size of l is roughly 1 km which corresponds to l (in the normalized unit) of the order of 400 
at 20 Me/s. In our normalized unit this is equivalent to the condition, 

(17) 

Because of this condition the contribution to the integrals (15) and (16) comes predominately 
from the scatterers in the neighborhood of the straight line connecting the transmitter and the 
receiver. Therefore, certain approximations may be used to facilitate the evaluation of these 
integrals. 

Define the normalized a,utocorrelation function by, 

-7 ...... 

Pl'(x) = < J.L (Xl)J.L(X2) >/<J.L2> . (18) 

-t 
Here the symbol <> is u ed to denote the spatial average and the x is the relative coordinates 
defined by, 

(19) 

It shall be assumed that the ergodic hypothesis is valid so that the ensemble average is 
equivalent to the spatial average. It is seen immediately from (15) and (16 ) that the mean 
value of the phase departure and the logarithmic amplitude vanish, 

< Q>= o, 

< 8 >=0, 

where for simplicity 8 is wTitten for log (A/Ao). 
The correlation functions can be represented formally by, 

and 
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...., ...., 

'Vhen X2 = X" the two receivers coincide and the above expressions reduce to mean square 
values. 

4. Mean Square Values 
--7 ...., 

For the purpose of computing the mean square values let X2= X, = (O,O, z) in (22) and (23). 
It is convenient to make the following approximations. When the quantity appears in the 
phase let (see fig. 1), 

and when the quantities appear in the denominator 

Define, 

and 

r' ~ z ', R~Z_Z '. 

I 1='7r«Q2>+<S2»/E2< }J.2>, 

I 2=7r( < Q2>_<S 2> )/E2< }J.2>. 

The expressions for these integrals can be found by the use of (22 ) and (23), 

where the new symbols are defined by 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30 

In order to integrate (28) and (29) it is desirable to make the coordinate transformation 
by introducing the relative coordinates, 

(31) 

and t he center of mass coordinates 

a' = (x; + x~) /2 , j3 ' = (y; +y~) /2 , (32) 

Integrate (28) and (29 ) with respect to a' and j3', resulting in, 

(33) 

(34) 

Further integration of 11 and 12 depends on the knowledge of the correlation function Pw In 
this paper PI' is assumed to have a form given by (2). Substitute (2) in (33) and (34) and inte
grate with respect to x' and y' , 

(35) 

(36) 
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Here the sym bol 1m stands for "the imaginary part of, " and the wave parameters are defined by, 

(37) 

and their ignificance was discussed in section 2. Since the thickness of the slab is much larger 
than the correlation distan ce of the irregulatities, contributions to the integrals 11 and 12 come 
predominately from the region z' :::;) z. Therefore, (1) the limits of integration with respect to 
z' can be extended from -00 to + 00 a.s in (35) and (36) without introducing appreciable errors, 
and (2) because of the additional condition (17) terms like 2z'(1 - 2"/' /z)/l2 in (35) and z,2/z[2 in 
(36) ca.n be n eglected as compared with unity. IntroduCing these approximations in (35) 
and (36 ), 11 and 12 are respectively given by, 

(38) 

(39) 

The exact integration of (39) is difficult to carry out since as seen in (37) Dx and Dy are functions 
of ,,/f. However , if the slab is thin or under conditio~ that Dx and Dy are almost constant and 
can be r eplaced by some convenient average values Dx find Dy, th en, 

(40) 

Since from (26) and (27), 

(4 1) 

and 
(42) 

the mean square values are therefore given by, 

< Q(O 0 z)2>=e2< 1l2> 7r1/ 2Izb{ 1+ 1~(l+D~)( 1 +D;) - (1 -DxD1J } (43) 
, ' 2 V 2(1 +D~)(l +D~) 

< S(O 0 Z)2> e2<1l2> 7r1/21 b{r 1- /.J(l +D~)( l +D~ ) - ( l -DxDY) } . (44 ) 
, , 2 z V 2(1 +D~)( 1 +D~) 

Some special cases of interest will be considered in the following : 
(1) D> > 1. In this case it is found that the mean square values of the phase and the 

logarithmic amplitude are equal and independent of the dimensions of the irregularities 
transverse to the direction of propagation, 

(45) 

This result reduces to that obtained by Chernov 1 [1961] when the irregularities have a spher
ically symmetric Gaussian correlation. 

(2) D< < 1. In this case D's are very small and (43 ) and (44) respectively becom e, 

(46) 

and 

(47) 

I His eq (141) on page 75. 
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If, in addition lx= l,= lT' h ence D ,,=D,= D T , 

2< 2> 1/2 
< 8 2> e J.l2 7r l zbD"-r. (48) 

It is in teresting to note that for a thin slab with spherically symm etric irregularities (lx= ly= 
lz= l ), 

D~4ac/W(a+c) ]. (49) 

Put (49) into (48) it is seen that « 8 2> )1 /2 is halved when the transmitter moves from infinity 
(a = co) to a distance above the slab equal to that between the slab and the receiver (a = c). 

When the slab is not thin t he average value of the wave parameter squared in (48) must 
be found according to the integral (3 9), i. e., 

(50) 

Equation (50) can be simplified if both the transmitter and the receiver are immersed in the 
irregularities. In this case a= O and b=z, substitution of (50) into (48) yields, 

(51) 

It is seen that in this case the mean square values depend on the size of the irregularities 
along the direction of propagation as well as transverse to it. Equations (46 ) and (51) reduce 
to those obtained by Karavainikov [1957] when l's are all equal. 

(3) D's~ 1. Fortunately or unfortunately, in most of the ionospheric applications the 
previous approximations are invalid and hence it is necessary to work with more complex 
expressions (43 ) and (44 ) of the origin al integral (39). Now it is seen that < Q2> and < 8 2> 
depend on D's in a different manner. If the scales of the irregularities are determined by a 
correlation method the height of the region of irregularities can be roughly es timated by making 
simultaneous measurements of < Q2> and < 8 2> as wa.s done b.'· Hewish [1952] . 

5 . Transverse Correlation Functions 

The general expressions for the correlation functions were derived in section 3. In order to 
evaluate these integrals, place one receiver at (-x/2, 0, z) and one at (x/2, 0, z) . Since the 
spacing of these receivers is perpendicular to the direction of propagation the correlations of 
the field at these two receivers are called transverse correlation functions. Approximations 
similar to those given in the last section are, 

and 

D efine; 

and 

14= (7r/e2< J.l2» «QIQ2>T-<8182>T). 
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Putting (22) and (23 ) ill to above l'claLions these integrals are found to be, 

Transform the coordinates in to a rela tive and center of mass system , and integra Le with 
respect to 0/ and (3 ' as was done in the last scction, 

-4 

I -JffJ p"(x' ) . y,2 + (x' + x'Y 'lz )2 d 'd 'd 'i ' 
3- . 2(s-; - S-~ ) sm 2(S-; - S-~ ) x Y z G'Y , 

(56) 

(57) 

H ere th e limi ts of in tegration ar e iden tical Lo those gi\Ten by (33 ) and (34). Tn ffiC t 13 ll nd 14 
reduce to 11 and 12, respectively, wh en the pacin g of th e receivers x goes Lo ze ro as e:.:pcc ted . 
For the correla tion fun ction or tIl e Jorm given by (2), thr int rgml 13 is givrll approxi1ll1tt rly by , 

1 = 7r
2zlxl z [Cd ( (a+ b)x) _ erf ( ax )], 

3 2x lxz lxz (58) 

where it is see n thfit th e 1ugumellts of th ese errOl" fun ction s arc actually th e magnific1,Lion pa
rameters (discussed in 2) a t the hottom and top of the slab . Integmte (57) wi th respec t to x' , y' , 
and z .. , 

Fo]" C,lses in wllicIt D's ,tre ahnost cOll s tfin t, (59) is flpproximately , 

th en 

1 _ ( 2ll /2 ) I {·(1+ ·D- ) - 1/ 2 [ .j. ( (a+ b)x ) .[. ( ax )]} 
4- 7r z xZ X m J J y el zlx(l + jDx) 1/2 - e1 z lx(l + .iDx) 1/2 • 

D efin e the normalized transverse autocorrehttion fun ctions by , 

PQ(X) =<QIQ2> T/< Q2> , find Ps(X) =<SIS2>T/<S 2>, 

PQ(x) = (13+ 14)/ (11 + 12), 

Ps(x) = (13-14)/ (11- 12). 

(.59) 

(60) 

(61) 

(62) 

(63) 

For the special case in which the slab is very thin, (58) and (60 ) can be approximated . If, 
additionally, the D's are either large or small some simple results can be obtained. These ,lre 
considered in the following : 

(1) D's > >1. Keep only leading terms in (62) and (63) and consider the r egion of x~lxz/a . 
The correlations of th e phase and the logarithmic amplitude r educe to, 

(64) 

H ence it is seen tha t both correlation functions are initially Gaussian and th e "scale" of the 
irregular waves is a fac tor z/a times the "scale" of the fluctu a tions in the refractive illd e:.: 
consisten t with the idea of magnification discussed in section 2. 

(2) D's~ 1. Again keeping only leading terms, 

pQ(x) = exp (-a2x2/l ~ z2), 
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and 

(66) 

The fiuctuations in the phase is a factor z/a larger than the fluctuations in the refractive index. 
However, now the fluctuation s in the amplitude is influenced by not only the fluctuations of 
the refractive index in the direction of the spacing of these receivers (x-direction) but also, 
though weakly, transverse to it (y-direction). If additionally ly= lXl th en (66) reduces to, 

(67) 

Though (66) and (67) are not Gaussian they have a correlation distance of the order of l xz/a 
and (66) approaches Gaussian in the limit ly« lx. 

6. Longitudinal Correlation Functions 

In this case the two receivers are placed along the direction of propagation at (0, 0, z) and 
(0, 0, z + l1 z) with a separat ion I1 Z= Z2- Z1' Proceed in the same manner as the previou s two 
scctions by defining, 

(68) 

and 

(69) 

It can be shown that for the spacing I1Z of the order of the correlation distance I s and f 6 reduces 
to II and 12 respectively . Therefore, the phase and the logarithmic ampli tude are perfectly 
correlated in a distance I1 z::;zl/ (a + b). 

7. Method of Generalization 

In the foregoing sections expressions of mean square values and the autocorrelation func
tions are obtained by assuming tha t the fluctuating part of the dielectric constan t has a Gaus
sian character given by (2). As mentioned b efore one of the most important features of t he 
ionospheric irregularities is that they are strongly anisotropic. If PI' departs Jrom Gaussian but 
still possesses ellipsoidal symmetry some of the earlier derived expressions can be generalized. 
It is convenien t to define 

(70) 

Iniroduce F (t) so thftt PI' (P) and F(t) are r elated through the Lftplace trftnsform, i.e., 

p,, (p) = 1m F(t) exp (- pt)dt. (71 ) 

T he function F(t) can be chosen to simulate almost any correlation function with ellipsoidal 
symmetry. The effect of introducing (71) in the integrals f i(lx,ly,l,), i = l to 6, is simply to 
replace them by 

r oo dtF( t ) l i (~, Z,:-, ~). (72) 
Jo ~t ~t ~t 
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Similar genernJizations can be applied to < Q2> , < 8 2>, Ps, and PQ if they are evaluated 
explicitly. But now the averaging of D 's is not permissible and there does not seem to be any 
simple way out. 

By mean of this device Lhe generalization of (38), (45), and (46) is equivalent to ll1ulLipli
cation of the e respectivo equations hy tho factor, 

r oo F~) dt = 7- r oo PM(!l) dp, 
J o"'; t -Y 7rJ o ~p 

(7:3) 

and the factor that goes with (48 ) when (50) is substituted, and with (51) IS 

r oo UF( t)dt= 1_ j ' OO 1_ d2pu(r) dp . (74) 
J 0 ~7r 0 ."Ip dp 

The generalization of the correlation functions can be done in an identical manner. If 

}.([a(x) = ax/ zlX! (75 ) 

tbe generaliza ti on or (64) and (65) can be shown to be 

J: PM(p+M~)p- l / 2dp 

f oo PM(P )p- l/2clp 
, 0 

(76) 

T ho generalization or (67), when (49 ) is valid, is approximately 

Ps(x) 

(77) 

In tho geneml case iL elHl sLill be proved t hat t ho lo ngitudinal correlation functions are perrect 
for Ll Z of th e order or zl/ (a + b). 

8. Applications to the Ionosphere 

T he fu'st clue to tho existence of tho irrcgularities in electron density was obtained by H oy, 
Parsons, and Phillips [1946]. Thoy discovered that the intonsity of the radiation from radio 
stars fluctuate Oll certain occasions in th e VHF band. At first i t was thought that th is indi
cated the source was vnr iable in its power ou tput. Subsequeu tly spaced-receiver experimen ts 
by Smith [1950] and b~- L ittle and Lovell [1950] gave convincing proof that the cause of th ese 
fluctuations is in the ionosphere. It is now generally believed that there exist in the ionosphere 
blobs with excesses or deficiencies of elec trons which scatter waves irregularly. These blobs 
are elongated along the Earth's magnetic field lines with an axial ratio of five to one [Spencer , 
1955]. Past studies of these related problems using radio stars and ground-based transmitters 
have been well summarized by Little et al. [1956], Ratcliffe [1956], and Booker [1958]. 

In the following tlU'ee subsections the relation between fluctuations in refractive in drx 
and electron density, the scintillation indices and the au tocorrelation function s are consider ed. 

8.1. Fluctuations in Refractive Index and Electron Density 

In case of ionospheric a,pplications for a frequency of 20 M c/s 01' higher the longitudinal 
appl'oxiuuttion to the Appleton-Hartl'ee formula [Appleton, 1932] is valid unless the ray is 
within a few degrees from the direction of exactly perpendiculal' to the Earth's magn etic field . 
Using the s tandard llotations recommended by u.R.S.I. [Ratcliffe, 1959] the rrfractive index 
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is given by, 
--> 

X + ilX (x) 
l ± Y , (78) 

-t 

where ilX (x) is the part due to electron density fluct uations and is a stochastic function of 
position. The upper sign in (78) is for the ordinary r ay and th e lower sign for the extr aor
dinary ray. Taking the square root of (78) and keeping only frrst order terms, the refractive 
index is, 

( ilX(X») 
N =<n> 1-2(1± Y - X) . (79) 

Comparison of (79) with (1) shows that the expression for the mean squarc or the percent 
fluctuations in the refractive index as, 

(80) 

where 

e2 
T - 2.8178 X 10- 15 '1n (classical electron radius) , 

e- 47r€o'lnc2 

ilN= electron density fluctuations. 

Since from (79) the fluctuations in the refractive index are proportional to the fluctuations 
in the electron density, the normalized autocorrelations of both must be identical. Therefore, 
the formulas derived in the previous sections can be applied by replacing the mean square 
electron density through the relation (80) and by noting that l' s now r epresent the scale of 
ionization irregularities. 

8 .2. Scintillation Indices 

With the ad vent of artificial satellites it is now possible to carry out a series of measurements 
with a transmitter at a variable height. The transmitter may be below, within, or above 
the slab of irregularities. Hence it is desirable to know how the scintillation indices of the 
amplitude and the phase (defined as< Q2> 1/2 and < 8 2> 1/2 respectively) vary with the height 
of the transmitting satellite. The result is shown in figure 4. Three cases have been con
sidered: (1) The direction of propagation pm'alley to the major axis 0[' the irregularities and; 
(2) two cases when the direction of propagation is tran sverse to it. Th e numerical values 
chosen are tabulated below : 

when- 2 X 104 '::; a'::;O . 

wh en a ;::: O, 

In all cases: 
c= 12 X 104 • 

Case 1 Longitudinal case: 

Case 2 Transverse case 1: 

Case 3 Transverse case 2: 
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In terms of physical units, for k= 400 /km (corrcsponding to a frequcncy of 19 .1 :Mc/s if the 
refractive index is 1) t.hese values arc given by, 

Case 1 Longitudinal case: 

Case 2 Trrl.11sverse case 1: 

Case 3 Transverse casc 2: 

b= { 50km - 1a 1when -50 km :Sa:S O, 
50 lan when a~O, 

c= 300 km, 

' z= 5 kill , 

lx= 5 km , 

In calculation the approximate forJllulas (43 ) and i44) have been used . Thcse formulas can 
be simplified considerably in case 1. Since Dx and Dy enter in a symm etrical manner, the cor
responding scintillation indices in casc 3 are identical to those in casc 2. Tho actual plotted 
values are (2< Q2> /f2< J.L2> 7T'1 /2) Jl2 X lO -3 and (2< S2>/f2< J.L2> .7T'1 /2)1 /2 X lO -a These nat
urally are proportional to t.he scintillation indices defined in this paper. As an approxim ation 
IJ.s are calculated from (3 7) by assuming "1' at the midway of thc slab. When the sateUite is 
inside the slab the effective slab thickness is reduced accordingly . 
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FIGURE 4. Dependence of scintillation on the height 
of the transmi tter. 

By careful examination of figure 4 the following interesting points are noted: 
(1) The scintillation index of the amplitude varies monotonically as a function of the 

heigh t while the scintillation index of the phase rises rapidly when the tr ansmitter is within 
the slab and reaches a maximum value near the top of the slab and then decays slightly above 
the slab . Therefore , it a,ppears that the measurement of phase scintillation may enable us 
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to determine the height of the bottom, the thickness, and the height of the top of the slab if it 
exists at all. The existing experimental data arc rather meager. Some rough estimates 
using signals from satellite 1958.L:,2 on 20 Mc/s have been made [Swenson and Yeh, 1961] 
The amplitude scintillation roughly agrees with figure 4. (See their figure 6, which is reproduced 
here as figure 5. Note that the scintillation index defined in that paper is identical to that 
defined here only in the limit of very weak amplitude fluctuations. ) The data presented in 
fianre 5 were collected in Baker Lake, Canada which is north of the auroral zone. There is 
e;idence that the region of irregularities may vary in height by more than 500 km [Basler 
and D e'Vitt, 1962] in the auroral zone. This may account for the spread of these points . 

. . . . 
BAKER LAKE, CANADA . . 

0 .4 _ JAN 10 - MARCH 29,1960 . 
SATELLITE 195811 20N 20Me/s 

X 
W 

. . . 
0 0 

i': 
z 
0 . . 
t= . 
" 02 -' 
-' t= 
z 

. .. . . . 
6 
<f) . . . 

0 .. 
100 200 300 400 

HEIGHT OF SATELLITE , km 

Fro U RE 5. Experi mental 1'eslllls oj scintillation de
pendence on the height oj the satelli te. 

(2) For a const.ant thickness of the slab figure 4 shows that there is more scintillation in 
the longitudinal case (case 1) than that in the transverse case (case 2 and case 3). The phase 
scintillation is 2 to 2.2 times more and the amplitude scintillation is 3.1 to 3.7 times more in 
the longitudinal case than the corresponding values in the transverse case. In the actual 
ionospheric observations the effective thiclmess varies according to the secant of the zenith 
angle of the-:direction of propagation. Since these irregularities are alined along the magnetic 
field lines and the dip angle at, for example, the University of Illinois is 71.3°, the effective 
thickness in the longitudinal case (case 1) is then a factor tan 71.3 °=2 .95 smaller than that 
in the transverse case (cases 2 and 3). This will bring curves of cases 2 and 3 closer to the 
corresponding curves of case 1. Hence in actual ionospheric observations at temperate and 
high latitudes the scintillations should not change appreciably with the zenith angle of the 
transmitter and preliminary results of the observation of satellite signals at various stations 
operated by the University of Illinois seem to indicate that this is so. However , for a station 
near the magnetic equator we would expect that the effect of the effective thickness may 
enhance the differences in scintillations considered above and the signal from an orbiting 
satellite at low angles to the north or south of the station should exhibit stronger scintillations 
than wh en it is overhead. 

8 .3. Tra nsverse Correla tions 

It has been shown in section 6 that the longitudinal correlations arc perfect for a separa
tion .L:, z of the order zl/ (a + b). Therefore only the transverse correlation will be considered 
here. 

Examining the integral 14 given by (59) or its approximate expression (60), it is seen that 
the correlation functions depend mainly on the dimension of the irregularities along the spacing 
of the two receivers and not on their dimension transverse to the spacing only if the wave 
parameter is small compared to 1. That this is intuitively true can perhaps be argued physi
cally as follows. When D< < 1 the irregularities are large compared with the first Fresnel 
zone. Since most of the contributions to the signal at the receiver come from the scattering 
in the first Fresnel zone it seems reasonable to expect that the correlations should not be sensi-
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tive to Lhe dimension of lli e irregularities transverse to the spacing of the receivers. However, 
wh en D> > 1 the irregularities are small compared with the first Fresnel zone and the scattering 
is all important to ward the end of the irregularity. Therefore, in this case the transverse 
dimensio n of the irregularil ies afJ"ects the correlation function. 

As specific numerical examples the three cases discussed in the last subsection are agai n 
consider ed. The numerical value ar c identical with those tabulated previously exccp t Lllat 
now a ii,ed value of a = 12X 104 is taken . For lc= 400/km this is equivalent to a Jle ight of 300 
Im1 above the top of the slab. The curves ar e shown in figure 6. The ordinate is thc magni
fi cation parameter defined in (7) where "I' is assumed to be the distance front th e transmi Lter 
to the center of the slab, i .e., 

(a+ b/2) x. 
zlx 

In calculating these curves formulas (58) and (60) have becn used . 

(81) 

Experimentally one usually obtains the fading records at a fi.'cd staLion from a moving 
transmitting vehicle. For all practical purposes i t is equivalent Lo the case considered in this 
paper. The autocorrelation fun ction of the ampli tud e obtained experimentally (defined in a 
slightly clifl'erent manner) agrec r easonably well with those theoreLical curves shown in figure 
6 [Kent, 1959 ; Swenson and Yeh , 1961). 

(f) 
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FIGURE 6. 'Transverse correlation functions. 
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