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The propagation of a spherical wave through a medium containing anisotropic random
irregularities is considered. The formulation follows closely that of Karavainikov. The
mean square deviations and the correlation functions of the phase and of the logarithmic
amplitude are derived by assuming that the autocorrelation function of the dielectric con-
stant is Gaussian with ellipsoidal symmetry. This form of autocorrelation function is
chosen because experimentally it has been found that irregularities in the ionosphere at
heights of 300 kilometers are cigar-shaped with approximately Gaussian ellipsoidal sym-
metry. Methods of generalizing to other correlation functions are also indicated.

The theory is applied to a problem which is of particular interest in the investigation
of ionospheric irregularities by means of radio transmissions from satellites. Specifically
the dependence of scintillation (phase and logarithmic amplitude) on the height of the trans-
mitter above a slab of irregularities and the dependence of the autocorrelation functions are
investigated. The theory explains that the scintillation index should be relatively insensi-
tive to the zenith angle of the satellite position for a temperate latitude station, in agreement
with the present preliminary observations. The theory also suggests that the observation
of phase seintillation may yield information concerning the physical location and the thick-
ness of the region of irregularities.

1. Introduction

The study of wave propagation in a random medium is not only theoretically interesting,
but also has wide applications in many branches of physies, including acoustics, ionospheric
and atmospheric physics, and astronomy. The random irregularities would scatter waves
and hence cause wave interference. As a result the amplitude and the phase of the wave
fluctuate. The study of these fluctuations can yield certain statistical properties of the medium
although, unfortunately, it usually cannot be done uniquely.

The early foundation of the theoretical work was laid by Bergman [1946], who used ray
theory, and Pekeris [1947], who studied the problem of scattering. Since then, many papers
have appeared in the literature and Keller [1960] has even classified the mathematical methods
used into “honest’” and “dishonest’”” methods. More recently, Silverman has translated the
books of Chernov [1961] and Tatarski [1961], which largely represent the Russian contributions
to the field. The present study is motivated by the observation of scintillation of radio signals
received on the ground from an orbiting satellite-transmitter [Yeh and Swenson, 1959]. It
is hoped that this paper will demonstrate that new information can be obtained by studying
these scintillations and their relation to ionospheric irregularities.

The analysis in this report is carried out with the application to wave propagation through
ionospheric irregularities in mind. The region of irregularities is found to be above about 300
km [Swenson and Yeh, 1961]. There is indication that the region may even be as high as
1,000 km in the auroral zone [Basler and DeWitt, 1962]. Its occurrence as evidenced by the
radio-star scintillation studies is correlated with the spread /" phenomenon observed in iono-
grams [Lawrence, Jespersen, and Lamb, 1961]. These irregularities mainly appear near mid-
night [Booker, 1958; Yeh and Swenson, 1959]. It should be pointed out that tropospheric
irregularities have negligible effects in the present problem. (For an excellent review article
on tropospheric scattering, see Wheelon, 1959.)

In this report it is assumed that the inductive permeability of the medium is that of free
space, but the dielectric constant is a random variable of the position. The medium is char-
acterized by the refractive index,
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N@)=<n>[1+eu(@)], (1)

where <_n > is the smoothed average background value and is assumed to be a constant, e is a
small constant parameter and p is a random variable of position. Accordingly, the average
value of u is zero. It shall be assumed that the correlation function of u is only a function of
the difference of coordinates. In a medium of weak random irregularities the percentage change
of the refractive index from its average value is small. This means that e is small and may be
used as an expansion parameter.

The problem of interest is essentially that of the diffraction of a spherical wave by a slab
of intervening medium consisting of random irregularities. These irregularities are assumed
to be so weak that only first-order scattering is of importance (Born approximation). In such
a problem many characteristic lengths are involved. A brief discussion on these lengths is
carried out in section 2. The formulation of the problem in section 3 follows closely that of
Karavainikov [1951]. We start from the scalar Helmholtz wave equation and apply the method
of perturbation. The solution is expressible in terms of a series in which the zeroth order term
is the solution in the absence of the irregularities (i.e., the familiar spherical wave solution).
The first-order term shows the effect of the wave being scattered once, and the remaining
higher order term shows the effect of multiple scattering. In a medium whose property varies
sufficiently slowly over one wavelength these higher order Born solutions may be neglected.

For purposes of obtaining explicit expressions the autocorrelation function of the fluctua-
tions of the dielectric constant must be assumed. In the ionosphere the exact form of this
correlation function has not yet been accurately determined. Experiments have suggested
that the irregularities have a prolate spheroidal shape [Spencer, 1955]. The ratio of the major
to minor axis is approximately 5. The length of the minor axis is of the order of 1 km. Hence
one of the most important points that should be emphasized here is that these irregularities
are highly anisotropic. For convenience the autocorrelation function is assumed to be

pu(@)=exp— @/l;+y/l, +2*[L2), 2)

in sections 4, 5, and 6, in which expressions for the mean square values, and the transverse and
longitudinal correlations are obtained, respectively. When the correlation function departs
from (2) some of these results are still useful. A method of generalization is presented in
section 7.

Applications of the theory to ionospheric studies are considered in section 8. For the
numerical values chosen we find the scintillation of the logarithmic amplitude increases mono-
tonically as a function of the height of the transmitter above the region of irregularities while
that of the phase increases sharply at first when the transmitter is in the region and reaches a
maximum near the top of the region and decays slightly above the region. Sample representa-
tive curves for the autocorrelation functions are also plotted. The existing experimental
results are still very sparse, but rough agreement between the theory and the experiments has
been found.

2. Characteristic Lengths

The geometry of the problem is shown in figure 1 where a, b, and ¢ respectively represent
the distance between the transmitter and the top of the slab, the thickness of the slab, and the
distance between the receiver and the bottom of the slab. The z-axis is in the direction AB.
In case the transmitter is inside the slab we shall ignore the backscattering and hence the
effective thickness is reduced accordingly. As a approaches infinity the problem reduces to
that of scattering from a uniform plane wave.

It is convenient to normalize the lengths by the wave number & defined by,

k=w<n>/e, (3)
where o is the angular frequency of the wave and ¢ the velocity of light in free space. Unless
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otherwise specified it shall be understood that all lengths are measured in this dimensionless

unit.
In the analysis of the scattering problem shown in figure 1 a few geometric parameters are
of importance. Therefore, a brief discussion of them is in order.
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Consider the case of scattering from a single irregularity of size I as illustrated in figure 2.
When the condition
)

rr—2<<1/2, (4)

is satisfied the phase change of the scattered waves at the receiver B introduced by the path
difference is small. The scattered waves form almost a parallel beam and the fluctuation of the
phase is predominately due to the change in refractive index along the irregularity. This case
is usually referred to as Fresnel diffraction. On the other hand, when the converse of (4) is
true it is then in the regime of Fraunhofer diffraction.

For convenience define a wave parameter,

D=4~"(z—~")/l*z. (5)
In terms of this parameter the following equivalent statements can be made:

D>>1 region of Fresnel diffraction, and
D<K1 region of Fraunhofer diffraction. (6)

For anisotropic irregularities, since the scale of the irregularity depends on the direction it is

then necessary to define several wave parameters. These are discussed in a later section.
Another parameter that enters into the study of correlation functions can be seen as

follows. In optics an object of size [ has its shadow given by z;==z{/y" (see fig. 3). For this
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reason one can define a ‘“magnification” parameter,
M=zx[r,—=2zv'/l. (7)

Therefore, in the language of geometric optics, for a given yv* we would expect that the correlation
function of the diffraction pattern on the ground has appreciable value only for values of 2 such
that M is of the order of unity.

3. Formulation

In a slowly varying medium in which the property of the medium changes little in one
wavelength the Helmholtz wave equation is approximately satisfied [Stratton, 1941]. In the
normalized unit, it is written as (time dependence exp (jwt) has been assumed),

V2 +[1+ eu(z) |2y =0. ®)

When the medium is homogeneous (i.e., e=0) a particular solution of (8) for an isotropic point
source yields the well-known spherical wave function,

Vo= (kdo/r) exp (—jr). ©)

The problem is formulated by assuming the solution of the form,

V(@) =v(z) exp — jlepy(@) L@+ . . . . (10)

Substitute (10) into the wave equation and equate coefficients of equal powers in e. The
result is a chain of equations. With suitable substitutions [Karavainikov, 1957] each of these
equations can be transformed into an inhomogeneous wave equation and solved in the regular
manner. When transformed back, the ¢’s in (10) are given by

on=Cirf2m) [ 5 exp [~ '+ R—n)Ew, (1)

su=(irfta) | =0 oy (i R, 12)

where R is the distance connecting the source point (in this case the scatterer) and the observing
field point (see fig. 1), i.e.,

R=|z—2|. @13)

The expressions given by (11) and (12) are physically reasonable. Kach element of the
-)

transmitted spherical wave exp (—j7")/r" is scattered at 2’ and reaches the receiver as another
spherical wave exp (—jR)/R. Proper weighting functions have been introduced to take
care of the amount of scattering. In (11) the weighting function is proportional to the
percentage change of the refractive index. The weighting function in (12) has two terms; both
are of higher order. Because of the appearance of the gradient term in (12), the expression
for ¢, is rather complex. From here on it is assumed that the irregularities are so weak that
¢, can be neglected. Since, as shown in (14), ¢; is related to the phase and logarithmic ampli-
tude, the neglect of the gradient term in (12) is equivalent to the assumption that the change
of these quantities be small in one wavelength.
It is convenient to rewrite the wave function (10) as,

$(@)=kAdfr) exp [—jr+ed)|=[kA@)/r] exp — jlr+Q()]. (14)
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Note that when written this way A represents the amplitude of the wave and ¢ the phase
departure. Substitute (11) into (14) and expand the exponential to the second order. For
cases of scattering from a localized region the resulting expression can be shown to be identical
to that derived by Booker and Gordon [1950], except for the factor that takes into account
the polarization of the incident wave with respect to the direction of scattering. Since the
present analysis is primarily concerned with the scattering in the forward direction this factor
reduces to 1.
Put (11) into (14) and equate separately the real and the imaginary parts,

Q(;)=(7'e/27r)J; p',(,g;;) sin (7* —}—R—-r)d‘*;', (15)
log <§0>=(re/27r) f M) cos (17 +R—1)x’. (16)

It is known that a wave cannot be used to reveal structures much less than one wave-
length [Rateliffe, 1956]. The case of general interest is that in which the characteristic scale
of the irregularities is much larger than one wavelength. In the case of the ionosphere the phys-
ical size of [ is roughly 1 km which corresponds to / (in the normalized unit) of the order of 400
at 20 Me/s.  In our normalized unit this is equivalent to the condition,

|1>>1. (17)

Because of this condition the contribution to the integrals (15) and (16) comes predominately
from the scatterers in the neighborhood of the straight line connecting the transmitter and the
receiver. Therefore, certain approximations may be used to facilitate the evaluation of these
integrals.

Define the normalized autocorrelation function by,

(D) =< (@) (2) >/ <> (18)

5
Here the symbol <> is used to denote the spatial average and the z is the relative coordinates
defined by,

T=2To—X1. (19)

It shall be assumed that the ergodic hypothesis is valid so that the ensemble average is
equivalent to the spatial average. It is seen immediately from (15) and (16) that the mean
value of the phase departure and the logarithmic amplitude vanish,

<@>=0, (20)
S 1)

where for simplicity S is written for log (A/4,).
The correlation functions can be represented formally by,

2) N8t T
pu(x") PP,

22)

<QUQE)>= (st <> [ [ BLLEIT)Sn G R
Jog J oy 14y (V2

and

cos (ri+Ri—nr) cos (ry+Ry—
R, Ry

<S@IS@)>= e <u>Hr) [ f ™) | ()P,
' (23)
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When z,=uz,, the two receivers coincide and the above expressions reduce to mean square

values.

4. Mean Square Values
- -
For the purpose of computing the mean square values let z,=x,= (0,0,2) in (22) and (23).
It is convenient to make the following approximations. When the quantity appears in the
phase let (see fig. 1),
R+r"—re~(ar4yr*)z/22" (2—2"), (24)

and when the quantities appear in the denominator

i = el (25)
Define,
. Ii=m({@>+<8>) [e<pu>, (26)
an
L=m( > —<8">)[e<u?>. @27
The expressions for these integrals can be found by the use of (22) and (23),
oul®’ ), Byl YN w7
= | [ e (P ) s (28)
pu<x) x;2+y;2ﬂ;2+yﬁ> e
= [ J gt cos (Bt ) s, &
where the new symbols are defined by
fi=zi(2—z1)/ 2, and Sz=z(2—2)/z. (30

In order to integrate (28) and (29) it is desirable to make the coordinate transformation
by introducing the relative coordinates,

7 ’ ’ ’ ’ ’ .
' =x—, Y =y—, 2'=z,—2, (31)
and the center of mass coordinates

o' =@+w)2, F=E+y)2, v'=(1+2)2 (32)

Integrate (28) and (29) with respect to o’ and g’, resulting in,

.
ot @) ey
— - = 3 - © v d /7 / /’ I I’ g
f f J f S(ei— ) S gy ARy (3}
i -J'be fm fw p@) ooyt a2 dy’ (34)
: Y'=aq 2!'=-> Y =—o z'=—c 2((;'*“??&)‘ 2((1‘}_?;) J S '

Further integration of 7, and /, depends on the knowledge of the correlation function p,. In
this paper p, is assumed to have a form given by (2). Substitute (2) in (33) and (34) and inte-
grate with respect to z” and 7/,

7 exp (—z%/12)dz"dy’ -

O W Bt e e e el
B [P exp (—z?/12)dz"dy’

I~ J DD T 0
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Here the symbol Im stands for “the imaginary part of,”” and the wave parameters are defined by,
D,=4y"(z—v")/l2z, D,=4v'(z—7")/l3z, (37)

and their significance was discussed in section 2. Since the thickness of the slab is much larger
than the correlation distance of the irregulatities, contributions to the integrals 7, and /7, come
predominately from the region z/<l,. Therefore, (1) the limits of integration with respect to
2’ can be extended from — to 4« asin (35) and (36) without introducing appreciable errors,
and (2) because of the additional condition (17) terms like 22”(1—2’/2)/l2 in (35) and 2z’*/zl* in
(36) can be neglected as compared with unity. Introducing these approximations in (35)
and (36), /; and 7, are respectively given by,

I,=br21,, (38)

1..f J AHDI LD A=DD)]
: 2T+ DD (+D5)

(39)

The exact integration of (39) is difficult to carry out since as seen in (37) ), and D, are functions
of v. However, if the slab is thin or under condltlons that D and D, are almo%t constant and

can be replaced by some convenient average values D and D,,, then,

Lo b [\/ (1 +53)(1+77?,)+(1—I_711—)y)] " o
2(14+-D%)(1+-D)
Since from (26) and (27),
L@P>=epw*>(Li+1)/ 2, (41)
and
<8 >=ep'>(L—12)[2m, (42)
the mean square values are therefore given by,
<Q0,)>="SE2 + 2(1+n)<1+p> (43)
r *4‘-:—;;"’ —_—
S(O 0 :)2>:@ V20 h 1__\/'\/(1‘*‘[)2)(11‘_1)2)_(1 _[)znyl . (44)
v 2 ) 2(1+D%) (1+D3)

Some special cases of interest will be considered in the following:

(1) D>>1. In this case it is found that the mean square values of the phase and the
logarithmic amplitude are equal and independent of the dimensions of the irregularities
transverse to the direction of propagation,

<=8 >=p?>r'2b/2. (45)

This result reduces to that obtained by Chernov ' [1961] when the irregularities have a spher-
ically symmetric Gaussian correlation.
(2) D<_<_1. [In this case I)’s are very small and (43) and (44) respectively become,

P>=E<w>r2b, (46)
and
=8 <”16>’r1 " Lb(3T2 42D, D,+3D2). (47)

1 His eq (141) on page 75.
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If, in addition I,=/ly=1r, hence D= Dy=Dy,

2 2 1/2 P
<o i (48)

It is interesting to note that for a thin slab with spherically symmetric irregularities (I,=1,=
12:/);
D~4ac/[l*(a-c)]. (49)

Put (49) into (48) it is seen that (<0S?>)"?is halved when the transmitter moves from infinity
(a=o) to a distance above the slab equal to that between the slab and the receiver (a=c).

When the slab is not thin the average value of the wave parameter squared in (48) must
be found according to the integral (39), i.e.,

— a+d a+bd _—
5= [ Dt = [ [T

=I;622 {% 24 (a‘+b)2—a’J——§ | (a+b)‘-ar‘]+% [(a—{—b)“’—a‘]}- (50)

Equation (50) can be simplified if both the transmitter and the receiver are immersed in the
irregularities. In this case a=0 and b=z, substitution of (50) into (48) vields,

ALl (51)

<S’>—

It is seen that in this case the mean square values depend on the size of the irregularities
along the direction of propagation as well as transverse to it. Equations (46) and (51) reduce
to those obtained by Karavainikov [1957] when /’s are all equal.

(3) D’s~1. Fortunately or unfortunately, in most of the ionospheric applications the
previous approximations are invalid and hence it is necessary to work with more complex
expressions (43) and (44) of the original integral (39). Now it is seen that < @?*> and <8*>
depend on D’s in a different manner. If the scales of the irregularities are determined by a
correlation method the height of the region of irregularities can be roughly estimated by making
simultaneous measurements of < Q?> and < S2> as was done by Hewish [1952].

5. Transverse Correlation Functions

The general expressions for the correlation functions were derived in section 3.  In order to
evaluate these integrals, place one receiver at (—z/2, 0, z) and one at (z/2, 0, z). Since the
spacing of these receivers is perpendicular to the direction of propagation the correlations of
the field at these two receivers are called transverse correlation functions. Approximations
similar to those given in the last section are,

(Rytr) —m=[y}"+ (a]—=21/22)*/2¢1, (52)
and
(Ro+15) —ra=Iys + (s—223/22)?)/2¢5. (53)
Define,
L= (w/<p*>) (< Q@ >r+<818:> 1), (54)
and
I= (T/€2<#2>> (<Q1Q2>T_<SIS2>T)- (55)
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Putting (22) and (23) into above relations these integrals are found to be,

f[%&l . Y (@l —2z/22)® b+ (ehtazs22)*] 2, o
a4 28 T o

_1 Hw) [y;2+u-;—.re;,/?z)qy?+(x2+x22/2 D7 s
414 241 ‘ 243 ne

Transform the coordinates into a relative and center of mass system, and integrate with
respect to o’ and B8’ as was done in the last section,

fff[{)(/?l(x ;2) o -g((gjgl/g)g(1‘”,‘]?/’({2,']7,7 (56)
p@) Y@ A2, .
] J‘fff‘)(§1+§‘ >H‘V)_(7§‘l—_*:“§7- ) d" (h/ dz ’/7 . (;)/)

Here the limits of integration are identical to those given by (33) and (34). In fact 7, and 7,
reduce to /, and Iy, respectively, when the spacing of the receivers x goes to zero as expected.
For the correlation function of the form given by (2), the integral 7 is given approximately by,

(40 (1))

where it is seen that the arguments of these error [unctions are actually the magnification pa-
rameters (discussed in 2) at the bottom and top of the slab. Integrate (57) with respect toz’, 3,
and 2/,

a+b Y ,2 y ..2 2
I,=7%2, Im f expl [,, JTY ,{_},,,I,)f) ] dvy’. (59)
A< \(I) .})(I)u—/

For cases in which 7’s are almost constant, (59) is approximately,

o 9 N . O S o ((1+b).l .
I=(x?L1,2/22) Im{j(l—l—]l),,) WI:m l(1+717,)'“> (~z (1+1/))”2>]} (60)

Define the normalized transverse autocorrelation functions by
J )

, po(z) =< Qi@ > /<>, and ps(z) =<8,8:>7/<S*>, (61)
then
po(x)=(Is+1)/(I,+1>), (62)
ps(2)=(Is—14)/(I,—15). (63)

For the special case in which the slab is very thin, (58) and (60) can be approximated. If,
additionally, the I)’s are either large or small some simple results can be obtained. These are
considered in the following:

(1) D’s >>1. Keep only leading terms in (62) and (63) and consider the region of 2</,z/a.
The correlations of the phase and the logarithmic amplitude reduce to,

po(2) = ps(x) =exp (—a’z*/l32%). (64)

“scale’ of the

Hence it is seen that both correlation functions are initially Gaussian and the
irregular waves is a factor z/a times the ‘“‘scale” of the fluctuations in the refractive index
consistent with the idea of magnification discussed in section 2.

(2) D’s<1. Again keeping only leading terms,
po(r) =exp (—a’z*/l32%), (65)
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and

= 7 — ONTR
402D, ( 3D,+D, —‘—1—‘«“’;]12) ) "
w1~ ) oo (-h)

(66)

The fluctuations in the phase is a factor z/a larger than the fluctuations in the refractive index.
However, now the fluctuations in the amplitude is influenced by not only the fluctuations of
the refractive index in the direction of the spacing of these receivers (z-direction) but also,
though weakly, transverse to it (y-direction). If additionally /,=/,, then (66) reduces to,

2a? ] -
Ps(ﬂ-ﬂ):<1_"2a7l{ 5 ?4?4) < zl2> (6()

Though (66) and (67) are not Gaussian they have a correlation distance of the order of /,z/a
and (66) approaches Gaussian in the limit /,</,.

6. Longitudinal Correlation Functions

In this case the two receivers are placed along the direction of propagation at (o, o, z) and
(0, 0, z +Az) with a separation Az=z,—z,. Proceed in the same manner as the previous two
sections by defining,

1= (r/ <’ >) (< Q@ >+ <818 >1), (68)
and
Ii=(r/€< W >) (< Q@ > —<S1S:>1). (69)

It can be shown that for the spacing Az of the order of the correlation distance 7; and /; reduces
to [, and 7, respectively. Therefore, the phase and the logarithmic amplitude are perfectly
correlated in a distance Az 2l/(a+b).

7. Method of Generalization

In the foregoing sections expressions of mean square values and the autocorrelation func-
tions are obtained by assuming that the fluctuating part of the dielectric constant has a Gaus-
sian character given by (2). As mentioned before one of the most important features of the
ionospheric irregularities is that they are strongly anisotropic. If p, departs from Gaussian but
still possesses ellipsoidal symmetry some of the earlier derived expressions can be generalized.
It is convenient to define

=2/l +y?|l5+ 2% (70)
Introduce F(t) so that p, (p) and F(t) are related through the Laplace transform, i.e.,

)= f " F(t) exp (—pt)dt. (1)

The function F(t) can be chosen to simulate almost any correlation function with ellipsoidal
symmetry. The effect of introducing (71) in the integrals 7,(/,,/,,l.), i=1 to 6, is simply to

replace them by
f aFO]1, <1§, b, ié) (72)
Jo \‘t \/t \f
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Similar generalizations can be applied to <@*>, <S8?>, ps, and p, if they are evaluated
explicitly. But now the averaging of D’s is not permissible and there does not seem to be any
simple way out.

By means of this device the generalization of (38), (45), and (46) is equivalent to multipli-
cation of these respective equations by the factor,

Jw o) (/t:l:fm 2P 40, (73)

0 \‘t YVTJ O VP

and the factor that goes with (48) when (50) is substituted, and with (51) is

f or@d—r [+ Loulp) g, (74)
0 NrJo +/p dp*
The generalization of the correlation functions can be done in an identical manner. If
M,(x)=ax/zl,, (75)
the generalization of (64) and (65) can be shown to be
f pu(p+M:2 )1)“”’(/1)
J O —
3 (76)
f pu(p)p™"*dp

0

The generalization of (67), when (49) is valid, is approximately

1 azpu(l)JrMQ) O*pu(p+ JIZ Mz 04/1”(1)%‘1,,)] _
() =—= 2M2 S V2,
ps () azpu(p) _1/2{/]‘ f [ - +5 opt dp
Jo op?

(77)

In the general case it can still be proved that the longitudinal correlation functions are perfect
for Az of the order of zl/(a+b).

8. Applications to the Ionosphere

The first clue to the existence of the irregularities in electron density was obtained by Hey:
Parsons, and Phillips [1946]. They discovered that the intensity of the radiation from radio
stars fluctuate on certain occasions in the VHE band. At first it was thought that this indi-
cated the source was variable in its power output. Subsequently spaced-receiver experiments
by Smith [1950] and by Little and Lovell [1950] gave convincing proof that the cause of these
fluctuations is in the ionosphere. It is now generally believed that there exist in the ionosphere
blobs with excesses or deficiencies of electrons which scatter waves irregularly. These blobs
are elongated along the Earth’s magnetic field lines with an axial ratio of five to one [Spencer,
1955].  Past studies of these related problems using radio stars and ground-based transmitters
have been well summarized by Little et al. {1956], Rateliffe [1956], and Booker [1958].

In the following three subsections the relation between fluctuations in refractive index
and electron density, the scintillation indices and the autocorrelation functions are considered.

8.1. Fluctuations in Refractive Index and Electron Density
In case of ionospheric applications for a frequency of 20 Me/s or higher the longitudinal
approximation to the Appleton-Hartree formula [Appleton, 1932] is valid unless the ray is
within a few degrees from the direction ol exactly perpendicular to the Karth’s magnetic field.
Using the standard notations recommended by U.R.S.I. [Rateliffe, 1959] the refractive index
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is given by,

-
n2=1 _."LTL_A‘X.@), (78)
1+Y
=
where AX (z) is the part due to electron density fluctuations and is a stochastic function of
position. The upper sign in (78) is for the ordinary ray and the lower sign for the extraor-
dinary ray. Taking the square root of (78) and keeping only first order terms, the refractive
index is,
. AX (x) -
N=<>(1g5 5y 2 ) &
Comparison of (79) with (1) shows that the expression for the mean square of the percent
fluctuations in the refractive index as,

55 K ,
¢ <u‘>=p<(AN)Z>, (80)
where -
Gl
K:41r2<n>4(1 +7)?
o2

re=-———75=2.8178 X107 m (classical electron radius),
4meome

AN=-electron density fluctuations.

Since from (79) the fluctuations in the refractive index are proportional to the fluctuations
in the electron density, the normalized autocorrelations of both must be identical. Therefore,
the formulas derived in the previous sections can be applied by replacing the mean square
electron density through the relation (80) and by noting that I’s now represent the scale of
ionization irregularities.

8.2. Scintillation Indices

With the advent of artificial satellites it is now possible to carry out a series of measurements
with a transmitter at a variable height. The transmitter may be below, within, or above
the slab of irregularities. Hence it is desirable to know how the scintillation indices of the
amplitude and the phase (defined as<<(?>'? and <S?>'72 respectively) vary with the height
of the transmitting satellite. The result is shown in figure 4. Three cases have been con-
sidered: (1) The direction of propagation paralley to the major axis of the irregularities and;
(2) two cases when the direction of propagation is transverse to it. The numerical values
chosen are tabulated below:

) {QXIO“—W when—2x10*<a<0.

2104 when a >0,
In all cases:
c= 12X104

Case 1 Longitudinal case:
L=l,=4%102, 1,=2X10%
Case 2 Transverse case 1:
L,=2X10%,  1,=l,=4X102
Case 3 Transverse case 2:
L=l,=4X102, 1,=2X10%
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In terms of physical units, for £=400/km (corresponding to a frequency of 19.1 Me/s if the
refractive index is 1) these values are given by,

b 50km—|a| when —50 km <a<0,
50 km when >0,

¢=300 km,

Case 1 Longitudinal case:

l=1,=1 km, (=5 I,
Case 2 Transverse case 1:

=15 Vi, =ll=1l lga,
Case 3 Transverse case 2:

=== =5 I,

In calculation the approximate formulas (412 and (44) have been used. These formulas can
be simplified considerably in case 1. Since ), and D), enter in a symmetrical manner, the cor-
responding scintillation indices in case 3 are identical to those in case 2. The actual plotted
values are (2<Q>>/< 2> 7'2) 21073 and (2< 8>/ p?> . 7'2) 121073, These nat-
urally are proportional to the scintillation indices defined in this paper. As an approximation
D’s are caleulated from (37) by assuming v’ at the midway of the slab.  When the satellite is
inside the slab the effective slab thickness is reduced accordingly.
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Fraure 4. Dependence of scintillation on the height
of the transmatter.

By careful examination of figure 4 the following interesting points are noted:

(1) The scintillation index of the amplitude varies monotonically as a function of the
height while the scintillation index of the phase rises rapidly when the transmitter is within
the slab and reaches a maximum value near the top of the slab and then decays slightly above
the slab. Therefore, it appears that the measurement of phase scintillation may enable us
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to determine the height of the bottom, the thickness, and the height of the top of the slab if it
exists at all. The existing experimental data are rather meager. Some rough estimates
using signals from satellite 1958 A, on 20 Mec/s have been made [Swenson and Yeh, 1961].
The amplitude scintillation roughly agrees with figure 4.  (See their figure 6, which is reproduced
here as figure 5. Note that the scintillation index defined in that paper is identical to that
defined here only in the limit of very weak amplitude fluctuations.) The data presented in
figure 5 were collected in Baker Lake, Canada which is north of the auroral zone. There is
evidence that the region of irregularities may vary in height by more than 500 km [Basler
and DeWitt, 1962] in the auroral zone. This may account for the spread of these points.
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Frcure 5. Experivmental results of scintillation de-
pendence on the height of the satellite.

(2) For a constant thickness of the slab figure 4 shows that there is more scintillation in
the longitudinal case (case 1) than that in the transverse case (case 2 and case 3). The phase
scintillation is 2 to 2.2 times more and the amplitude scintillation is 3.1 to 3.7 times more in
the longitudinal case than the corresponding values in the transverse case. In the actual
ionospheric observations the effective thickness varies according to the secant of the zenith
angle of the direction of propagation. Since these irregularities are alined along the magnetic
field lines and the dip angle at, for example, the University of Illinois is 71.3°, the effective
thickness in the longitudinal case (case 1) is then a factor tan 71.3°=2.95 smaller than that
in the transverse case (cases 2 and 3). This will bring curves of cases 2 and 3 closer to the
corresponding curves of case 1. Hence in actual ionospheric observations at temperate and
high latitudes the scintillations should not change appreciably with the zenith angle of the
transmitter and preliminary results of the observation of satellite signals at various stations
operated by the University of Illinois seem to indicate that this is so. However, for a station
near the magnetic equator we would expect that the effect of the effective thickness may
enhance the differences in scintillations considered above and the signal from an orbiting
satellite at low angles to the north or south of the station should exhibit stronger scintillations
than when it is overhead.

8.3. Transverse Correlations

It has been shown in section 6 that the longitudinal correlations are perfect for a separa-
tion Az of the order zl/(a+b). Therefore only the transverse correlation will be considered
here.

Examining the integral 7, given by (59) or its approximate expression (60), it is seen that
the correlation functions depend mainly on the dimension of the irregularities along the spacing
of the two receivers and not on their dimension transverse to the spacing only if the wave
parameter is small compared to 1. That this is intuitively true can perhaps be argued physi-
cally as follows. When D< <1 the irregularities are large compared with the first Fresnel
zone. Since most of the contributions to the signal at the receiver come from the scattering
in the first Fresnel zone it seems reasonable to expect that the correlations should not be sensi-
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tive to the dimension of the irregularities transverse to the spacing of the receivers. However,
when D) > "> 1 the irregularities are small compared with the first Fresnel zone and the scattering
is all important toward the end of the irregularity. Therefore, in this case the transverse
dimension of the irregularities affects the correlation function.

As specific numerical examples the three cases discussed in the last subsection are again
considered. The numerical values are identical with those tabulated previously except that
now a fixed value of a=12<X10"1s taken. For £=400/km this is equivalent to a height of 300
km above the top of the slab. The curves are shown in figure 6. The ordinate is the magni-
fication parameter defined in (7) where 4" is assumed to be the distance from the transmitter
to the center of the slab, 1.e.,

M, L ;

N

In calculating these curves formulas (58) and (60) have been used.

Experimentally one usually obtains the fading records at a fixed station from a moving
transmitting vehicle. For all practical purposes it is equivalent to the case considered in this
paper. The autocorrelation function of the amplitude obtained experimentally (defined in a
slightly different manner) agree reasonably well with those theoretical curves shown in figure
6 [Kent, 1959; Swenson and Yeh, 1961].

LEGEND

12 x 10
2x10
= 12x10

CASE I: J,=1,= 4x10%4 =2 xIO®
CASE2 1, =2xI03 L= 1,=4x10?
CASE 3.1,=1,=4x1021,=3x10>

a
b
c

CORRELATION FUNCTIONS

MAGNIFICATION PARAMETER M

Ficure 6. Transverse correlation functions.
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