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The scattered field produced by a plane wave incident on a perfectly conducting sphere
coated with a thin layer of material with large complex index of refraction is considered.
It is shown that, for certain relations involving the thickness of the layer, and its permittivity
and permeability, the scattering problem is equivalent to the problem wherein the total
electric and magnetic field components must satisfy a general impedance boundary conditicn
on the outer surface. With this simplification the backscattered field is obtained in terms
of the geometric optics portion and the diffracted field portion for small wavelengths.

1. Introduction

Previous work on scattering by spheres comprised of concentric layers of various materials
has been carried out by Aden and Kerker [1951], and Sharfman [1954], who obtained the exact
Mie series for the various cases they considered. However, they did not perform an asymptotic
evaluation of the fields for the small wavelength case.

In this paper the investigation for small wavelengths is considered for the case where the
particular diffracting body is a perfectly conducting sphere coated with a thin layer of large
complex refractive index. First the exact Mie series is given for the scattered field. Using
asymptotic methods it is shown that the effect of the coating can be replaced by an equivalent
impedance boundary on the outer surface. In so doing, certain restrictions are placed on the
thickness of the coating and the argument of the index of refraction.

A similar problem, namely that of a radial electric dipole, outside a concentrically strati-
fied spherical conductor was treated by Wait [1956].  An approximation obtaining the imped-
ance boundary condition was also discussed by Wait.

2. Mie Series

Consider a perfectly conducting sphere with radius b covered by a homogeneous layer with
uniform thickness 6 of a material characterized by its electric permittivity e and relative mag-
netic permeability u’—which may be complex—on which is incident the plane electromagnetic

wave
CI:[£0€—1Wt+1kz’
— —iwttikz.
18 =l B
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k= =w(eomo) %,
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and € and g, are the permittivity and permeability of the surrounding medium, taken to be
free space. The wave number of the coating is given by £, and is related to the index of refrac-
tion by the relation

k]—:Nk-

1 The work described in this paper was carried out for the Air Force Ballistic Missile Division under subcontract to the Conductron Corporation
as a part of the program being carried out under Chrysler Corporation Prime Contract AF04(694)-25.
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The general Mie series solution for a sphere with a concentrie shell is given by Aden and
Kerker [1951] and the case where the inner sphere is a perfect conductor by Sharfman [1954].
Using these results the far scattered field is thus found to be, in spherical components form,

18=I5[=0
g _L -—_i 17 ,—iwt+ikr S 9n+1 1)}1 aﬁi)
]70_710 = fer 1 “~ n(n+1) \" " sin 0+ " cos ¢
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e — —iwl+1ikr i . o B
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k) A, =, (ka)
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and ¢ (ka) and ¢(ka) are related to the Bessel functions by

%m:ngux ;wmm=J§mem

with v=n-+%.

The radius of the outer sphere is given by a=0b-+6. The [unctions A, and B, are given by
. { = o

N o(In () %
111 7 3
W o(ka) ®)
W 20,
B=% 30k l:l“ 3(nb) ()
with
=2 (k) &P (erb) — £2 (k10) £ (kra) . (5)

3. Impedance Boundary Condition Approximation

It will be shown that for large ka, N, kb, and certain other conditions, the exact Mie series
for the scattered field can be approximated by a Mie series for which the total field on the sur-
face of the sphere satisfies the generalized impedance boundary condition, Leontovich [appen-
dix to the Logan and Blacksmith collection of Fock papers, 1957]

—(m-E)n=nn;"nxH (6)

where the relative impedance 7 is a function of u’, €, and 6.
The procedure is centered around the asymptotic approximations to the coefficients A,
and B,. First the coefficient ), is considered. It is written in the following two forms

(f,lzg Vhia kb (2, (kia) HP (k1) —2J, (ki 0)H " (kya) }

T Vb (H (k) HS () —HE ()P (ki) ) G

where v=n-+%. Before considering the asymptotic evaluation of the Hankel functions for
large order, the following restriction will be placed upon the argument of N,

f<arg ]\'<——— @’ (8)
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where the positive angles # and @’ satisly the inequalities
0>"~|Nkb|~*?
' >>|Nkb|~". (9)
The lower bound on the argument of N insures that the following inequalities hold,
|y a—v| >3
[lerb—»| >v"?

for the complete range of 7 of interest. Thus the Debye asymptotic expansions for the Bessel
and Hankel functions may be used. Hence from Watson [ch. 8, 1958], the coefficient (), has
the following asymptotic form for large Nka and Nkb,

2 .
O’lwx/'(—i sinh v,) (—7 sinh v») Ebiel Ly
where
v=Nka cosh v,
»=Nkb cosh 72} (11)
with

vyi=a1+1if1, and y,=ay+16s.

Both o and «, are negative and both g, and 8. lie between 0 and 7/2. The functions v

are given by
yr=v(tanh y;—v) . (12)
Yo=wp(tanh y,—7,) -

Expression (10) is the leading term of an asymptotic expansion, provided that condition (8)
holds. If the argument of N is the order of, or less than @, then the Airy integral approx-
imation would have to be used for the Bessel functions when »/(Nka) or »/(Nkb)~1. If the
argument of N is the order of, or greater than =/2—@’, then expression (10) would have to
be modified by the addition of extra terms when »/(Nka) or v/(Nkb) is in the vicinity of —1.5i.

Without going into their derivation, certain properties of the functions associated with the
right-hand side of eq (10) will be given. First, it can be shown that the real part of ¥,—y, is a
positive function and monotonically increases with increasing real ». The imaginary part of
Y.—yy is negative and monotonically inereases with increasing real ».  The real part of sinh v,
and sinh v, are both negative, whereas their imaginary parts are both positive.

From (3) and (10) the asymptotic behavior of A4, for large N, ka, kb is given by

A”N_%Y coth (Yo—y,) sinh v, (13)
and similarly for B,
BEN—% tanh (¢,— ¢1) sinh v;. (14)

In particular for n<_<_|Nkb|, these become

A, ~— 7— coth ¢){1+0 (k b) —+0 (kla )} (15)
B, ~—~ tanh (Yo—oy) {1—}—0 (k b> +O<k1a >} (16)

where the term which is the order of §/(k,a?) arises from the consideration of higher order terms
in the asymptotic expansion for A, and B,. Finally one obtains
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Va=— ikl o (%/—2>z+o [% %)2] (17)

Hence for the range of n, 0<Cn<_kaM where M is a number unspecified as yet but lying in the
range 1<_ M<_<_|N/, the following approximation holds,

Yo— Y1~ —ikid (18)

provided that é is sufficiently small such that

M <<1. (19)

.
2N?

Thus for the range 0<Cn<_Mka, the constants A, and B, are effectively independent of 7.
Hence set

B,=—1. (20)

Using the relation 4,~—(B,) " the set of coefficients a, and b, of the Mie series (eq (21)) can
be approximated by the following,

k) —ing(ka)

D=0 (o) —in g, (a) 2
7:77‘//11 (IC(I/) + ‘/’;z(ka/)
"= e (ka) 20 (k) @2)

But these are the corresponding coeflicients that one would obtain for a boundary condition
of the type given by eq (6) [see the appendix of Hiatt et al., 1960].

The remaining problem is to consider the behavior of the coefficients for n>Mka. It will
be assumed that M is sufficiently larger than unity so that the Debye asymptotic expansions
may be used for ¢,(ka) and ¢ (ka) for n>>Mka. Explicity M must be such that M—1>">
(ka)=27. 'Thus one obtains

4 (k) ~ P ((tanh y—2)}

23
vsinh vy (@3)
S_(,)(ka)woxp {—v (tanh y—7)} (24)
! v/sinh v
when v=n-+¥%=ka cosh v and v is positive and real.
Using the above approximations the coefficients @, and b, become
2 sinh ;4 (u’/N) sinh v tanh (Y,—y1) :

o e e ) it [ | e A (=) (25)

% sinh v+ (N/u’) sinh v coth (Y,—¢,) .
bur~ —1 sinh v+ (N/u) sinh v coth (¢2—¢1):| ip o=y ey

For n sufficiently greater than ka, the exponents in the above expression are large and nega-
tive. Hence provided that the denominators of the expressions given by (25) and (26) do not
become too small, the coefficients a, and b, for n sufficiently greater than ka, are negligible.
In consideration of the denominators it can be shown that since the real part of (Y,—y,) is
positive and greater than the real part of —ik,8, then the real part of coth (Y,—¢,) is positive
and with respect to magnitude, is greater than the imaginary part of coth (Y,—,). In particular

as 7 approaches o, coth (Y,—y;) approaches unity. A similar analysis holds for tanh (y,—y,).
Hence if

|arg (/)| <3 (27)
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then

Real {(u//N) tanh (Y,—¢,)} >0

Real {(N/u’) coth (yo—y4)} >0.

In addition since the imaginary part of sinh v, is positive, then
Real {—2% sinh v, } >0.

Hence it is easily seen that the real parts of the denominators of the right-hand sides of expres-
sions (25) and (26) are greater than zero. Condition (27) can be relaxed to permit a greater
range of permissible values for the argument of N/u’, but only after considerable and extensive
analysis.

Considering the corresponding problem for the coefficients of the form given by (21) and
(22) one obtains for n™>Mka

—1-+an siphi

a,~ — exp 2» (tanh y—
1449 sinh v ) P22 th?
—q4n—sinh 4
by~ — : 77——> exp 2» (tanh y—~).
"\ 4p—sinh vy PRl ti?

Provided that n is bounded away from the imaginary axis, these behave like exponentials with
large negative exponents.

Thus the Mie series for the coated sphere may be approximated by the Mie series for the
boundary condition on the outer surface given by eq (6) with

nz—"f\‘f tan (k,8). (28)

4. High-Frequency Backscattered Field

For the evaluation of the bistatic and forward-scattering far fields in the high-frequency
range, it is best to express the scattered field in terms of the Debye potentials. However,
for the case of backscattering one can work directly with the expression for the electric intensity.

From eq (1) the backscattered field is given by

©

B=E, % (—i)  (— 1"+ 1/2) @ — ). (29)

n=

Simplification is achieved for the sphere with a thin coating of large refractive index if the
approximations to the coefficients @, and b, given by eqs (21) and (22) are used.

Combining the two coefficients and using the Wronskian relations for the Bessel functions,
one obtains

g [Lm,z(n)an(l/n)T (30)
n |

where

Lysrp(n)=ing7? (ka) 4 & (ka).

Treating the summation over n as a residue series, the summation is replaced by a contour
integral C taken in the clockwise direction around the poles at v=1/2, 3/2, . . ., giving

1, 2 gy — A1) : | >
E’=E, e {2(‘10 by) 2y J.cos vrL,(n)L,(1/n) dv} o

The contour integral can be deformed using the Watson transform technique to give a line
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integral extending from the fourth quadrant through the origin to the second quadrant in
the v plane, plus a residue summation produced by the poles of L,(n) and L,(1/3) in the first
quadrant. The details of this well-known technique will not be discussed here.

An asymptotic evaluation of the line integral can be performed in the same manner as the
technique of Scott [1949]. The combination of the asymptotic expression for the line integral
and the term involving (a,—b,) in the expression (32) gives the geometric optics contribution
to the backscattered field, namely

s l—n ( L ) ikr — 2ika J7' o
Eg.o. 1+TI> [ :)ka N J e 110- (-55)

The residue series corresponding to the “creeping waves” or diffracted field contribution to the
g £
backscattered field is

I gW Eo (1— >” l s [aLy(n) L,(1/n ):I + 2 s I:L ) = Ly(l/n):ly . }
(34)

where v, and v, are the zeros of L,(y) and L,(1/5) respectively. Since the dominant contribution
arises from the zeros which are close to ka, the following asymptotic approximation is made,

& ua(ka) ~ —im ! *w () (35)

& p(kea) ~im =1 wi(t) (36)
where

1/3
mz(l%l) and v=ka-+mt.

Here the notation of Fock [1946] is used for the Airy integral w,(t). It isrelated to the notation
of Miller [1946], which is more useful for numerical results, by the following expression,

wi(t) =+ [Bi(t)+id.(D)].

For further reference on the subject, one should consult Logan [1959]. Excluding the case
where =0, which corresponds to the perfect conducting sphere, whose results are well-known,
the residue series can be approximated by

_F/%TE m g (',Osylwr [(nz—}—%) (wl(tl))z *1— .oos VT |:< 2+m > (s ))2 } (5/)

where #; and ¢, are respectively the roots of

zigi;—z'nl7z (38)
and
ﬁiﬁ’;;:’?""/"- (39)

The values of w, (t)/w, (t) have been plotted by Logan and Yee for values of ¢ in the first
quadrant. From this the first few roots of the eqs (38) and (39) can be obtained.

The total backscattered field is obtained by combining expressions (33) and (37).

The reduction of the original problem (that of scattering by a perfectly conducting sphere
with a thin coating of material of large index of refraction) to the equivalent problem (where
the boundary condition is expressed in terms of an impedance boundary condition) greatly
reduces the effort in obtaining the small wavelength asymptotic expression for the far scattered
field. A similar technique should be applicable to other coated bodies with large radii of
curvature.
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