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The statistical theory of stationary processes has wide applications in the analysis of

radio wave propagation data.

In this paper, assuming the knowledge of the basic concepts

of probability theory on the part of the reader, characteristics of stationary processes such as
covariance and spectral density functions have been developed, problems of estimating these
characteristics have been tackled, and numerous examples have been worked out to illus-

trate the theory.

1. Introduction

The indeterminacy in science, i microscopic as
well as macrocopic physical processes, is gradually
replacing the concept of “a cause and its effect”
by the concept of “a cause and the probability
distribution of its possible effects.”  We no longer
ask the questions: will this signal be received?
will a meteor be observed during this time interval?
Instead we ask: what is the probability that this
signal will be received? what is the probability
that during this time interval at least one meteor
will be observed?

In radio science the probability theory and
statistical methods have wide applications, both in
the development of theories and in the analysis of
data. Scattering of radio waves from an irregular
surface, propagation of electromagnetic field in an
inhomogeneous medium, reflection of radio signals
from meteor trails, the interaction of solar and cosmic
energy with the earth’s atmosphere, and many other
such processes require theoretical models based on
some kind of probability mechanism. Some models
for these phenomena have alrady been proposed (to
quote a few examples: Rayleigh [1899, 1919], Rice
[1951], Isakovich [1952], Hoffman [1955, 1959],
Wheelon [1960]), but essentially the field is wide
open. The real challenge is to develop a sufficient
number of stochastic models which would provide
proper methods of analyzing mountains of data,
which have already been collected, and point out
ways for further meaningful experiments. In the
absence of satisfactory theories, from which deduc-
tions can be made, we can only rely on ad hoc
inferential hypotheses based on the statistical
analysis of the data. Hence we turn to the question:
what statistical methods can be used profitably to
reduce the data into a few meaningful numbers?
We find that the statistical theory of stationary
processes, if correctly applied, has been and can be
of great use. We shall, therefore, confine our study
to the characteristics of stationary processes and
efficient procedures for estimating these character-
istics. The knowledge of the basic concepts of
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probability theory will be assumed on the part of
the reader.

2. Definitions

A random process, {X(t)}, is a function of a
parameter ¢, such that for each value of ¢, X(¢) is a
random variable.  We will refer to ¢ as time, although
it may be an arbitrary parameter. If ¢ takes on
only discrete values, say . . ., —2, —1,0,1,2,. .
the process, { .. . X(—2), X(—1), X(0), X(1),
X(2), . .. }is called a discrete-time process; and if ¢
takes on values in a continuum, say —o <t<o,
{X(t), —o <t<w} is called a continuous-time proc-
ess. Thus, for example, if we observe the hourly
median value, AM(t), of the envelope, X(¢), of the
received signal, { M (1)} is a discrete-time and { X(#)}
1s a continuous-time process. An observed record
of {X(t)}, written without the curly brackets as
X(1), is called a sample function. The curly brackets
simply denote that there are infinitely many possible

sample functions which constitute the random
process. If there is one and only one possible

sample function, then the process is not random but
deterministic.

What we want to know is the joint probability
distribution of the random wvariables X(#;), . . .
X(t,) for arbitrary =, ¢, . . ., t,. In its generality
it is an impossible task, as it requires infinitely many
sample functions observed over infinite time inter-
vals. Thus we cannot proceed further with the
analysis without assuming certain structure for the
process.

A random process, { X(¢)}, is called weakly station-
ary if, for all ¢ and s,

EX(t)<ew; EX(t)=EX(0);
EX(@#)X(t+s)=EX(0)X(s).

Here, if X is a random variable with probability
(X<u)=P(z), £X stands for the mean value of X,
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A random process, { X(¢)}, is called strictly station-
ary if the joint distribution of X(t-+s), . . .,
X(t,+s) is identical with the joint distribution of
X(t), . . ., X(t,) for every m, i, o t, and s.

A weakly or strictly stationary process, { X(#)}, is
called ergodic in respect to a function ¢, if, for almost
all sample functions, X(2),

EX

xdP(x).
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Eg(X(t))=1Ilim ,,f G(X(t+s))ds.

e 21 ) 1
If for any arbitrary function ¢, such that Eg(X(¢))
exists, the relation given above holds, then the process
is called, simply, ergodic.

3. Stationary Processes

In general, a record of some aspect of radio propa-
gation cannot be considered as a sample [unction
from a stationary process. For example, let X(#),
pe=1ly 2 o , denote the hourly median value of
the critical frequency, fof's, of the F, layer of the
ionosphere observed at Washington, D.C. From a
priori considerations we would expect a diurnal, a
seasonal, and a ten- or eleven-year cycle in the rec-
ord, the last mentioned cycle corresponding to the
sunspots cycle. However, if we eliminate these cycles
by the least-squares fit we may reasonably assume
that the residuals constitute a sample function of a
stationary process. As we shall see later, theoreti-
cally it may be admissible to consider even a record
with discernible periodicities in it as a sample func-
tion from a stationary process, but in a single record
it is always advisable to remove such discernible
cyeles, and also the low-frequency part which, due to
the limited extent of data, appears as a trend, before
spectral analysis of the data. (For proper regression
analysis refer to Siddiqui [1960].)

3.1. Continuous-Time Processes

Let [ N(1)} be a continuous-time real weakly sta-

tionary process with

EX(t)=0; EX®)X{E+s)=y(s)=y(—s). (3.1)
The question of estimating £X(f)=pu, when g is not
assumed to be zero, will be taken up in the next
section.

The spectral representation of a weakly stationary
process with mean zero, suggested by Cramér [1940,
1942], is a powerful method of understanding the
characteristics of the process.

If I, and 7, are two disjoint intervals on a real line,
a random set function z(/) is called orthogonal if

Ez(ll)Z(Tz):&

Let us
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Here z denotes the complex conjugate of z.

f:07 j:fl’ ifZJ o

write dz(f) for z(df). Cramér shows that X(¢) has
the spectral representation

H{()= [ e dz (f). (3.2)
where z(f) is an orthogonal set function with

Bldz(f)*=G(f+df) —G())=dG(f),df >0, (3.3)

and G(f), called the spectral distribution function, is a
nondecreasing function with

G(—=)=0, G(=)=x(0). (3.4)
Now, X () is real, hence
Y($)=EX ()X (t+s)=EX(t) X (t-+5)
:Ef f o2 U=t 2miss (/f(f,"(/T-f')
— f G (f), (3.5)

from the orthogonality of z(f). In (3.2) and (3.5)
we have admitted negative as well as positive [re-
quencies. It is possible to develop the theory in
terms of positive frequencies only, in which case we
will use cosine function for transformation rather
than the exponential function. Obviously, expo-
nential functions are much easier to work with than
trigonometric functions. Hence, we will retain the
representation as given above.

The integrals (3.2), (3.5), and others which will
appear below should be interpreted in the Stieltjes
sense. Thus, for instance, il G(f) is a purely step
function with steps of sizes go, ¢i, ¢o, . . ., at
., respectively, (3.5) is to be
interpreted as

% (q):g(’]_i_lg i (e2mTkE | g—2milys)

=i’ +2l;g;. cos (2mfis). (3.5a)

gi is called the spectral mass at the frequencies
+7..  In this case

X(t):ao—!—é (ay cos 2mfit+bysin 2xfit), (3.2a)

Here

since dz(f) is also a step function.
a;=dz(0), ax=dz(fy) +dz(—f2), br="1dz(fr) —idz(—f).
Noting that dz(—fi)=dz(f;) = (a;+1ibx)/2, and re-

membering the orthogonality property of z(f),
and that 77 X(¢)=0, we have



Ea,=Eb,=0, all k; Ea;b;=0, all k,4; Eaz=gs,
Ea;=Ebi=2¢;, Eqya;=Eb;b;=0, k=~j. (3.6)

If, on the other hand, G(f) is differentiable with

7 (f)=g(f), and g(—1)=g(f), (3.5) becomes

v (8)= [:D (,yfﬂ'ifﬁ‘g(f)(/f::ZJ;m cos (2w fs)g(f)df.
(3.5b)

In this case, G’ (f)=g(f) s called the spectral density
function of the process. More generally

G(N=G(f)+G:.(f),

where G (f) is purely a step function, and G.(f)
admits the spectral density ¢.(f). Thus, the more
general representations of y(s) and X(#) are the
following :

©

¥ () =gi+3 201 005 (2nf,)+2 f

)

cos @rfs) (N,
(3.5¢)

X(f):aﬁ—i (a; cos 2w fit by sin 2w f,t)
k=1

+J‘m e dzy(f), (3.2¢)

where Eldz(f)P=g(f)df: and ay, a; b, not only
satisly (3.6) but also are uncorrelated with dz(f).
[t may be noted that, since ay, a;, b, are independent
of t, in a single sample function they appear as
constants; hence the desirability of estimating these
constants by the least-squares method as discussed
earlier in the section.

From here onwards we shall assume that by proper
regression analysis (/) is eliminated so that G(f)
is differentiable, and the representation (3.5b) holds.

If
Im |v(s)|ds=2 I;wi‘y((\')j(/.\'< ® (3.7)

o =G

(3.5b) can be mmverted to give

gvﬁﬁzw(nzi[fa—”wygymzaj:ﬂuswmﬁyﬂ@d&
(3.8)

and g(l) is continuous everywhere. Thus a sufficient
condition for the continwity of g(l) is that |y(s)| be
integrable.

[t is not sufficient, however, that only v(s) be
integrable, for example, if

 sin 27 Bs

—, B>0.
s

v (s)
g(f)=1,1f [f|<B; 0, otherwise,

which is discontinuous at f= £+ B. It may be noted
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that, by definition, |g(f)| is integrable. In fact
l5(N)|=g(f), and

[ apir=6(e)=y0)< =;
hence, if @ continuous-time process possesses a spectral
density  function, its covariance function vy(s) is

continuous everywhere.

Many a time we wish to obtain the relationship
between the spectral density functions of two proc-
esses {N(f)F and { Y1)}, which are related through
some linear differential or integral equation. Thus,
[or example, the frequency of a signal is the deriva-
tive of its phase.

Let {X(1)} be a weakly stationary process, W(t)
a real integrable function, and let

()= [ ll'(u)‘\'({—u):/u:‘ ) W(t—u) X (u)du.

(3.9)

W(t) is called the linear filter, X(t) the input, and
Y (t) the output of the flter W(1). If W()=0 for
t<_0, W(t) is a physically realizable filter.

Let

X ()= I : Oz ),
W* (f)= [ e W (u) du. (3.10)
From (3.9), we obtain
Y= [ W ez .
Thus ) (¢) has the representation
where
dz, (N)=W*(f)dz(f). (3.11)
Hence, by (3.3),
9 (N=IW*() g (f)- (3.12)

where g,(f)and g.(f)are the spectral density functions
of {Y(t)} and {X(t)}, respectively. Thus {Y(t)} is
also a weakly stationary process. It is to be noted
that the integrability of W (#) is an essential condition
for (3.12) to hold. Also, we require that ¢,(f) be
integrable. '

Liet us now consider

U#)=a,XP(t)+a,  XPP@#)+. .. +a.X (1),
(3.13)



where X© (i)~(le/(ll‘f Again, using the spectral
representation of { X(#)} process, we obtain

(]: u (f) — (a'()+ (2777/) a, + e + (27”7) pa'p) ({2’1 (f)

9'14(7[ ](lj

(u(f) (3.14)

Of course, {U(t)} will be defined if and only
gu(f)1s 111‘590‘1(11)10 i.e., when 'yu(())<

A pdltlLuldl case of interest is obtained from (3.13)
by setting a,=1, a,=0, j#p, so that U(t)=XP(t).

In this case
9.(f)=C2m)**1**g.(f).

Thus the process {X(t)} is differentiable p times if

and only if the 2pth (hence every lower order) moment

of the spectral density function, ax(f), exists.
Differentiating v,(¢), 2p times in the relation

(3.15)

= e pd,

=3

we obtain, from (3.15)
Yu(8)=(—1)?7P(t).

Thus, equivalently, the process {X(t)} will be differ-
entiable p times of and only if v.(t) is differentiable
2p times.

Since for any process {X(#)}, |[v«(t)] <7.(0), Y2(t)
attains its maximum at ¢=0. Hence, il y,(f) is
differentiable 2p times, we must have

0= (0) =y (0)= . . .

(3.16)

—=y@=D(0),  (3.17)

since each of
Yo(8), =¥ (), v (®), y Py 2Ry,

is a covariance [unction of a stationary process.
Furthermore, AX(#)X9(t+s)=~vY(s); hence X(¢)
and X®-V(), 7=1, . . ., p, will be uncorrelated.

3.2. Discrete-Time Processes

It is a (OlllanIl practice to observe a process at
equal intervals of time even though the process may
be a continuous-time process. lLet ¢ be measured in
seconds so that f is measured in cycles per second.
Let the spacing between observations be & seconds,
so that the derived process is { X(kh)}, k=
—1’ 0’ 1)
k=0, +£1, +2

. - . )
., with covariance function y,=~v(kh),
.. ... From (3.5b)

vy = | gy

= @ren/en
=5 [0 eemg(pag

r=—o 2r—1)/(2h)

1/(2h)
—A f etrising, (1)df, (3.5)
—1/(2h)

where
5 = r
/I.(h(j):.(i(;/)-l-;{!f <~f+7{>
.
+~‘/<f“;7/)f’ —1/@R)<f<1/2h).  (3.19)

The frequencies f+7/h, r=1,2, . . ., which become
indistinguishable from the frequency f, are called
aliases to f.  In case 2|y, | <, (3.5d) can be inverted
to give

cos (2mfkh),—1/(2h) <f<1/(2h).
(3.8d)

,(h(f =Y+ é

Of course, if we start with a discrete-time process,
we may conveniently set =1, and obtain

/2
vﬂ.:QJ cos 2nfk) . (f)df, k=0, £1, +2, . .
0

®

() =v+2 Z s 2nfk), —1/2<f<1/2.

Also, the spectral representation of { N(k)} is

1/2
X(l{') S ()‘Zﬂkf([fr (/') ,

il

with E|dz,(f) |*=g.(f)df.

Relations corresponding to (3.12) and (3.14) can
easily be obtained by replacing integrals with sum-
mations and differential equations with difference
equations.

4. Estimation of the Mean

Let { X()} be a continuous-time weakly stationary
process with the mean g, the covariance function
v(s), and the spectral density function ¢(f). Let
a sample function X (), 0 <t < T, be available. Con-
sider the sample mean

T
m—=T-1 L X(1)dt. (@.1)

We have Em=ypu, and [Siddiqui, 1961, eq (2.9)] the
variance of m,

.
var m=21"" f (1—s/T)v(s)ds. (4.2)
JO

The variance of m can also be expressed in terms of
g(f). Infact, using (3.5b) in (4.2) and interchanging
the order of integration with respect to f and s, we
obtain

N f S‘(“I’,})Tf df. (4.3)

Changing the variable of integration in (4.3) by
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setting f'==Tf, we have

Slll'

var m ——T (4.4)

),

where again f” is replaced by f. Expressions (4.2)
to (4.4) are exact. However, if g(f) is continuous
at {=0 and g(0) >0, an asymptotic expression for

var m 1s
T f

Thus when ¢(f) is continuous at zero and (i)g
(0) >0, var m=0(T""), (i1)g(0) =0, var m=0(1T"").
In any case, var m—0 as 7-—o whenever g(f) is
continuous at zero, so that m tends to u in proba-
bility (ergodic property).

For a discrete sample X,=X (kh), k=1,2,..., N,
the corresponding results are

mo

var m=

(4.5)

N
=N S A (4.1d)
i=1

2 N1 k .
var m —— ‘VE <1—;_V>7k (4.2d)
§:(0)
N )

ﬁ

(4.5d)

Here, v,=v(kh) and (4.5d) holds when ¢ (f) 1is
continuous at zero.

Let N’ be defined by the equation

N’=v(0)/var m, (4.6)
where var m is given by (4.2) or (4.2d). N’ will be
called the equivalent random sample size for estimating
the mean, as the variance of the mean of N’ uncor-
related observations is v(0)/N”.

Example 4.1. Let ~y(s)=d%Mlcos 2afes, A >0.
This type ol covariance function occurs sometimes
in the analysis of radio propagation data. For a
detailed discussion of it see chapter 5 of Bendat

[1958]. Since |y(s)| is integrable, ¢(f) is continuous
everywhere. We have
“ 202\
N2 Zf N cos 27 ~S‘f[v):‘.,‘—T.,'
9(0) (7‘ 0 ‘ o 7([0 : N4 f3

Hence, for NXT>>1,
var mN—L72
T TN H-4r)
Of course the exact var m can be calculated from

(4.2). If the sample is discrete, setting p=e™,
where A is the sampling interval, we find

ar m e~ A
( “ N1+ p*—2p cos 2w fo\h)

Vi

We may remark here that v(s) is not differentiable
at s=0, hence the process is not differentiable.

FErample 4.2. Let v(s)=d% I, x\>0. This is a

special case of Example 4.1, when f,=0. Thus
20 o4
var me 7, N—p)

as the case may be. If X=0.69315, and A=1, the
p=0.5, and the equivalent random sample size N’
is approximately 0.357" or 0.33N, respectively.
Again, y(s), hence the process, is not differentiable.

Frample 4 3. Let y(s)=gd* cos 2rfes, fo#0. Note
that this cannot be considered as a special case of

Example 4.1, as vy(s) is not integrable. This is a
case when ¢(f) does not exist. However, we can

either use (4.2), or (4.3) with ¢(f)df replaced by
dG(f), where dG(f)=1/2¢* il f==+ fy; 0, otherwise.
Thus

o2 sm 7rTf0

(xTf)*

Thus var m=0(1"?) instead of O(T™").
il T=Fk/fy, k a positive integer,

var m=—

Furthermore,
var m=>0.

Frample 4./,  Let

n_o'(1—a)
g([).—.: 2 pi=a ‘ﬂ P2l O<(L<1 if | f‘<])’ = () lf[f >B.
This type of spectral density function has been

observed for the frequency fluctuations of the
received signal, when the transmitted signal has
constant frequency. Since g(f) is spv(lhv(l instead
of v(s) it is more convenient to use (4.3). Also,
since ¢(f) is not continuous at f=0, .15)111})totlc
approximation cannot be used. S(‘ttin;: 7 TB=A,
we find

“ i g

dr.

T 24+a

9
“(1—a
var 7n:z‘1(/’1"1_u )

The integral can be evaluated numerically. An
upper bound to var m is obtained by dominating
sin z by #* when 0<z<1, and by 1 when 2>1.
Thus, if A<1, var m<¢*; and, if A>1,

20 o'(l—a)
(14a)A** (1+a)A®

Thus var m=0(T""*) rather than O(7-'). Note
that f# g(f) is integrable for p=1, 2, ., hence
the process is differentiable to any order.

var m<_

5. Estimation of the Covariance and the
Spectral Density Functions

In this section we will confine ourselves to discrete-
time Gaussian processes.

Let { X3}, k= . . ., —1,0, 1, , be a discrete-
time Gaussian stationary process with mean pu,
covariance function v, and spectral density g(f).
g(f) and v;, are related by the transform pair

W:Qf"'cos @rfR)g(N)df, k —0,41,+22, . . .,
0
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90N =vo+2 37 cos @uf B),—12</<12. (5.1)

Let N consecutive observations be made on the

process. We may denote them as X, X, .. .,
Xy. From the sample we calculate
N N-—s
m=N"12X;,C;=(N—s)? LE (Xz—m) (Xzgs—m),
=1 =1
(5.2)
for s=0, 1, 2, . . ., n, where n—> as N-—>« but

n/N—0. Thus, for example, n may be the largest
integer in N2 If

Z =ay,< @ ; ;1 Vi=by< o ;

it can be shown that

L"(I;{‘)“), (5.3)

EC~y,—

var CaN= [ +i42 2 Ghtneme) |- (54)

Thus ¢ is biased as an estimate of v, but the bias,
and also the variance, tend to zero as N-—o. Thus
Cs—>v, in probability (ergodic property). We note
that if |yx| is summable, both v, and +? will be
summable (since vi<v,|v:|), and the ergodic property
will hold.

We note in particular that the estimate of the
variance v, is C,.  From (5.4)

2O, p— s 55)

var Cy=

The equivalent number of degrees of freedom for
estimating the variance may be defined as

2 [ 1 L%&{] 2
2EC)?, N N

N = ar O, & wA+2b) (120
Example 5.1. Let v,=d**l) [p|<1. Then b=p’

/(1—p?),

R 204(1+p)

var O~ *N(l -,
and

N(1—p?)
N’ ==
14-p*

Thus, if p=+0.5, N'~3N/5; 11 p==+0.9, N'~N/10.
Ezrample 5.2.  Let yk:oze‘”‘z, A >0. Then

14-25=3" =M [r/(2N) V2, if A1,
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N'=N (2—:)1/2-

Thus, if e *=0.5, N'~0.66N; il ¢ *=0.9, N'~0.26N.

We turn now to the estimation of the spectral
density function. The classical harmonic analysis
leads to the periodogram estimate,

N
o (§)=7 @+, =12,

where N is assumed to be an odd integer, and where

L N1,

2 N
2l 3 by *N Z X, sin Nk'

;= NZXLcos N

k

It can be shown that if j/N—f as N—w, lim Ky

Noeo )
(IIN)=g(f), var gy(f)=g¢*(f); so that gy(f) does not
converge to ¢(f) as N—«. We mention here two

alternative estimates which converge in probability
to ¢(f), i.e., which are consistent estimates of g(f).
(1) Bartlett [1950].

“)(f)4 Z 1____]{:> O,r CcOSs 27r]€f7

—_Z,] 0,1, n—1

)

where n—o as N—o but n/N—0. 1t is found that

lim Egi (f)=4(),

Now»

2n e
Sy 9D, =0,

var g (f) =

s aagl
L 7000, 7=

(2) Blackman and Tukey [1958].

Nzl A
g2 (f)=Cy+2 > ( 0.46 cos 7%"—{—0.54) C; cos mkf
k=1

+(0.46 cos m+0.54)C,
cos mnf, f=j/n, j=0,1,

lim g ()=g(1),

=115

[0.8 il G*(f), when 50,

N
var g ()=~ <
‘IL_ 2 ‘hen 1=
Ll.b NI (0), when f=0.

Parzen [1957] discusses a general method of obtaining
consistent estimates of the spectral density function.



Another powerful technique is to find a linear
filter W(t) such that if X, is the input, the output, ¥,

18 approximately a white noise, i.e., g,(f) =0}, —5 <[
<%. The variance, aj, of Y, (um be estimated
conslstentl\ hence, ¢,(f)=|W*(f)[’s3, can also be
estimated (onststentl\
Ezample 5.3.  Consider
1\[*(10) t+a/1 t—l+ . —{*arplft_,,.
Here,
W(t)=a, if t=0,1, . .., p=0, otherwise.

Replacing integrals by summations in (3.9) and
(3.10), we obtain

Gz (f)Z[é) ae 2 : g,(f)-

If V7, is a white noise, X, is called @ moving average

4 l . > . e -
process.  On the other hand, il X, is a white noise
and

yu
> ;ZP7F=0

k=0

has all the roots within the unit cirele |[Z|=1 in the
complex plane, Y, is a stationary process and is
called an autoregressive process of order p. In the
former case ¢,(f)=o3, and in the latter case g.(f)=
ol

Special case (a). If a,=1/(p-+1), k=0, 1, o P,
and Y, a white noise, X, is called a simple moving
average process. In this case ¢,(f) is evaluated to be

sin? {(p ,_H)”/ o2

- CR) o Sl 2l
(]J:(f) )+1 Slll 7r/) Oz, 2_/ 2
as o= (p+1)oi. We only need a consistent

estimate of ¢2, which is the sample variance.
Special case (b). Y,—pY, =X, |p/|<1, and X, a

white noise. This is a first-order autoregressive
scheme. Setting a,=1, a,= —p, and a,=0 otherwise,

we find

G,(f)=(1—2p cos 2w f+p*) " 'g.(f).

Also
g:.(f)=o3=0a,(1—p%);
hence
g,(f)=0%(1—p*) (1—2p cos 2xf +p?) 1.

a2 and p are consistently estimated by the sample
variance and the first (lag 1) autocorrelation (=(}/
(), respectively. Note that the covariance of
(Y}, v,(k)=d2p"*". Hence, ¢,(f) can also be
obtained directly from

g (f)=o7 I:l +§1 (pkez"ifk_]_pk@—rifk)].

Erample 5.. In figure 1, 236 noon hour monthly
median f,/, values in Me/s observed at Washington,

D.C., from May 1934 to December 1953 are plotted
against . The unit of ¢ is one month and t=1 cor-
responds to January 1934. Hence, the first value
plotted corresponds to t=5. In ﬁ"‘lll(’ 2 the autocor-
relation function, »(7)=C7/(, of this data is plotted
i@ =il 2, ., 120; and n figure 3, the Black—
man-Tukey spectral density l'unction, g9 (f),
graphed against frequency, f, cyeles per yeqr
g (f) is the normalized density per cycle per year.
The speetral density indicates that there are two
fundamental cycles in the data corresponding to
f=0.1 (10-yr eycle), and f=1 (one yr cycle). Be-
sides these, their first two harmonics (f=0.2, 0.3, and
f=2, 3), and their “interaction” frequencies (f=1
+0.1=0.9, 1.1) are also significant. Since the
least common period for all these cycles is 120
months, before further analysis it seemed advisable
to add four more terms to the data in figure 1, to
make the total number of data pomts ‘)40—‘)><120
These values are 5.9, 5.7, 5.5, and 5.0 corresponding
to the months of J:um:ug\'n\pril 1954.

TT T T [ T T T T [ T T T T [ T T T T [T T 11
MEAN OF THE DATA = 8.2
" VARIANCE OF THE DATA = 592 )
10f— |
v |\ \ |
W \ _
o LAY AR LIITYS
54/ \f\f \f -
B MEAN VALUE -
B X JANUARY VALUE
Y I B | o ! I B B
0 50 100 . 150 200 250
Ficure 1. Noon-hour monthly median f,F," (Mc/s) at Wash-
ington, D.C., from May 193/ to December 1953.
N I I Y O B B T T
MEAN OF THE DATA - 8.2
VARIANCE OF THE DATA = 5.92
10 —
£l A ]
1 \/\W\Nf\/ E
-10f— —
I T I T O N T YT A W

0 2 50 5 100 125
LAG T (IN MONTHS)

Froure 2. Autocorrelation function of the dala in figure 1.

577



[
(=3

TTT T I T T T T T T T T T T T T T TITT T T

= o E=9 o

=
>

TTTTTTTTTTTTTTTTTT

TEEEEN = CEERERERE ARRRNREREN
15 20 25 30 35 40

f, CYCLES PER YEAR

=

g(f)-DENSITY PER CYCLE PER YEAR (UNIT BANDWIDTH)

ettt b bl

o
&
=3
b=y

Frcure 3. Spectral density function of the data in figure 1.

Let z(t) denote the fF, value at time f.
x(t) 1s represented as

i) =mun

Then

() +2(2),

where

21r.’}' t

=X “mIC 4 p sin T
mB=X+23 (”’f cos 120Jr 990

X=N~"2> (),
t

and the summation over j is on j*l 2, 3 9, 10, 11,
20, and 30. z(f) represents the “error” or “noise.”
The coefficients a; and b; are obtained by the least-
squares method, and their values are as follows:

TaBLE 1. a;, b;, and A}-+b}
. 2

J a; b; a;-l—b?
1 —2.24 1.17 6.38
2 —0.371 —0.297 0.226
3 —.0172 —. 220 . 0485
9 —. 130 . 393 171
10 —. 671 =il 77 3.58
11 . 342 0.443 0.313
20 . 556 . 0556 .313
30 —.233 —. 247 115

After fitting m(t), the residuals z(f) are calculated
from z(t)=z()—m(t). Autocorrelation analysis of
z(t) shows that they can be considered as ‘“white
noise.” To test whether the residuals are normally
distributed, the range (—<w, =) is divided into 10
intervals such that in each interval the expected
frequency is the same, i.e., 24. For this purpose an
estimate of var z is required. This estimate is

Z2(t) 871
20

SN 179293 =0.39.

We note that 2z(#)=0. The resulting class inter-
vals and the observed frequencies, f;, are tabulated
in table 2.

TABLE 2

Class interval Jo
—© ... —0.801 23
—0.801 ... — .526 20
— .62 ... — .327 25
-.327 ... — .1588 24
LoD R 0 26

0 o 5o .158 24
0.158 ... 0.327 33

L3827 ... . 526 20

.526 ... . 801 20

SSOTREERER .® 25

The expected frequency fe, for each class interval

is 24, Hencoxi—=3 OJTJJ )1 32f;—N. This value

24

is calculated to be 5.67, and the number of degrees of
freedom for x?is8. The probabultv thatsuch asampleor
worse comes from a normal distribution, as judged
by the x* value, is more than 60 percent. We may
thus conclude that we have essentially completed
our analysis and that m(t) is the best fit to the data.

The correlation coefficient between z(t) and m(t)
is given by

12 39 1/2 _
R (1—-*) (l—m :091

m(t) is plotted against ¢ in figure 4 for t=1, 2, . . .,
120. The values of m(¢) for t=1, 2, , 12 may
be taken as predictions for the successive months
of a year ending in 4, i.e., 1954, 1964, 1974, the
values for t=13 to 24 for the months of a year
ending in 5; and so on. Since the residual standard
deviation is 0.62, uniform 95 percent confidence
limits for x(t) are m(t)-+1.2.

T

PREDICTED foF2
=

s

VUUUUU\M:

50 =
—— MEAN VALUES

L x JANUARY VALUES -

kI o .

95% CONFIDENCE LIMIT;
20 GRAPH VALUE % 1.2

48 60? 72 84 96 108 120

YEAR ENDING IN

F1cure 4. Prediction curve for monthly median f,¥, for Wash-
ington, D.C.
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6. Estimation of the Distribution Function

The process distribution function, P(z), is the

probability that X,<z. The sample distribution
function, P*(x), is the proportion of Xi, . . Xy,
such that X, <z. Thus, with =1, 2, . ., N,
0, if z<all X,
P*(x)=+ J/N, if exactly j of X, <z,
1,1f all X, < 2. (6.1)

We will assume {X,} to be strictly stationary
process and introduce

P (a,0) =Pr(X <z, X4, < 1)

il)’l(A"(]S Xy, A\'.\. S .l'-_)) s (62)
Note that, if 2>z,
IR =IO i, A= )
=/ E )=/ am). (6.3)
Let
=l i Ay (), i A s (6.4)
then
N
[ @y= N =" 20 W o (6.5)

t=1

1.e., P*(x) 1s a sample mean of the {},} process and
the results of section 3 will apply, noting that

18V =P a)y=1"(w)
V() =EY —P@)|[Y 1+,—P(x)]

=Pr(X, <z, X,.,<x)—P*x)

=P 0) =179 (6.6)
Since Py(x,x)=PF(x), we have
v,(0)=P(x)[1—P(x)]. (6.7)
Thus, from (4.2d),
- 7)/ U) 2 N-1 _k
var Pro)="4 0425 (12 ) w0,

where v,(k) are given in (6.6) and (6.7). It is

obvious that if
£ b= (PPN,

then var P*(x)—0 as N—o, and P*(z) converges
in probability to P(z) (ergodic property).

To estimate var P*(x) from the sample, we need
an estimate of Py(x,x). For this purpose we find
the proportion of the sample pairs (XX, X,i;) such
that both X,<r and X,..<xz. We will denote this
proportion as £ (x,x).

var P*(0.5)~

FErample 6.1. The following is a systematic sample
of 80 observations (read at 5-sec intervals) of received
field intensity in (microvolts)®>. Read left to right.

0.20, 0.71, 0.06, 0.05, 0.76, 0.32, 0.96,
0.63, 0.09, 0.18. 0.25, 0.45, 0.26, 0.10,
0.95, 0.01, 0.50, 1.20, 1.99, 0.32, 0.51,
0.01, 0.16, 0.56, 3.16, 1.27, 2.24, 1.00,
0.81, 1.29, 0.28, 0.21, 0.35, 0.20, 0.39,
0.89, 1.24, 0.08, 0.98, 1.01, 0.49, 0.90,
1.90, 1.42, 1.56, 1.32, 1.20, 1.59, 2.40,
224, 0.80, 0.56, 1.45, 0.18, 0.02, 0.28,
0.81, 0.18, 1.13, 0.64, 1.95, 048, 0.55,
0.44, 028, 0.07, 0.71, 048, 0.40, 0.06,
0.79, 1.01, 0.51, 0.70, 0.14, 0.16, 0.01,
0.06, 0.03, 0.01.

of 7(0.5). We obtain

Let us consider the estimate

P*(0.5)=5-=0.4875;

8()

9

P1*(0.5, 0. ,)7 -*() 2911, P,*(0.5, 0. ))ﬁ *() 2692;

N 20 - - 16
Py*(0.5, 0.5) =22 =0.2597, P;*(0.5,0.5) = - =0.2105.
7

Noting that

P?(0.5)=0.2377, 4,(0)=P*(0.5)[1—P*(0.5)]=0.2498,

where 7,(k) denotes the sample estimate of v,(k), we
find that 4,(3) and ¥,(4) are of opposite sign and
Y,(3)/7,00), ¥,4)/7,(0) are Il(“’]l“‘l[)l(‘ compared to

unity. We may assume that Z v,(k) is negligible.

Thus

0.2498 2

(\() (5‘(] | ( \())( ; )

=0.0031-+0.0021
=0.0052.
With the assumption of approximate normality for
the distribution of 2(0.5), 95 percent confidence
limits for P(0.5) are
P*(0.5)—1.965,<P(0.5) <P*(0.5) +1.96s,,
where
sp=+/var P*(0.5)=0.072, i.e., 0.35<P(0.5) <0.63.
If we assume the Rayleigh power distribution for

the above data, the distribution function is most
efficiently estimated as
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A M
P@)=1—¢ %" 0<2< o,

where 0.71 is the mean of the observations. Thus,
under the assumption of the Rayleigh distribution,
P(0.5) is estimated to be

0.50

P(0.5)=1—¢ 71—0 51,
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