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The st atistical t heory of stationar y processes has wide applications in t h e ana lysis of 
r adio wave propagation data. In t his paper, assuming th e knowledge of t he basic concepts 
of probability the::Jry on th e part of t h e reader, characteristics of st ationary processes such as 
covfLriance and spectr al densit y functions have been developed, problems of estimating t hese 
charact eristics have been tackled, and numerous examples have been worked out to illus
trate th e theory. 

1. Introduction 

The indeterminacy in science, in m icroscopic as 
well as macrocopic physical processes, is gradually 
replacing the concept of t1 a cause and its eHeet" 
by the concept of t1a cause and th e probability 
distribution of it possible effects ." We no longer 
ask the questions : will this sign al be received? 
will a meteor be observed during this time interval? 
Instead we ask : what is the probability that Lhi s 
signal will be received? what is the probability 
that during this t ime interval at leas t one meteor 
will be observed ? 

In radio scien ce the probability theory and 
s tatistical methods have wide appli cation s, both in 
the development of theories and in the analysis of 
data. Scattering of radio waves from an irregular 
surface, propagation of electromflgnetic field in an 
inhomogeneous mcdium , r efl ection of radio sig nals 
from meteor trflils, the in ter ac tion of solar and cosmi c 
energy with the earth's a tmosphere, and many other 
such processes require theoretical models based on 
some kind of probability mechanism . Some models 
for these phenomena have alrady b een proposed (to 
quote a few examples: Rayleigh [1899 , 1919], Rice 
[1951]' I sakovich [1952], Hoffman [1955 , 1959], 
Wheelon [1960]) , but essentially the field is wide 
open. The real challenge is to develop a sufficient 
number of stochastic models which would provide 
proper methods of analyzing mountains of dHta, 
which have already been collected, and point out 
ways for further meaningful experiments. In the 
absence of satisfactory theories, from which deduc
tions can be made, we can only rely on ad hoc 
inferential hypotheses based on the statistical 
analysis of the data. Hence we turn to the question: 
what s tatistical methods can b e used profitably to 
reduce the data in to a few meaningful numbers? 
W e finel that thc statistical theory of stationary 
proces es , if correctly applied, has been and can be 
of great use. Vlfe shall , therefore , confine our study 
to the characteristics of stationary processes and 
efficient procedures for estimating these character
istics. The 1\11owleclge of the basic concepts of 
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probability theory will be assum ed on the part of 
the r eader. 

2 . Definitions 

A random process, {X(t)}, is a fun ction of a 
param eter t , such that for each value of t , X(t ) is a 
random variable. vVe will r efer to t as time, although 
it may b e an arbitrary param eter. If t takes on 
only discr ete valu es, say .. . , -2, - 1, 0, 1, 2, .. . , 
the process, { ... , X (- 2), XC- I ), X (O), X(I ), 
X (2), . . . } is called a discrete-time process; and if t 
takes on values in a con Linuum, say -00 -:::; t -:::;oo, 
{XCt), - 00 -:::; t -:::; co } is called a continuous-time proc
ess. Thus, 1'01' example, if we ob erve th e hourly 
m edian value, }.([.(t ) , of the en v elope, X(t ) , of the 
received sign al , {1\,[(t ) } is a discr ete-time and {X (t)} 
is a continuous-time process. An observed r ecord 
of {X (t )}, written wiLhout th e curly brackets as 
X (t) , is called a sample f unction. The curly brackets 
simply denoLe that there ar e infini tely m any possible 
sample functions which cons ti tuLe the r andom 
process. If there is one and only one possible 
sample function , then the process is not random but 
cleterministic. 

"What we want to lmow is the joint probability 
distribution of the random variables X (tl )' . .. , 
X(t n) for arbitrary n, t l , ••• , t n. In its generality 
it is an impossible task, as it requires infinitely many 
sample functions observed over infini te time inter
vals. Thus we cannot proceed further with the 
analysis without assuming certain structure for th e 
process. 

A random process, {X (t) }, is called weakly stat1~on
ary if, for all t and s, 

EX2(t) < 00 ; EX(t) = EX(O); 

EX(t )X(t + s)=EX(O)X (s ) . 

Here, if X is a random variable 'with probability 
(X-:::;x )=P(x), EX stands for the mean value of X , 
i.e ., 
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A random process, {X(t) }, is called strictly station
ary if the joint distribution of X(fl +s), ... , 
X(t n+s) is identical with the joint distribution of 
X(tl)' ... , X(t n) for every n, tl> .. . , tn and s. 

A weakly or strictly stationary process , {X(t) }, is 
called ergodic in respect to a function g, if , for almost 
all sample functions , X(t), 

If for any arbitrar:v function g, such that Eg(X(t» 
exists, the relation given above holds, then the process 
is called, simply, ergodic. 

3 . Stationary Processes 

In genCI'al , a record of some aspect of radio propa
gation cannot be considered as a sample function 
from a stationary process. For example, let X(t), 
t= l, 2, ... , denote the hourly median value of 
the critical frequency, jOF2' of tbe F2 layer of the 
ionosphere observed at ''Vashington. D.C .. From a 
priori considerations we would expect a .clmrnal, a 
seasonal and a ten- or eleven-year cycle III the rec
ord the'last mentioned cycle corresponding to the 
sun~pots cycle. However, if we eliminate these cycles 
by the least-squares fit .we may reason:=tbly .assUl~le 
that the residuals constItute a sample functIOn of a 
stationary process. As we shall see later, theoreti
cally it may be admissible to consider even a record 
with discernible periodicities in it as a sample func
tion from a stationary process, bnt in a single rec.ord 
it is always advisable to remove such discermble 
cycles, and also the low-frequency part which, due to 
the limited extent of data , appears as a trend, before 
spectral analysis of the data. (For proper regression 
alUl,lysis refer to Siddiqui [1960].) 

3.1. Contin uous-Time Processes 

. Let {X(O } be.a continuous-time real weakly sta
tIOnary process wIth 

EX(t) = O; EX(t)X(t +s) = 'Y (s) = 'Y(-s). (3.1) 

The question of estimating EX(t) = p" when p, is not 
assumed to be zero, will be taken up in the next 
section. 

The spectral representation of a wealdy stationary 
process with mean zero, suggested by Crame~ [1940, 
1942], is a powerful method of undcrstandmg the 
characteristics of the process. 

If II and 12 are two disjoint intervals on a real line, 
a random set function z(J) is called orthogonal if 

Here z denotes the complex conjugate of z. Let us 
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write dz( f) for z(df). Cramer sho\\'s tha t X (t) has 
the spectralrepl'esentation 

(3 .2) 

where z(j) is an orthogonal set function 'with 

E ldz(f) i2=G(j+ dj) - G(f) = clG(f) , dj> O, (3 .3) 

and G(t), called the spectral clistTibution junction, is a 
non decreasing function with 

G(-O»= o, G(O» = 'Y(O). (3.4) 

Now, X(t) is real, hence 

'Y(s) = EX(t)X(t +s) = EX(t)XCt +s) 

= I _oooo e'2'i!'dG(f ) , (8.5) I 

from the orthogonality of z (j). In (3 .2) and (3.5) 
we have admitted negative as well as positive fre
quencies. It is possible to develop the theory in 
terms of posi tive frequencies only, in which eaEe we 1 

will use cosine function for transformation rather I 
than the exponential function. Obviously, expo
nential functions are much easier to work with than 
trigonometric functions. Hence, we will retain the 
representation as given above. I 

The integrals (3.2), (3.5), and others which will i 
appear below should be interpreted in the Stieltjes I 
sense. Thus, for instance, if G(j) is a purely step I 

Junction with steps of sizes g~, g~, g; , ... , at 
f = O, ± jl, ± j2, ., respectively, (3.5) is to be 
interpreted as 

00 

I' (s) =g~+ :z.= g~(e2JrifkS + e-2'ihS) 
k~ l 

00 

=g~+2:z.=g~ cos (27T}kS). 
k~ 1 

(3 .5a) I 

g~ is called the spectml mass at the frequencies I 

± f k • In tIllS case 

00 

XU) = ao+ :z.= (ak cos 27T}kt + bk sin 27fjkt) , (3.2a) 
k~l 

since dz(j) is also a step function. Here 

ao= clz(O), ak= clz(jk)+ dz(-jk), bk=idz(jk)-idz(-jk)' : 

Noting that clZ(-j k) = dZ(jk) = (ak + ibk )/2, and re- I 
membering the orthogonality property of z (j) , I 

and that E X(t) = 0, we have 1 
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Eak= Ebk= O, <1 11 k; Eakbj= O, all Ie ,j; Eag= g~, 

Ea%=Eb%=2g~ , Eaka j= Ebkbj= O, Ic~ j. (3.6) 

H, on th c oU lcr hllnd , GU) is dif[c["cnli,tble \\'ill! 
G' (f) = g(f), a nd g(-.f) = g(j) , (:3.5) becoJllcs 

l' (s) = I -"'oo e2~ifSg(j)dj = 2 1 '" cos (27f-Js)g(f)df. 

(3.5b) 

In t hi s Cl1se, G'(j) = yU) is called the spectral denl51tl/ 
function of th e process. .More ge ll erally 

wh ere GI (f) is purel)' It s tep func-tion , and G~ (f) 
ad nli ts the spectral den sity g2(1} Thus, th e mo re 
general represell tation s of 1' (8) I1ncl ~\. (I) nre the 
following: 

r(s) =y~+~ 2g~ cos (27f-jkS) +2.['" cos (27ffs) g2 (J)(U, 

(:3.5c:) 

'" X(t )= ao+ ~ (ak cos 27r.f.t + bk sin 27rfkt) 
k~1 

+ I -"'", e2Tifldz2(j) , (3.2c) 

wh ere E ldz2(f)l2= rh(1)(f: a nd ao, a k , bk , . not onl y 
s<1t isl\' 0.6) bu L Itlso are un correl<tted wIth dz2(1). 
It m l;Y be noted that , sin ce (Lo, (L k, bk a re ind ep(' ncien t 

I of t , in a single Sll lllpl e fun cLion tll.e~· appea r as 
constallls; h ence the cl esimbility of es tim ating these 
co nsta nts b.\" tIll' lenst-squ ares m eth od as di sc ussed 
em'lier in th.e section. 

From h er e onwards we shall aSS Ulll e Lhat by proper 
rco-I"ession analysis G, ( f) is elimin ated so th,tt G(.f) 
is "'differcnliabl e, a nd tile represe nla tio n (3.5b) h olds. 

If 

C:3. 7) 

(3.5b) ca n be in verted to give 

g( - f) = g(.f) = .r"'oo e-2~i!Sr(s)ds= 2 100 

cos (27rjsh(s)ds, 

(3.8) 

and g(l") is continuous everywhere . Thus a su..fjicient 
condition for the conti nuity of g(l') is that Ir(s) I be 
i ntegrable. 

I t is nol s ufftcient, however, Lh,tt only res) b e 
in legra bIe , for exa mple, i [ 

g(j)= 1, if Ifl SB; 0, olherwise, 

whi ch is discontinuous atj= ± B. It lllay be noLed 
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that, b:" defiuition , lyW I is inLegrable. In fact 
Ig(j) I = g(1"), alld 

.r: g(j)dj= G( 00 ) = 1' (0)< 00; 

h e 11 ce , 1/ (L continuous-time pi oceS8 p08lieSSeS a spectral 
denl5ity function, itli coval"iance function res) is 
continuous el"e l"ywhere. 

~[an.\" a ti l11 e we wis ll to obLain the relation ship 
bel \H'e ll l ite speC'lml den sity fundiOll S or two proc
esses { X (I) } a nd { nt) }' wh ic h I1 re related lhrough 
sOlll e l illear d ifl"erL'nti,l l Or integ ral eq ualion . T h us, 
for eXl1lllple, lhe frequ ency of ,1 s iglll1 l is the dcriva
tive of ils ph,(se. 

Let {X (t) } be 11 \\'ellkly s laLio ll llr:" proccss, 1\ '(t) 
a rel1l integrable funC'lion , all d let 

}"ct)=.L"", " '(u) X (l - U)dU= .L"", lV(t - u)X(u)du. 

(3.9) 

W(t) is c"l1 li ed the lineal" filter, X (t ) the input, ~m cl 
J'(t) the md}J111 o f the filler Wet ). H 1r"(t) = 0 for 
t< 0, Ir(t) is 11 phy ie,lHy reali zable fill er. 

Let 

(3.1 0) 

Fro lll ( :~.g ), we obta in 

Thus r (t) hilS the represe ntaLion 

wher c 

dzy (J) = 11'* (f) dzx (f). (3. 11 ) 

Henl'e, by (3 .3), 

(3. 12) 

wh ere 9yU) Imel 9xU) IU'C th e spectral densi ty fUll c tio ns 
o f {Y (t) } alld {X (t )}, r esp ectively. Thus { Y (t ) } is 
111so it wellkl.\~ s tatiollar~" process. It is to b e ll oted 
tha t th e in tegmbili ty of W et) is an essenti ,ll condition 
for (3. 12 ) to hold . Also, we r equire th 'lt 91/ (j ) be 
integmble. 

L et us n ow consider 

U(l) = apX (p)(t) + Up_IX (lJ-1l( t) + ... + a. oX (t), 
(3. 13) 



wh er e X U)(t )= dJX /dti Again , using th e spectr al 
representation of {X(t )} process, we obtttin 

dz,,(f)=(ao+ (27r~f)al+ ' . . + (27ri)")1'ap )rlzx(f) 

gll (.f) =l t (27ri.f) JaJI 2gx (f) . 
}=o 

(3. 14) 

Of course, {U(t)} will be de.fined if and onl~~ if 
gu(.f) is in tegrable, i .e., when 'Yu(O)< ro . 

A particular case of in terest is ob tain ed from (3. 13) 
by set ting ap = l , aj= O, .i ~ p, so tha t U(t)= X (P) (t). 
In this case 

(3. 15) 

Thus the process {X (t) } is differentiable p times if 
and only if the 2pth (hence every lower order) moment 
of the spectral density function, gxCf), exists. 

Different ia tin g 'Yx(t) , 2]) t im es in th e rela t ion 

we obtain, from (3 .1 5) 

(3 .1 6) 

Thus, equivalently, the process {X (t) } will be d~tJe1'
entiable p times ij: and only if 'Yx( t) is d~tJerentiable 
2p times. 

Since for a ny process {X(t) }, l'Yx(t) 1 ~'Yx (O), 'Y x(t) 
attains i ts maximum at t= O. H ence, if 'Yx(t) is 
differentiable 2p t imes, we must have 

since each of 

'Yx(t ), - 'Yi 2)(t), 'Yi 4)(t), ... , ( - l)v - I'Y?P-2)(t), 

is a covariance funct ion of a sta tionary process. 
Furtherlllore, EX(t) X U) (t+s) = 'Y (J)(s) ; hence X(t) 
and X (2j -l)(t), .1= 1, . .. , p, will b e un coL'rela ted. 

3 .2 . Discrete-Time Processes 

It is a common practice to observe a process a t 
equal in tervals of t ime even though the process ma~T 
b e a continuous-t ime process. L et t be m easured ill 
seconds so tha t f is m easured in cycles per second . 
L et t he spacing between observations b e h seconds, 
so tha t th e derived process is {X (kh) }, k = . .. , 
- 1, 0, 1, ... , with covariance fun ct ion 'Yk= 'Y (kh), 
k = O, ± 1, ± 2, ... . From (3. 5b) 

'Yk='Y(kh) = I -OOoo e2"ifkhg(f)df 

oo i ( 2r + I) I (2h' 

= ~ e2"i f khg(.f) df 
T= - OO (2r- I) I(2h ) 

where 

hgl(.f) = g(.f) + ~ { g (1+ 0 

+9(1-0} ' - 1/ (2h)~f~ I / (2h). (3 .19) 

The frequen cies f ± T/h, 1' = 1,2, ... , which become 
indistinguishable from thc frequency f, are called 
aliases to f. In case ~ 1 'Y kl < ro, (3 .5d) can b e inver ted 
to give 

gl (.f) = 'Yo + 2 ~ 'Yk cos (27rj kh) ,-1/(2h) ~f ~ 1/ (2h). 
1.'=1 

(3.8d) 

O f course , if we star t with a discrete-time process, 
we Juay convenielltly set h= l , and ob tain 

t '· 'Y/(= 2Jo cos (27rjk)gl(.f)(U, !c= 0, ± 1, ± 2, ... , 

Also, the sp ectral representa tion of {X(k) } is 

f l / 2 

X (k)= e2"ikfdzx (f) , 
- 1/2 

wi th E ldzx(j) 12 = ylf)dj. 
Rela tions corresponding to (3 .12) and (3 .14) can 

easily b e obtained by replacing in tegrals with sum
mation s and differen tia.l equ ations wi th difference 
equ a tions. 

4. Estimation of the Mean 

L et {X(t) } be a con tinuous-timc weakly sttl tionary 
process wi th the m ean fJ. , the covaria nce function 
'Y (s), and the sp ectral density function gcr). Let 
a sample fUllction X (t), 0 ~ t ~ T, be avail able. Con
s ider the sample m ean 

[
T 

m = T -I X( t )clt . 
• 0 

(4.1) 

W e have Em= fJ. , and [Siddiqui , 1961 , eq (2.9)] the 
variance of m, 

rr val' m= 2T- IJo (l -s/Th (s) cls. (4.2) 

The variance of 1n can also be expressed in t erms of 
g(.f) . In fact , using (3 .5b) in (4.2) and interchanging 
the order of in tegl'a tion with r esp ect to f and s, we 
obtain 

r oo sin2 7rTf 
val' m = 2 Jo (7rTfF g(f)df· (4.3) 

(3.5d) 
Changing the variable of integration in (4.3) by 
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setting j' = 11-Tj, we have 

. _ 2 ( '" sin2 f (j) . 
val m - 7rT J o T 9 7rT dj, (4.4) 

where again j' is replaced by j. Expressions (4.2) 
I to (4.4) are exact. However, if g(f) is continuous 
I at f= O and g(O»O, an asymptotic expression for 

val' m is 

var m~ g~) =~ Sa '" 'Y(s)ds. (4.5) 

Thus when g(j) is continuous at zero and (i)g 
(0»0, val' m = O(T- l), (ii)g(O) = O, val' m = O(T- l). 
In any case, var m --'>O as T ro whenever g(j) is 
continuous at zero , so that m tends to fJ. in proba-

\ bility (ergodic property). 
For a discreLe sample X k= X(kh) , k = l , 2, ... , N, 

the correspondin g resul ts are 

N 

m=N-I~Xk' 
i=l 

(4.1d) 

(4.2d) 

(4.5d) 

Here, 'Yk= 'Y(kh) and (4.5d) holds when f/1(f) is 
continuous at zero . 

Let N' be defined by the eq uation 

N' = 'Y (O)/var m, (4 .6) 

wherc val' m is given by (4.2) or (4.2d). N' will be 
called the equivalent random sample size jor esti mating 
the mean, as the variance o[ Lhe mean of N ' unc01:
related observations is 'Y(O) /N'. 

Example 4.1. Let 'Y(s)= u2e-X[s/eos 27rjos, A> O. 
This type of covariance function occurs sometimes 
in the analysis of radio propagation data. For a 
detailed discussion of it see chapter 5 of Bendat 
[1958]. Since !'Y(s) I is integrable, g(j) is continuous 
everywhere. vVe have 

( '" 2u2" 
g(O) = 2u2 J 0 e-)o..s cos 27rjosds ,,2+ 47r2jf 

Hence, [or AT> > 1, 

val' m '" T (,,2 + 47r2n) ' 

Of course the exact val' m can be calculated from 
(4.2). If the sample is discrete, setLing p=e-A", 

where h is the sampling interval, we find 

u2( 1 p2) 
val' m '" . N(1 + p2-2p cos 27rjoAh) 

We may remark here that 'Y (s) is not differentiable 
at s= O, hence the process is not differentiable. 

Example 4.2. Let 'Y(s) = u2e- A[S/, ,,> 0. 
special case of Example 4.] , when j o= O. 

2u2 u2 (1 + p) val' m~- or , 
- AT N( I - p) 

This is a 
Thus 

as the case may be. If ,, = 0.69315, and h= l, the 
p= 0.5, and the equivalent random sample size Nt 
is ~pproximately O.35T or 0 .33N, r espectively. 
Agall1, 'Y(s) , hence the process, is no t differentiable. 

Example 4- .3. Let 'Y(s) = u2 cos 27rj08, jo~O. Note 
that this cannot be considered as a special case of 
Example 4.1, as 'Y(s) is not integrable. This is a 
case when g(J) does not exist. However, we can 
either use (4.2), or (4.3) with g(f)(~f replaced by 
dG(j) , wher e dG(f) = 1/2u2, if j= ± jo ; 0, otherwise. 
Thus 

• _ 2 sin2 7rTjo 
var m - u (7rTjoF' 

Thus val' m = O(T -2) instea,d of O(T - I). Furt hermore, 
if T = lcljo, lc a positive integer, val' m = O. 

Example 4.4. Let 

This type o[ spectral density [unction has bcen 
observed [or Lhe frequ ency fiucLuatiol1s or the 
received signal, when the tran smit ted signal has 
constant frequency. Since g(j) is speeified in sLead 
of 'Y (s) it is more convenienL to usc (4.3). Also, 
since g(j) is not continuous at j = O, asymptotic 
approximation cannot be used. SetLing 7rTB = A, 
we find 

The integral can be evaluated nUH1cricalh-. An 
upper bound to val' m is obLained by d0J11illa Ling 
sin2 x by x2 when O:S;x:S; 1, and b)- ,. when x> l. 
Thus, if A :S; l , val' m < u2 ; and, if A > I , 

2u2 u2(1 - a) 
val'm « I + a)A1 a (l + a)A2' 

Thus val' m = O(T - I+a) rather than OCT- I). Note 
that pv g(j) is integrable for p = l, 2, ... , hence 
the process is differentiable to any order. 

5. Estimation of the Covariance and the 
Spectral Density Functions 

In this section we will confine ourselves to discrete
time Gaussian processes. 

Let {X k }, lc = ... , - 1, 0, 1, ... , be a discrete
time Gaussian stationary process with mean fJ. , 
covariance function 'Yk, and spectral densiLy g(j). 
g(j) and 'Yk are related by the transform pair 

'Yk= 2 fo! cos (27rjlc)g(j)clj, k = O, ± I ,±2, ... , 
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'" g(j) = 'Yo+2 ~'Yk cos (27rj k),- 1/2~j~I/2. (5.1) 
k = J 

Let N consecutive observrttions be made on the 
process. "Ve may denote them as XI, X 2 , • •• , 

X N . From the sample we crtlculrtte 

for s= O, 1, 2, ... , n, where n ---?> co as N ---?> co but 
n /N ---?> O. Thus, for example , n may be the largest 
integer in N 12. If 

'" '" 
~ 'Yk= a'YO< co ; ~ 'Y~=h5< co ; 
k= 1 k= J 

it can be shown that 

'Yo(1 + 2a) 
N ' 

(5.3) 

(5.4) 

Thus Cs is biased as rtn estimrtte of 'Y s but the bills , 
rtnd also the varirtncc, tend to zero as N -".>o) . Thus 
Cs---?>'Y s in probability (ergodic property). We note 
thrtt if i'Y ki is summable, both 'Yk and 1'% will be 
summable (since 'Y~< 'YO i'Y ki) , and the ergodic property 
will hold. 

"Ve note in particular thrtt the estimate of the 
varillnce 'Yo is Co. From (5.4) 

a 2'Y6(1 + 2b) b -.0 2/ 0 

val' 0 '" N , = ~ 'Yk 'Yii · (5.5) 

The equivalent number of degrees oj jreedom jor 
estimating the variance m ay be defin ed as 

Example 5.1. Let 'Yk= u2plkl, ipi< l. Then b= p2 
/( I - p2), 

and 
N' ",N (1- p2) . 

l + p2 

Thus, if p= ± 0.5 , N' ';;!..3N/5; if p= ± 0.9, N' ';;!..N/ I0 · 
Example 5.2. Let 'Yk= u2e- Ak2 , },,> O. Then 
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( 2}..')1/2 
N' = N - . 7r 

Thus, if e- A= 0.5, N' ';;!..0.66N; if e-A= 0.9 , N' ';;!.. 0.26N. 
We turn now to th e estimation of the spectral 

density function . The classical harmonic analysis 
leads to the periodogram estimate, 

( .j)_ N ( 2+ 62) ._ N gN N - 4; aj j, J -- 1, 2, . . ., - 1, 

where N is assumed to be an odd integer, and where 

2 N 27rjk. 2 N . 27rjk 
aj=N' ~. X k cos ~' bj=N ~ X k S1l1 N' 

k=l l ' k= l 

It can be shown that if j /N ---?>j as N ---?> co, lim EgN < 

N-'>"' -.::il 
(j/N) = gU), val' gNU )';;!.. g2(j); so that gNU ) does not 
converge to g(l) as N ---?> co. We mention here two 
alternative estImates which converge in probability 
to g(j), i.e ., which are consistent estimaLes of g(j ). 
(1) Bartlett [1950]. 

g5.P (.f) =I:t.n (l_ i~l ) Ck cos 27rkj, 

j = l, j= O, 1, .. . , n- l , 
n 

where n ---?> co as N ---?>co but n/N ---?>O. It is found that 

lim Eg;P (f) = g(f) , 
N-,> ", 

val' gj.p (j) ';;!.. 
I :~ g2(.f) ,j ~ O , 

l :;T ~~O~j= O . 
(2) Blackmrtll and Tukey [1958]. 

gYP (1) = Co+ 2 ~ (0.46 cos 7r: + 0.54) Ck- COS 'lrkj 

+ (0.46 cos 7l' + 0.54)Cn 

cos 7f'nj,j= j/n,j= O, 1, .. . ,n- l ; 

lim Egjp (1) = g(1), 
N-,>", 

r n 2 I 0.8 N 9 (1), whenj~ O, 

val' giP(1) ';;!.. ~ 

l1.6 ~ g2(0), when j = O. 

P arzen [1957] discusses a general method of obtainin g 
consistent estimates of the spectral density function . . 
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Another powerful techniqu e is to find a linear 
filt er Wet) such that if X l is the input, the output, Yl! 
is approximately a white noise, i.e., gvU) = (T~, - ! ~j 
~!. The var iance, u~, o[ Y l can be estimated 
consistently, h once, gx(j) =l liV* U) 12u;, can also b e 
estimated co nsistently . 

Example 5.3. Consider 

H ere, 

liV(t) = a l, if t = O, I, .. . , p = O, otherwise. 

R eplacing integrals by summations in (3 .9) and 
(3. 10), we obtain 

II Y l is a white noise, Xl is cltlled a moving average 
process. On the othor h and, i[ Xl is a whiLe noise 
and 

has all the roo ts within th e unit circle IZ [= 1 in the 
complex plane, Y l is a stlttionary process lwd is 
call eel ltn autoregl'essive process o[ order p. In tb e 
former caso gyU)= (T;, ltlld in th e laLLer case gxU) = 
u;. 

Special case (a). If ak= I /(p+l), k = O, 1, ... , p , 
and Y l a white noiso, Xl is called 11 simple moving 
average process. In this case gx(j) is eVHluated Lo be 

as u;=(p + l)ai. liVe onl.\T n ood a consisLont 
estimate or u;, which is lhe sH mple va rian ce. 

Special case (b). Y I- pYI-1= X I, Ipl ~ 1 , and Xllt 
white noise. This is a firsL-order autoregress ive 
sch eme. Sett ing ao= I , al = - p, and at= O other wise, 
we find 

Also 

hence 

u~ and p are consistently estimated by the sample 
varia nce and the first (lag 1) autocorrelation (= Cd 
Co), respectively. N ote that the covaria nce of 
{ Y d . 'Y y (7C)=u~p l kl. H ence, gvU) can also b e 

D .C ., from May 1934 to D ecember 1953 are plotted 
against t. The unit of t is on e month and t= 1 cor
r esponds to January 1934. H ence, tho first value 
plotted corresponds to t = 5. In figure 2 the autocor
relation function , r(T) = CT/Co, of this dltta is plotted 
for T= I , 2, . .. , 120; and in figure 3, th e Black
man-Tl.lkey speetml density function , g,IJ) (j), is 
graphed against frequen cy, j, cycles per year. 
g;P (j ) is the normali zed density pel' cycle p er year. 
The spectral densi ty indiclttes that there are two 
Juud amentfl.l cycles ill the datlt corresponding to 
j = 0.1 ( 10-~T eycle) , and j = 1 (one yr cycle). B e
sides these, their first two hm'monics U = 0.2, 0.3, and 
j = 2, 3), and their " interaction" fr equen cies (j= l 
± 0.1 = 0.9 , 1.1 ) are ltlso significan t . Sin ce the 
least common p eriod Jor all these cycles is 120 
months, b efore further an ltlysis it seemed ltdvisable 
to aelel Jour more terms to the cl itta in figure I , to 
make the to Lal number o[ data points 240 = 2 X ] 20. 
Th ese values ftl"e 5.9, 5.7,5 .5, mid 5.0 corresponding 
Lo Lhe months o[ Janu ary- Ap ril 1954. 

15 

MEAN OF THE DATA" 8.12 

VARIANCE OF THE DATA" 5.92 

-- MEAN VALUE 

JANUARY VALUE 

FIGU RE 1. Noon-hour monthly median foF2~ (J1fc/s) at TVash
ington, D .C ..• FOIn l11ay 1934 to December 1953. 

VARIANCE OF THE DATA " 5 .92 

obtained directly [rom -1.0 

gy(f) = (T~ [1 + tf (pke21ri !k+ le - 1ri!k) J. 
Example 5.4. In figure 1, 236 noon hour monthly 

medianjoF2 vdues in M c/s observed at IiVashington, 
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125 

FIGU RE 2. Atltocorrelation jttnction oj the data in figure 1. 



f. CYCLES PER YEAR 

FIGURE 3. Spectral density Junction oj the data in figur e 1. 

Let x(t ) denote th e JOF2 value at time t. Then 
x(t ) is represented as 

x(t )= m(t) + z(t ), 
where 

X= N -l ~ x(t), 
t 

and the summation over j is on j = l , 2, 3, 9, 10, 11, 
20, and 30. z(t) represents the "error" or " noise." 
The coefficients aj and bj are obtained by the least
squares method, and their values are as follows: 

TABLE 1. ai, b;, and A;+N 

j aj bj a;+br 

1 -2.24 1.17 6.38 
2 -0.371 -0.297 0.226 
3 -.0172 -. 220 . 0485 
9 -.130 .393 . 171 
10 - . 671 - 1.77 3.58 
11 .342 0.443 0. 313 
20 .556 .0556 . 313 
30 -.233 -. 247 .115 

After fitting mU), the residuals z(t) are calculated 
from z(t) = x(t)-m(t). Autocorrelation analysis of 
z(t) shows that they can b e considered as "white 
noise." To test whether the residuals are normally 
distributed, the range (-ro, (0) is divided into 10 
intervals such that in each interval the expected 
frequency is the same, i.e., 24. For this purpose an 
estimate of val' z is required. This estimate is 

2= ~Z2 (t) =87.1 = 0 39 
8z N - 17 223 ., 

We note that ~z(t)= O. The resulting class inter
vals and th e observed frequencies, fo, ar e tabulated 
in table 2. 

T A BLE 2 

Class in terval 

- 0.801 
- .526 
- . 327 
- . 158 

o .. . 
0. 158 

.il27 

. 526 .. . 

.801 .. . 

- 0.801 
- .526 
- .327 
- . 158 

o 
. 158 

0. 327 
.526 
.801 
.«> 

/0 

23 
20 
25 
24 
26 
24 
33 
20 
20 
25 

The expected frequency, f e, for each class interval 

is 24 . Hence x2=~ Cf0i.fel2 214 ~f~-N. This value 

is calculated to be 5.67 , and the number of degrees of 
freedom for X2 is 8. The probability that such a sample or 
worse comes from a normal distribution, as judged 
by th e X2 value, is more th an 60 percent, We may 
thus conclude t hat we have essentially completed 
our analysis and that m et) is the b est fit to t he data. 

The correlation coefficient between x(t ) and m et ) 
is given by 

( 8; )'1' ( 0.39)'12 R = 1 -~ = 1- 5.96 ~0 .97 . 

met) is plotted against t in figure 4 for t = l , 2, .. " 
120. The values of met) for t = l, 2, . . . , 12 may 
b e taken as predictions for the successive months 
of a year ending in 4, i .e. , 1954, 1964, 1974, the 
values for t = 13 to 24 for the months of a year 
ending in 5; and so on. Since the residual standard 
deviation is 0.62, uniform 95 percent confidence 
limits for x(t) are m(t)± 1.2 . 

14.0 ,--,---,-------,----,-,------,--,--,-----,-,-, 

13.0 

11.0 

liD 

1.0.0 

N 9.0 
lL.. 
.E. 8.0 ~----l_\_+____\1I----_++_\+-+H_+1---~ 
o 
~ 7.0 
u 
[3 6.0 
a:: 
£l. 5.0 

3.0 

2.0 

1.0 

- MEAN VALUES 

x JANUARY VALUE S 

95% CONFIDENCE LIMIT; 
GRAPH VALUE ± 1.2 

00 111436486071 849610811.0 
t 

9 
YEAR EN DING IN 

FIGURE 4. P rediction curve fo1' monthly median f oF2 Jar Wash· 
ington, D.C. 
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6. Estimation of the Distribution Function 

The process distribution function, P (x), is the 
probability that X,~ x. The ample distribution 
function , P *(x), is the proportion of Xl , . . ., X N , 

such that X , ~ x. Thus, with i = ] , 2, . . ., N, 

{ 

0, if x< aJl X i, 

P*(:1.') = j/~: if exTactly j of Xi ~ x, 

1 , I(allX i ~x. (6.1) 

,Ve will assume {X tl to be stl'idly s tationary 
process an d in trod uce 

PS (XI,:rZ) =Pr(X, ~ XI, X,+, ~ l'z) 

=Pr(Xo~ XI , X, ~ xz). (6.2) 

Not.e that, if X22::XI 

L et 

then 

Po(xl,xz) =Pr(Xt~ XI, Xt~xz) 

.:V 
P *( .r) = ~V- I ~ Y ,; 

t=1 

(6.3) 

(6 .4) 

(6.5) 

i.e., P* (x) is a sample mean of the { Y ,} proccss and 
the r esults of section 3 will apply, notin g that 

Er, = Pr(X , ~ x) = P (1') 

'Yv(s) = E [r ,- P (x) ][1',+,-P (x) 1 

= P,'(X, ~x, X, +s ~.r) - p Z(.r) 

= F', (.r,x) _ P Z(x). (6. 6) 

.... ince P o(x,x) = P (.r), \\' C hHY C 

'Y y(O) = P (.r)[ 1 - P (.r)J. (6.7) 

Thus, from (4.2d ), 

'Y(O) 2 N - l ( k) 
val' P*(x) = :v +N ~ 1- N 'Yv(k ) , 

where 'Y y(k ) are gIVen In (6.6 ) and (6.7 ). It I S 

obvious that if 

'" '" 
~ 'Yy(k) = :6 [Pk(:r,x) - P 2(x)1< ex:> , 
1.:=1 1.:=1 

then val' P *(x) -70 as N -7 ex:> , and P* (x) converges 
in probability to P (x) (ergodic property). 

To estimate va l' P* (x) from the sample, we need 
an estimate of P k(x,x). For this purpose we find 
the proportion of the sample pairs (X" X/ H) such 
that both Xt~X and X'H ~X. " 'e will denote this 
proportion as P;(x,x). 
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Example 6.1. The following is a systematic sample 
of SO observations (read at 5-sec intervals) ofreceived 
field intensity in (microvoltsY Read left to right. 

0.20, 
0.63 , 
0.95, 
0.01 , 
O.Sl , 
0.89 , 
1.90, 
2.24, 
0.81 , 
0.44, 
0.79, 
0.06, 

0.71 , 
0.09, 
0.01 , 
0.16, 
1.29, 
1.24, 
1.42, 
O.SO, 
O.lS, 
0.2S, 
1.01 , 
0.03, 

0.06 , 0.05, 
O.lS . 0.25, 
0.50 , 1.20, 
0.56, 3. 16, 
0.2S , 0.21, 
O.OS, 0.9S, 
1. 56, 1.32, 
0.56, 1.45, 
1.1 3, 0.64 , 
0.07, 0.71, 
0.51 , 0.70, 
0.01. 

0.76 , 
0.45 , 
1.99, 
1.27, 
0.35 , 
1.01, 
1.20, 
O.lS, 
].95, 
O.4S, 
0.14, 

0.32, 
0.26, 
0.32, 
2.24, 
0.20, 
0.49 , 
1.59, 
0.02, 
0.48 , 
0.40, 
0.] 6, 

0.96, 
0 ,10, 
0.51 , 
1.00, 
0.39, 
0.90, 
2.40 , 
0.2S, 
0.55 , 
0.06, 
0.01, 

Let us consider thc cs timate of P (0.5). We ob tai n 

P* (0.5 ) = ~~ = 0.4875 ; 

PI *(0.5, 0.5) = ~~ = 0.2911 , Pz*(0.5 , 0.5) = ~~= 0.2692 ; 

P *(0 - 0 _) _ 20 _ 0 'r9 - I~ *(0 r: 0 5) _ 16 _ 02105 ' 3 .b, .o - 77 - .~O (, 4 .:) , . - 76 - ' . 

r*(0.5) = 0.2377 , 7v(0) = P *(0.5 )[1- P *(0.5 )] = 0.249S, 

where ,y y(k ) denotes the sample es timate of 'Y y(k ), we 
find t ha t ,y y(3) and ,y y(4) are of oppo ite sign and 
~v(3)6y(0 ), ~ y (4 ) /~ y(0 ) are neglig ible compared to 

N 
unity. We ma~- :1 Sllme that ~ 'Yu(lc ) is ncgligible, 

3 
Thus 

P *(O '- ) 0.249 ' 2 [C' 1) (0 0·' ) val' .0 ~ '80+g0 L- SO . 0.)4 

= 0.0031 + 0.0021 

= 0.0052. 

+( 1 -8~) 0.0:31 5 ] 

With the assumption of approximate normalit~· for 
the distribution of P (0.5 ), 95 percent confidence 
limits for P(0.5) are 

P*(0.5) - 1.96sp :::; P (0 .. 5) ~ P* (0.5) + 1.96sp , 

where 

Sp= -.jvar P *(0.5) = 0.072 , i.c., 0.35 :::; P(0.5) ~ 0.63 . 

If we assume the Rayleigh power d istribution for 
the above data, the distribution funct ion is most 
efficiently estimated as 



" -~ P(x) = l -e 0. 71, O:S; X:S; 00, 

where 0.71 is the mean of the observations. Thus, 
under the assumption of the R ayleigh distribution, 
P(0.5) is estimated to be 

" _o.50 
P(0.5) = 1-e 0.71 = 0.51. 
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