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The propagation characteristics of uniform, cylindrical plasma columns of circular cross
section in axial, constant magnetic fields are determined. The ratios (plasma wavelength)/
(free-space wavelength) and (power flowing in the plasma)/(power flowing outside) are
evaluated and discussed as functions of the diameter/wavelength ratio and of the plasma
permittivity, for propagation of circularly symmetrical modes. Brillouin diagrams are also
derived and compared with the results predicted by the quasi-static approximation. The
analysis is for a nonattenuating plasma, but formulas giving the attenuation due to electron-
molecule collisions are also included.

1. Introduction

A magneto-ionic cylindrical plasma column in a static axial magnetic field may efficiently
propagate an electromagnetic wave. This fact may be of importance in interpreting phenom-
ena like plasma oscillations and atmospherics, and in designing new methods for plasma diag-
nostics and millimeter wave generation.

Whereas various authors have derived the characteristic equation both for a straight
column of circular cross section [Akhiezer et al., 1958] and for an infinite slab [Schumann,
1958] of uniform plasma, no detailed discussion of the propagation characteristics is given,
except under the so-called “quasi-static” approximation [Smullin and Chorney, 1958; Trivel-
piece and Gould, 1959].

In such an approximation the propagation wavelength must be much less than the free-
space wavelength, a condition usually fulfilled only when plasma transverse dimensions are
much smaller than the free-space wavelength.

Our analysis, instead, is concerned with the solution of the exact characteristic equation,
written for the propagation of circularly symmetrical modes in a uniform, nonattenuating
plasma of circular cross section; the permittivity tensor is chosen as constant parameter for
each solution. We have found it convenient to plot our results as the ratios (plasma wave-
length)/(free space wavelength) and (power flowing in the plasma)/(power flowing outside)
versus the diameter/wavelength ratio.

Using these results we have also derived the plots of angular frequency versus wave number
for each mode (Brillouin diagrams), assuming constant values for the plasma and cyclotron
frequencies. These diagrams are similar to those obtained using the quasi-static approxima-
tion, except for a few features, which will be described.

A final section is devoted to the attenuation formulas, when the electron-molecule col-
lisions are taken into consideration.

2. Plasma Dielectric Constant

=
The dielectric constant of a uniform plasma in a constant magnetic field B is a tensor

lell, defined by the relationship:
Dizéi lEl (1)

1 Sponsored by the Air Force Cambridge Research Center of the Air Research and Development Command, United States Air Force, through
its European Office.
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- -
where D is the electric displacement and £ is the electric field.

=
If the field B is directed along the positive z axis (4, [=3), the €, components due to the
t=) o)
electron motion alone are given, for zero agitation and drift velocities, by the expressions
[Allis, 1956]:
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Here », is the electron collision frequency (assumed to be velocity independent), w is the angular
frequency of the applied field (well above the ion gyrofroquvn( ies, so that the ion contributions
may be neglected), w, is the angular plasma frequency (=+'ne’/me, n being the electron den-
sity, m and e the electron mass and charge, and ¢ the free space permittivity) and o, is the
angular cyclotron frequency (=eB/m).

When 1< < w? and << (w—w;)? the above formulas become:
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Since the collision frequency », is proportional to the gas pressure, the above inequalities are
fulfilled, whenever the pressure is sufliciently low; we assume throughout the paper that this
is always the case.
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Frcure 1. Regions of permitted and forbidden ¢ and
€3 values.
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The plO])dgd(i(Hl characteristics will be first investigated assuming »,—0 (and then
e —e' =—¢'=0), a condition which provides propagation without losses. Later we shal]
compute the losses, removing this assumption, but still considering the ¢’ terms small compared
to the e ones.

From (3) one can derive the following relationship between e, e, €:

&=(e—1)(e—¢3). (4)
It is convenient to assume ¢ and e as the independent variables of our problem. These dielec-
tric constant components are functions of w, w, and w,; the range of values that ¢ and ¢ may
have is shown in figure 1. In this figure we have divided the plane of possible values in five
regions: a separate discussion of the propagation characteristics will be presented for each
region. In the figure a new convenient frequency w,, defined as y'w?+wj, has also been
introduced.
3. Propagation in a Cylindrical Column

We assume a cylindrical plasma of circular cross section in an infinite free space. The
plasma is uniform and in steady state conditions; its axis is parallel to the static magnetic field
direction (z=axis). Our analysis is here limited to the propagation of circularly symmetrical
modes, namely to the propagation of fields without azimuthal dependence.

In a cylindrical orthogonal system of coordinates (p,¢,z) these fields are [Epstein, 1956]
inside the plasma:
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where

Rzgzradius of the plasma cylinder

;\T°=free space )\ to guided A, wavelength ratio
£4

a:
Zy={ree space characteristic impedance

Jo,oJ 1, K, K;=Bessel functions, according to MecLachlan symbolism [McLachlan, 1955].

2R h
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0
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v e “1) 2¢ [ 1i\/1+4 €17 € (az_l)zJ
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O, 7= e )
It is desired that the fields outside the plasma decay radially to zero at infinity. Since K,

is analogous to a negative exponential only when the argument is real positive, then x, must be
real, and consequently o?>1.

The condition that the tangential fields be continuous at the plasma boundary gives the
following transcendental equation, which determines the unknown quantity o

F(x())&?;es):Tﬁ‘(xﬂysheli)7 (8>
where
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Equation (8) is the characteristic equation of our propagation problem. Its solutions will

be discussed in the next section.
4. Wavelengths in Plasma Guided Propagation

For the solution of (8) and a survey of the results it is important to know the behavior
of F(x0,6,e5) as a function of x,, for different 6* values. This is plotted in figure 2 and in figure
3 for positive and negative e values respectively. Important points on the z, axis are X",
w™(8), and »"™ (3,e), which are the mth nonzero solutions of the equations:

J(X)=0

Lol ()
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If 6>+, then u™ and »™—>X"/6—>0. If 6250, p™ and »™(&>0)—>X" /6o,
v (< 0) X"V /6> when m#1, whereas »® (e;< 0) remains finite.

It is convenient to represent the solutions of (8) as relative wavelengths \,/\=1/a versus
d/\, for different sets of ¢ and e values. For this purpose we have proceeded as follows:

1. From a set of real ¢, ¢ and o® values the corresponding &}, 6; and 7 values are computed.

2. The z, solutions of (8) are determined. More than one z, value may be found; in this
case for each solution there is a different field configuration, that is called propagation mode.
Since F(x,-6, e3) =1 (x9,—0, €), no sign ambiguity results in taking the square root of §%

3. The corresponding d/\, are obtained from the equation:

d x
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Freure 2. Behavior of ¥ wversus xo for e >0 and Fraure 3. Behavior of ¥ versus x, for e<0 and
different 82 values. different 8% values.

The computations are repeated for the same ¢ and e, but for different o values between unity
and infinity.

The analysis of (8) for arbitrary ¢ and e values would be unnecessarily general.  We have
then restricted our investigation only to the sets of values, which may be found in the five
significant regions shown in figure 1. The following results have been obtained.

1. In region I (see appendix A and fig. 4) no propagation of the mth mode is possible for
d/N\, values smaller than:

oy o I 1
<)\o ¢ T Leja—1|++es(ei—1)(e1—e;) (13)

At this cutoff condition N,=X\y; for larger d/\, values propagation takes place with a \, con-
tinuously decreasing towards the infinite plasma value:

N Mo Ao (14)

“a [atva—1)(a—wF vate

This limit represents the well-known propagation of a TEM plane uniform wave, with a right-
hand circular polarization. In fact, at this limit, the E, and E, components become equal
and 90° out of phase. These curves have the same shape, as those for propagation in the
dielectric waveguides; moreover, by setting e;=e;=e into (13) and (14) we obtain exactly the
cutoff condition and the free space propagation wavelength for dielectric waveguides, TE,, or
TM,., modes.
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Ficure 5. Wavelength ratios Ng/No versus d/\, in Ficure 6. Wavelength ratios Ng/No versus d/\, in
region I11. regions IV and V.

2. In region II no propagation is ever possible (see appendix A).

3. Inregion III (see appendix A and fig. 5) an infinite number of propagation modes exist.
All the \,/\; versus d/\; curves start from the origin, the initial slopes being 7/»“(5_), where
82 =—ele.  Unity wavelength ratios are attained at the same (d/A), defined by (13). How-
ever, when the \, curves have the hook shape shown in figure 5, propagation takes place also
at larger d/\, ratios. In this case we have two wavelength ratios for each d/X\, condition; in
general the group velocities of these two possible waves are opposite. The group velocity is
zero at the maximum d/\, (points A).

4. Inregion I'V (see appendixes B and C and fig. 6), as in region 111, an infinite number of
propagation modes exist and all the N\,/\; versus d/X\, curves start from the origin, the initial
slopes being =/»™ (5.). Here, however, propagation is possible over the entire d/\, range;
the curves have positive slopes and approach, as d/Ny—, an horizontal asymptote which is the
same for all modes, except for the mode of the lowest x, solution.

5. In region V (see again appendixes B and C and fig. 6) we have at most one \,/\, versus
d/Ny curve for each pair of ¢,e; values. The curve has the same behavior as the curves found
in region IV. The initial slope is 7/»®(6_). The curve may exist only if e >1, which in
the frequency domain corresponds to the w,<w<w,//2<w, range.

The above discussed results coincide, in the \,/A< <1 region, with those given by the
quasistatic approximation.
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5. Brillouin Diagrams

Keeping € and e as constant parameters in the Maxwell equations, it has been possible
o €l 3 ’
to solve the dispersion equation using a lengthy but straightforward procedure. Brillouin
92
. < . . . . .
diagrams (B: N versus k=27/N\=w/c, ¢ being the light velocity ) are, instead, more difficult to
&
derive, because ¢ and e are functions of frequency.
In order to obtain these diagrams from the previous section curves we must solve the
following system:
Ae/No=T(d/No, €1, €3)

: 2
- o)
6177<1+w§*w2> (15)
2
a=(1-2)
\ w_

. . . w} .
For this let us keep constant the ratio ¢=— and choose all the pairs of ¢ and e values,

;1
which satisfy the relationship:
a(l— 63) €3 n
G 16
(I(l _63) _‘] ( )
Then the first equation of the system (15) provides, in the Brillouin kd versus gd plane, a set
o ) )
of curves, &, and @ being constant for each curve. These curves will intercept the horizontal
lines:

kd=Fk,d/\1—e (17)

which represent the third equation of the above system (15), k,d being the plasma density
parameter w,d/c. For given values of the frequency independent parameters @ and k,d, these
intercepts at different e values describe the Brillouin curves:

Bd=F(kd a k,d). (18)

Typical Brillouin diagrams are plotted in figures 7 and 8 for £,d=3.5 and for two a values,
the first chosen in the a >1 region (a=2.25), the second in the <1 region (¢=0.5).

[t is interesting to compare these curves with the corresponding curves obtained by

=} t=}

Gould and Trivelpiece [1959] and by Smullin and Chorney [1958] using the so-called quasi-
static approximation. These authors have studied the more general case of a circular wave-
guide partially filled with plasma; from their results the curves to be used in our case are easily
derived by setting the waveguide diameter equal to infinity.
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No significant difference is found in the behavior of the Brillouin diagrams in the o<lw,
region (kd<k,d). In thisregion all the £d versus gd curves start from the origin and approach
asymptotically the value k,d or Fk,d, whichever is smaller, except the first solution mode
which, when w,>w,, approaches the asymptotic value k.d/y2= (kd-+k2d2)}/y2

A behavior slightly more complicated than predicted from the quasi-static approximation
is found in the w>>w, region. Here the curves start from different points of the kd=gd line
between k,d and k. and approach the asymptotic value k,d or k,d, whichever is larger. The
slopes of these curves may be positive, negative, or partially positive and partially negative,
so that the waves can be forward or backward. It is worth noting that in the quasi-static
approximation all these waves are always backward.

The following details can be added to the discussed features in the w >w, region.

(a) The starting points on the kd=gd line are given from the simple relation:

o (G 2L
PR AL

19
1+p (19)
where
=l a2
(b) When w; >w, the wave of a given mode is always forward if:
B2—BRd>2(X ™), (20)

If this condition is not satisfied, the wave may be backward, or start at low gd values as for-
ward and change to backward at large gd values.

For a plasma, which, instead of being stationary, has a uniform drift motion u, along
the z axis, the Brillouin diagrams are obtained from the above ones by substituting the Doppler
shifted frequency w—pBu, to the signal frequency . Our results are thus translated into the
phase characteristics of space charge and transverse field waves of an electron beam. In
this way they are useful for studies of traveling-wave and parametric amplification tubes.

6. Power Flow

The power flowing inside the plasma and the power flowing outside are obtained by
integration of the Poynting vector over the respective areas.
The z component of this vector inside the plasma is

Sp_glf <2wR [N102 Ji(aip/R) | NoGs Ji(aap/R) _ NyGhGs Ji(aip/R) Ji(2:0/R)
: s JZ(II) gaxs  Jo(xz) Grgetixs  Jo(1) Jo(2)

(21)

where, for symmetry and simplicity, we have introduced the new symbols:
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The z component of the Poynting vector outside the plasma is
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When integrations are performed, the ratio between the inside and outside powers can be

)

written as:
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The three terms of (24) are respectively proportional to the power trzmsported by the
field components of amplitude A;, by the field components of amplitude 4, and by their mutual

interaction (with reference to the expressions (5)).

. . . . 3 v § . .
The P?,/P, ratio is always real, also in the region where 6, and &, are complex; in fact, in
this region z; and z,, ¢, and g, Ny and N,, G and G, are all complex conjugates, so that the
resulting (7,/P,); and (P,/P,). are complex conjugates too, and their sum is real, as it is the

third term (P,/P,)s.
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Ficure 9. Power flow ratios P,/P, versus d/N\y in
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The ratios P,/P, versus d/\, have been computed and plotted in figures 9, 10, and 11 for
the same ¢ and ¢ values used in the numerical solutions of the characteristic equation, with the
exception of the first solution in the &< 0 region.

The ratios for this first solution have been evaluated in the limiting cases of zero and
infinite d/N\ values and have resulted much smaller than unity. The practical interest of this
mode seems then very scarce; for this reason the complete curves have not been evaluated.

A few more remarks seem worth mentioning:

1. The Poynting vector has also a nonzero ¢ component, so that the power is actually
flowing helically around the z direction.

2. In region III the power flow inside the plasma may be backward. In this case, if
P,>P, we have an “average” backward wave, if P,< P, an “average’’ forward wave. The
points labeled A in figure 5, where the group velocity is zero, correspond to the points A in
figure 10 where P,=P,, so that, although power is actually flowing separately inside and
outside the plasma, the total flow is zero.

3. Also in region V the power flow in the plasma may be backward, although the total
power is flowing forward, being P,P,.

7. Attenuation Coefficient

The attenuation coefficient a for the wave propagation is related to the power dissipated
by losses per unit length P, by the well-known formula:

Py
+P

(26)

[\')Ir-t

We neglect the losses in the dielectric surrounding the plasma (usually air) and assume that
the fields are those we have computed in the previous paragraphs, neglecting losses. In this
case the losses are only due to the imaginary terms of the plasma dielectric constant and £,
is given by:
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P.—Real l:}w f E-D*Q‘lrp(lp]' (27)
JO
By means of (1) and (2), and recalling that £, and £, are 90° out of phase, this becomes:
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Substituting the field expressions and performing the integrations, we finally obtain:
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8. Conclusion

Beside giving procedure for the solution of the characteristic equation of a uniform
magneto-ionic plasma column of circular cross section and computing the \,/A\, and P,/P,
values for a few typical cases, our analysis has provided the following results, not given by
the previous quasi-static analyses:

(1) Propagation may take place in the w,<<w<w, region, provided d/\, is larger than a
minimum cutofl’ value; in this case, at d/N\, values sufficiently larger than the cutoff value,
power flow takes place mainly in the plasma (£,/P,>1).

2. In the w_>wyw, region we may have not only backward waves, but also forward waves.
Backward waves carry most of the power inside the plasma. Here too propagation is possible
only over a finite range of d/\, values.

3. When o<w,(e&<0), in the ranges where computations have been performed, power
flow in the first circularly symmetrical mode takes place mainly outside the plasma, whereas
all other circularly symmetrical modes show large /,/P, ratios.

The authors thank A. Lemma, who carried out the numerical computations, applying
also electronic computing techniques. The valuable help of Dr. A. Boschi is also acknowledged.

9. Appendix A

Regions I, IT, and IIT of figure 1 have in common the following features:

(*1) 0<e<1;

(b) 6, and &, are always real;

(¢) 8;< —1(5; versus a rises steadily from — at a=1to —1 as a—®);

(d) —1=<7=<0 (7 versus a rises steadily from —1 at a=1 to 0 as a—=).

Inspection of figure 2 shows that in this case:

(a) When 6; >0 there are an infinite number of z, solutions of (8); the mth solution falls
between »™ (3;) and u"™ (8,). As 8> this solution vanishes (zo~X,"/8,) and as &, —0 it be-
comes infinite (ze~X,"/8,). In the 7=0 limit (a—) the x, solutions become equal to »"(5,).

(b) When 6;< 0, no solutions of (8) exist.

The above results determine the behavior of the z, versus a solutions, for given ¢ and e,
if we know the characteristics of the &, versus a curves. These are as follows:

(a) In region I, 6* drops from 4« at a=1 to 0 at a:

aﬁ:flﬁ'\"(fl_])(flffs):61+€2- (A_l)
The parameter 8, becomes negative, when a > aq.
(b) In region 11, 6, is always negative.
. 2 . e s €3
(¢) Inregion ITI, &, is always positive and drops from o at a=1 to Bi:—; >0as a—w,

10. Appendix B

Regions IV and V, when:

o? _>_a3: (61—€3> —1(61+€3_2€153+2 \'6163(61—1) (63“1)) (B_l)

have in common the following features:

(a) &<0;

(b) & and & are always real;

(¢) &, and &, versus a are respectively the upper and lower branches of a curve, the shape
of which is that of a deformed parabola with the vertex at «; and two horizontal asymptots
for a—se (502 -=—e¢/e; and §—>—1).

(d) 0=<7=<1 (7 versus «a drops from 1 at «a; to 0 as a—x).
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Inspection of figure 3 shows that in this case:

(a) When & >0, there is an infinite number of solutions. The smallest , (first solution)
falls between zero and »™ (5,); as 8;—>0, it remains then finite. All the other z, solutions rise
instead to infinity as &;—0, because the mth solution always falls between X" " /s, and X" /s,
if 6:<0. In the 7=0 limit (a—>w) the z, solutions become equal to »™ (5, ). In the =1
limit (a=ay, 6,=6;), all the solutions go to infinity, except the first one which remains finite;
in this limit (8) becomes an identity and the solution is given by the equation:

[0(gF)/08]az o y=0. (B-2)

(b) When —e <5< 0, there is always one solution alone. This solution falls between
zero and »®(5;), and becomes equal to v® (6 ), as 7—0.

(¢) When 6;<_—e, there is one solution or no solutions depending on 7 being larger or
smaller than:

=1—H5zl &+[61]
1‘H51| €3+‘62r‘

To (B-3)
As 771, 2p—>®.
Here too the z, versus « behavior can be derived from the above results, whenever the
characteristics of the 6: versus a curves are known. The basic features of these curves are
(a) In region 1V, 62 >0, so that there is always one region extending up to a=w, where
8>>0. This region is the entire a>«; range, when:

eaSeg———%(l—361—\/9e§—10€1+1> (B-4)

and is the a> a range [see (A-1)], when ¢ >e,.

(b) In region V, 85<0 and then §;<C0 always. When §.,< —e, no solutions exist as
a—, because 7=0<7¢; in this case, continuity and regularity suggest, as confirmed by
extensive numerical computations, that no solutions exist at any « value. Propagation is
then possible only if €€ >1 namely in the region:

{ccin (B-5)

11. Appendix C

Regions 1V and V, when «?< ), have in common the following features:

(a) &<0;

(b) & and &, are complex conjugates;

(¢) 7is a complex number, and |7| =1.

It is convenient to transform (8) into an equation of only real quantities. For this pur-
pose, recalling that Bessel functions of complex conjugate arguments are complex conjugates,
we write:

87 0=|0]* exp (£270)

G1.2=|g| exp (£ jd)
Jo (51,2%):80(]5]950, ) exp [£o([6]20,0)]
Jl(al,zxo)zsl(lalxo,e) exp [ ¢ (/8] xO.e)]-J
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Equation (8) becomes:

&gJFK%(xo)m__l S Ki (o) [ es sin [(0+9)~(¢1_¢0)]+
[6]2.S2 " K2(xo) (6] So Ko(wo) sin ¢

sin [(19—9)+(¢1*¢0) I:I (042)

sin ¢

When an z, solution exists in the a_>a; region and it ends at «; with a finite value, then
this solution has a smooth continuation in the a<«; region. The z, solution increases in this
case as a decreases and becomes infinite at the a root of the equation:

[6]°+€; €3 cos (9+6O)—cos (§—O)
o] sin ) (C-3)
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