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This paper is a review of the present state of knowledge of magneto-telluric fields. The
subject has to do with the combined analyses of the geomagnetic and the telluric (earth-
current) fields on the surface of the earth. Usually, the objective of such investigations is to
obtain information about the earth’s crustal layers. However, for a sensible use of the
method it is desirable to understand something about the source of the fields. In this paper,
the various suggestions for the source mechanism are discussed. Then a fairly detailed
review of previous work on the theory of the magneto-telluric interpretation is given. In-
cluded are a number of three-layer interpretation curves. The influence of earth curvature
in magneto-telluric theory is treated in a mathematical appendix which is, in itself, a self-
contained derivation of the various formulas.

1. Introduction

The temporal variations of the geomagnetic field have been investigated extensively for
many years. However, only quite recently have the rapid magnetic variations been studied in
conjunction with the variations of the telluric (earth-current) fields. In fact, only some twelve
years ago, Tikhonov [1950] in the USSR, and Kato and Kikuchi [1950] in Japan, pointed out
that the electrical characteristics of the deep strata of the earth’s crust could be determined
from a combined analysis of geomagnetic and telluric field variations. Since then, a large
number of related investigations have been carried out, particularly in the USSR. It is the
purpose of this paper to present a self-contained account of the theory of the phenomena.
Sufficient curves are given to provide a basis for interpretation of experimental data.

2. Nature of the Sources

The actual mechanism which produces the short-period variations (i.e., frequencies of the
order of 1 to 107% ¢/s) is not yet well understood. In recent years it has been suggested on
numerous occasions that the phenomena are related to magneto-hydrodynamic (i.e., MHD)
waves in the exosphere or the ionosphere of the earth.

Holmberg [1951], Lehnert [1956], and Maple [1959] have proposed that the sources of the
observed micropulsations arise from intralayer MHD oscillations within the /£ and /7 layers of
the ionosphere. The principal objection to such a hypothesis is the high attenuation of MHD
waves in such regions as pointed out by Piddington [1959] and Ellis [1960].

Dungey [1955] has suggested that MHD waves form a standing wave pattern along the
geomagnetic field lines. In the fundamental mode the period of oscillations would then be
expected to increase with geomagnetic latitude. Some support for this view has been given
by Obayashi and Jacobs [1958], who found that the period of some micropulsations did appear
to increase with latitude. However, Ellis [1960], in Australia, found that there was no
observable change in the period for three stations ranging from 28° S to 51° S geomagnetic
latitude. Dungey [1955] has also suggested that instabilities of the Chapman-Ferraro outer
boundary of the geomagnetic field could generate waves which propagate downward as MHD
waves. It would be expected that such waves would tend to reach the ionosphere in auroral
regions and consequently micropulsation from this source would not be observed at middle
and equatorial latitudes. However, they might be propagated in horizontal MHD ducts as
envisaged by Bomke et al. [1960].
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Quite recently, Gallet [1959] and Ginzburg [1961] have suggested that solar corpuscular
streams produce magneto-hydrodynamic waves. In particular, Ginzburg considers the radia-
tion emitted by an isolated ion moving with velocity » along a magnetic field H in a magneto-
active plasma. Two cases are distinguished, (1) slower-than-licht motion, when the ion
velocity u is less than the phase velocity »,, of the emitted wave, and (2) faster-than-light
motion, when the ion velocity is greater than the phase velocity of the emitted wave.

In the first case, mentioned above, the radiation results from the Larmor precession of
the ion around the lines of force of the earth’s steady magnetic field H. The angular fre-
quency of the rotation is Q;=el/Mec, where ¢ is the ion charge, A is the ion mass, and ¢ is
the velocity of light in vacuum. For a fixed observer in the plasma, the frequency of this
radiation is
. Qi
©® TT1=(u/e)N cos 0 ™)
where N is the refractive index of the plasma at frequency «’, and 6 is the angle between the
direction of wave propagation and the ion velocity u. This is really the normal Doppler
effect and it results from the motion of the emitter which, in the present situation, is the
gyrating ion.

In the second case, denoted (2) above, the motion is faster-than-licht and the frequency
of the emitted radiation is given by

’ Qi

[8) =u————--
. N cos 6—1

2)

This has been called the anomalous Doppler effect [Frank, 1942]. Contrary to the normal
Doppler effect, in the latter case «’ may be less than Q; if u is sufficiently great.

By using known expressions for the refractive index of a plasma, and specifying the
direction of wave propagation, the frequencies o’ emitted by the ion can be calculated. To
simplify the discussion the waves are assumed to propagate along the earth’s magnetic field
(i.e., longitudinal propagation). Then, on the further assumption that the collision frequencies
are negligible [Fejer, 1960; Wait, 1961],

PP wg.i w(z),e
N = ) alet O 3)

where w,; and g, are the ion and electron plasma frequencies, respectively.
In the earth’s exosphere and for w<<Q,, the magnitude of N is large. Then

2
N2~ G where K =—0¢ (4)
(o) (meg) T
2/ \" "%,
ratio of electron mass 1 : . .
and where a= o~ for hydrogen ions. The fast magneto-sonic wave

ratio of ion mass 1836
corresponds to the adoption of the upper sign in the above expression. The Alfvén wave
is obtained when the lower signs are used. It may be noted that for zero frequency the
velocity v, of the Alfvén wave is given by

c Mo
V4= -:’:-H—\/—' 5
- VK, nM (5)

Inserting the equation for N into eqs (1) or (2), one easily finds that

) -]
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where the upper sign is to be chosen for slower-than-light motion and the lower sign for faster-
than-light motion.

Ginzburg [1961] has shown that the intensity of the cyclotron radiation is identically
zero for the slower-than-light case when the propagation is longitudinal (i.e., 6=0). Thus,
the only case of physical interest is when the lower or - sign is used in the above equation.

Actually, a charge moving along a helical path also radiates harmonics of the Larmor
frequency ;. Thus, on replacing @; in eq (6) by pQ; where p is an integer, we find that the
equation, for faster-than-light motion, becomes

() () (-]

This equation may be used to obtain the frequencies of emission from the specified value
of u/v,.

A specific example is now considered. At a distance of several earth radii H is of the
order of 5107 gauss * and if u~7>10% m/sec, n>~10?/cm?, then the Alfvén velocity v,~10°
m/sec and 2;~50 radians/sec. Solution of eq (7), when p=1, leads to the values w/27=0.77,
777, and 13,000 ¢/s. It is only the lowest frequency that would be of interest in magneto-
telluric investigations.

In general, when the conditions for longitudinal propagation no longer hold, the situation
is much more complicated. In this case Ginzburg [1961] has shown that the radiation spectrum
extends over a much wider range. He estimates that the excitation zone extends from about
13 earth radii down to about 1.5 earth radii. The lower limit depends on collision damping,
noncollision cyclotron absorption, and the increase of the Alfvén velocity to unfavorably
large values.

Magneto-hydrodynamic waves of the type described above are probably the main source
of the short-period geomagnetic field variations. On the basis of Ginzburg’s analysis one
would expect the spectrum to peak in the region of 1 ¢/s or so. However, observations by
Campbell [1959], and Berdichevsky and Brunelli [1959] on the surface of the ground indicate
that the spectrum peaks around 0.03 ¢/s with a very rapid decrease for frequencies above
about 0.2 ¢/s. The apparent discrepancy can be reconciled if the transmission characteristics
of the ionosphere are considered [Akasofu, 1960].

For longitudinal propagation within the ionosphere the complex propagation constant I' is
given by Hines [1953] and Dungey [1955]

w? 1—iv,/0

 (HPuolpy) (1F iv/2) (1 £ 07,/9,) (8)

2=

where p, is the mass density of the ions, », is the effective collision frequency from the electrons
with the neutral particles, and v, is the effective collision frequency for the positive ions.
The transmission coeflicient 7" for the ionosphere is then given approximately by

To— ﬁ '12 (ImT)dh (9)

where h; and h, are the effective heights of the bottom and top of the ionosphere. This formula
gives the ratio of the field below for a wave of unit amplitude incident from above. It is only
valid when the medium is slowly varying. For frequencies 0.01, 0.1, and 1 e¢/s, the corre-
sponding ratios are 0.32, 2.8 X107% and 8.2X107¢ if Dungey’s model of the ionosphere is used.
This indicates that the ionosphere is almost transparent for frequencies less than about 0.1
¢/s. For the higher frequencies, the ionosphere becomes almost opaque. In fact, if the main
source of micropulsations is above the /' layer it means that the sources must be very intense.

*The term gauss is actually a magnetic flux density, although it is frequently used in the literature for magnetic field. Note that for magnetic
flux, one weber/m2—10* gauss—10% gammas.
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For these “higher” frequencies it is more probable that the sources are currents at # region
heights in the ionosphere produced by some other mechanism [Baker and Martyn, 1953;
Baker, 1953].1  Also, at frequencies of the order of 1 ¢/s and higher, one may expect contri-
butions from lightning discharges which are known as “sferics.”  Support for this view is
obtained from the work of Holzer and Deal [1956], who find that there is a strong correlation
between worldwide thunderstorm activity and the electromagnetic signals in audio and sub-
audio frequency range.

Because of the uncertainty and the conjectural theoretical nature of the source mecha-
nisms, one could feel very insecure in attempting to interpret field measurements on the earth’s
surface in terms of crustal features. However, if the ratios of the mutually orthogonal com-
ponents of the tangential electric and magnetic fields are considered, some very definite con-
clusions can be drawn about the crustal structure of the earth. Such studies are usually referred
to as magneto-tellurics, since the analyses of geomagnetic and telluric (earth-current) variations
are combined.

3. Review and Discussion of Previous Work on Magneto-Tellurics

Most investigations of magneto-telluric fields boil down to a study of the interrelation
between the tangential components of the horizontal electric and magnetic fields at the surface
of the earth. As far as this writer is able to ascertain the first definitive paper dealing with
this subject appeared in 1950, and was authored by Tikhonov [1950]. He realized that rapid
geomagnetic variations and earth currents, observed at the surface of the earth, must be con-
nected by some definite relationship. He showed that, at low frequencies, the amplitude of
the derivative of the component H, of the magnetic variations is proportional to the (orthogo-
nal) component of the electric field 7,2 This was in agreement with the experimentally
established fact that there is a proportionality between these quantities. Tikhonov’s model
of the earth’s crust is a planar layer 0 =z =</ of finite conductivity o lying upon an ideally con-
ducting substrate. Implicitly in his analysis, it was assumed that horizontal gradients of the
fields could be neglected. Thus, for a spectral component of frequency o he found that, at
=0,

tpowH >~y coth (yl) (10)
where
y= (topew)? and uy=~4 1077,

Using previously published data on the observed diurnal variations at Tucson (Arizona) and
Zui (USSR), Tikhonov computed the value of o and / which best filled the first four har-
monics. For Tuecson, the values were about 4><107% mhos/m and 1,000 km, respectively. For
Zui, the corresponding values were about 3> 107" mhos/m and 100 km.

In a later paper [Tikhonov and Lipskaya, 1952], the horizontal gradient of the fields was
allowed to be finite (although the earth’s crust was still regarded as a horizontally stratified
medium). The authors postulated that the field components of long period may be represented
as a wave which is propagated from east to west with the velocity of the earth’s rotation.
Using the same data as mentioned above, they obtained revised estimates for the conductivity
o of the upper stratum of thickness / under the assumption of an ideally conducting substrate.
For Tucson, the values were approximately 1072 mhos/m and 1,100 km, where for Zui the cor-
responding values were about 7>(107! mhos/m and 110 km. In this paper they also showed
that the measured values of the vertical magnetic field variations were consistent with the model
and the postulation of linear east-to-west motion of the fields.

In the third paper of this sequence [Lipskaya, 1953], the electromagnetic equations for the
model described above were cast in a form to clearly demonstrate the various relationships
between the field components.

1 W H.Campbell has recently proposed that small, short-period changes in the gross ionospheric pattern within the auroral electrojet are a
principal cause of micropulsations (private communication, May 1962).
2 The Cartesian coordinate system is chosen so that the z axis points downward and the earth’s surface is z=0.
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Subsequent to the Russian work mentioned above, Cagniard [1953] published a paper
which has been extensively referenced since.  His analysis which assumed plane wave incidence,
developed formulas which related 7, and £, on the surface of a stratified conducting medium.
A discussion of the limitations in Cagniard’s results appeared shortly thereafter [Wait, 1954].
The essential point made by this writer is that the proportionality between I, and £, is only
valid if the fields themselves do not vary appreciably in a horizontal distance of the order of a
“skin depth” in the ground. In the case of a homogeneous flat earth it was indicated that this
distance was of the order of |[y7|. For example, at a frequency of 107° ¢/s, ¢ ~1072 mhos/m,
[yt is about 350 km. Consequently, the field should be uniform over a considerably broad
area to permit the Cagniard interpretive procedure to be applied. This limitation is, of course,
in addition to the requirement that the crustal layers themselves are uniform. Very recently
Price [1962] has indicated that the limitation mentioned [Wait, 1954] becomes much more
stringent when the magneto-telluric method is applied to a stratified earth in certain important
instances.

In a later paper, Tikhonov and Shakhsuvarov [1956] discussed the methods for calculating
the admittance H,/E, at the surface of a horizontally stratified earth of any number of layers.
Again, horizontal field gradients were neglected. Actually, the formulas given were a special
case of an earlier general analysis [Wait, 1953a and b| where the incidence was oblique.
Tikhonov and Shakhsuvarov [1956] give a few curves of the ratio /1,/FE, for both two- and
three-layer structures. Some asymptotic approximations of the impedance formula for parallel
layers were discussed by Berdichevsky and Brunelli [1959]. The derivation of the basic formu-
las is very similar to that found in earlier papers [e.g., Wait, 1953a].

The problem has also been investigated by Scholte and Veldkamp [1955] in Holland. Their
analysis of the variations of H, and £, is essentially the same as those of Tikhonov, Cagniard,
and others. By a relatively simple method of data analysis they estimate the amplitude and
phase of H,/F, without actually performing spectral analyses. They used the experimental
data from the magnetic observatory at Witteveen for frequencies in the range from 107* to
107t sec. The resulting curves of amplitude and phase versus frequency fitted a two-layer
earth model with the upper conductivity ;=2 mhos/m and the lower conductivity o,=—1071
mhos/m. The thickness of the upper stratum was ¢;=600 m. In the same paper Scholte and
Veldkamp also discuss the influence of earth curvature on the ratio H,/E,. They conclude
that the effect is very small. (A more general theory is given in the appendix.)

An analysis of the continuously varying conductivity profile was carried out by Bossy
and De Vuyst [1959] in Belgium. They showed that for normal incidence the ratio /,//2, on
the surface could be expressed in closed form when the conductivity ¢(z) varied with depth in
the manner

)=o) <1+§>¥ﬁ (11)

where ¢, and @ are constants. They used such a model to interpret experimental data of the
phase of F,/H, for frequencies from about 3107 to 1 ¢/s at Dourbes. However, they found
it necessary to modify the model by having a (well conducting) homogeneous surface layer of
thickness about 500 m overlying the inhomogeneous substrate of poor conductivity (with 8
about 9).

In all the work mentioned above, the natural magneto-telluric field has been studied only
at frequencies less than about 1 ¢/s. Vladimirov [1960] has described an investigation of the
use of higher frequencies in the range from 0.3 to 1,000 ¢/s. Field experiments were made in
the Ryl’sk district of the Kursk region in the USSR. The area consists of sand and clay
deposits underlain at a depth of approximately 500 m by a crystalline base of practically
infinite resistivity. The measured values of the ratios |E,/H,|* and |E,/H,* on the surface
were consistent with an assumed two-layer structure where the upper conductivity o;~5><1072
mhos/m and the lower conductivity o;>~0. From the experimental curve, the thickness of
the upper stratum was deduced to be 450 m. In a subsequent paper Vladimirov and Kolmakov
[1960] discuss the resolving power of the magneto-telluric method. They confine their dis-
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cussion to a three-layer model with an infinite resistive basement. The principle of equivalence
stated by them is that for a given conductivity o, and thickness 4; of the uppermost layer,
the theoretical three-layer curves of |H,/E,| practically preserve their shape when the con-
ductivity o, and thickness %, of the intermediate layer vary over specified limits. (This ques-
tion is discussed again in the present paper.) Vladimirov and Kolmakov then conclude that
the same curve may characterize different geoelectric sections and can be interpreted only
with known values of o, and A,. Some further comments on the same subject are given by
Vladimirov and Nikiforova [1961] and Vladimirov and An [1961].

In an interesting paper, Chetaev [1960], also from the USSR, illustrates a procedure to
obtain information about the anisotropy of a homogeneous stratum by measuring the surface
impedance in orthogonal directions. The model he considers is a half-space with a medium
whose longitudinal conductivity is ¢; and the transverse conductivity is ¢,. The angle of
inclination of the anisotropy is « (i.e., a=0 corresponds to a flat lying anisotropic medium
with o, the horizontally directed conductivity). Chetaev shows that if the electric component
I, is transverse to the strike of the structure,

Z=E,[H,=— (tuw/c))}1+[(s;/ol) —1] sin’® a]? (12)
and if the electric component £, is along the strike,
Z=E,/H,= (ipw/ar)? (13)

which is not affected by o, Since ¢,/o; is usually greater than one, the minimum value of
the surface impedance |Z|, as a function of azimuth, is (uw/o;)* which occurs when the electric
vector is along the strike.

It has been pointed out by Pokityanski [1961] that the interpretation of field results
should take account of the anisotropy of the structure. In fact, in general, the tangential
fields are related by

1A S T (14)
E~=Z7,.H,—Z,H, (15)

where the coefficients are the components of a surface impedance tensor.

In the case of parallel stratified or flat-lying media Z,, and Z,, vanish and Z,,=7,,. Of
course, the components of the impedance tensor depend on the choice of the (z,7) axes. For
an anisotropic homogeneous half-space or for an inhomogeneous structure where the con-
ductivity does not vary along one of the horizontal directions, it is possible to find special
directions of z and v (denoted = and », respectively), such that

E.,—Z,H, (16)
and
E,=—7,H, (17)

where Z; and Z, are the principal values of the tensor impedance. Consequently, if the u and »
components of the tangential fields are measured, Z, and Z, may be simply calculated. Un-
fortunately, those principal directions are not always known beforehand. Pokityanski [1961]
has described an ingenious graphical scheme to determine the % and » directions from measure-
ments of the nonorthogonality of the tangential /7 and H vectors. Strictly speaking, the
method is only valid for source fields which are linearly polarized. A more straightforward
procedure would be to return to the surface impedance relations and write them in the form

Zo= B H,=Zer—Zop] ¢
and
Zy:Ey/Hz:_[ZW_Zl/I/a] (19)

where a=H,/H, and where Z, and Z, are the impedances as measured in the z and y directions,
respectively.
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It is clear that Z, and Z, depend on « and, consequently, they will be a function of the source
field. However, the elements of the surface impedance tensor can be calculated if at least two
independent measurements are made. Thus, for a particular frequency, these will provide the
following sets of values, Z, 1, Z, 1, a1 and Z,», Z, », and «, where the subsecript 1 or 2 is used to
distinguish between the two measurements. Then, provided a;as, it easily follows that

Z=Za+f (20)
2=y Gl 1)
Zoy=Lp 1+ (Zyly)
=Zy2+ (Znjlea); (22)
Lyy——Zy 12,z o)
=—Zy 2t (Zylas). (23)

In principle these equations could be used to determine the elements of the surface impedance
tensor for an elliptically polarized field. It is probable that the apparent scatter in the mag-
neto-telluric data, as measured by Garland and Webster [1960] and Watt et al. [1962], is a
consequence of the anisotropy or of tilting the structure.

In a recent paper, Kovtun [1961] has discussed, in a general way, the nature of the mag-
neto-tellurie fields for two-dimensional inhomogeneous structures. It is assumed that electrical
properties vary only in the (z,2) plane; the surface of the earth is the (x,7) plane. It is stated
incorrectly that the field can be decomposed into an independent set of TM (transverse mag-
netic) and TE (transverse electric) waves. While this may be true for the incident or primary field,
it is overlooked that the boundary conditions couple these waves together [Wait, 1959] in the
general case. Consequently, his subsequent discussion can only be considered approximate.

Recent activity in the United States on magneto-telluries is localized mainly at the Massa-
chusetts Institute of Technology and the University of Texas, and DECO Electronics, Inec.,
in Boulder, Colo. Unfortunately, little of the work has been published in the open literature.

In a short note, Cantwell and Madden [1960] at M.I.'T. report some preliminary magneto-
telluric measurements in Massachusetts covering the frequency range from 5>X107% to 1 c¢/s.
The analysis of the records made use of auto- and cross-correlation techniques so that estimates
of the coherency between electric and magnetic signals were obtained. For the interpretation
they reject records which have low coherency as they are claimed to result mainly from noise
due to the instability of the coil mounts. According to Cantwell and Madden [1960],* the sig-
nals associated with high coherency between electric and magnetic signals yield consistent
estimates of resistivity. They find that their data is compatible with a two-layer model with the
upper, conductivity ¢;~1.2X107* mhos/m and the lower conductivity o< 1.2>X107* mhos/m.
The thickness &; of the upper stratum is 70 km.

4. New Numerical Results for Horizontally Stratified Structure

Although this paper has been primarily a review of the theories and concepts in magneto-
tellurices, it is considered to be worthwhile to include some specific curves which can be used to
interpret future experimental data. The numerical results were actually obtained in connec-
tion with theoretical studies of radio wave propagation in the presence of stratified media.
Here, for convenience, the results are given in dimensionless form to facilitate and broaden the
application to field problems.

3 Apparently the curves in figure 3 of Cantwell’s and Madden’s paper are mislabeled. The values indicated for pz should all be divided by 10.
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Ficure 1.  Stratified model of the earth’s crust.

The model is quite simple, the earth is assumed to be horizontally stratified and consists of
three homogeneous layers. The upper layer is of thickness A; with conductivity ey, the middle
or intervening layer is of thickness %, with conductivity o, and the bottom layer is of infinite
thickness and has a conductivity o3. In terms of a Cartesian coordinate system (z,7,z) the
earth’s surface is z=0 and the interfaces between layers* are at z=h, and z=h;+h,. The
magnetic permeability is assumed to be constant throughout and equal to . Furthermore,
displacement currents are neglected in all three conducting layers. The problem is now to
find an expression for the ratios of the tangential fields £ and H at the boundary between free
space and the earth. If the horizontal gradients of the fields are negligible the result can be
written (for a time factor e®?)

=10, E h

where @) is a function of the four variables indicated. Explicitly,

Q:Q’}‘(U‘z/dl)f tanh [(2o1uow)h1] (25)
(a5/01)t+Q tanh [(1o1pw)¥hs)
where
(“2:1+ (03/02)? tanh [(ioopow)hs] (26)

(03/02)"‘~+t““h [(1o2mow) the]
This result follows directly from a previously derived general formula applicable to any number
of layers [Wait, 1953a and b].

4 See figure 1.
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[For this set of curves the exciting field is assumed to be uniform (see text).]
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It can be seen from eq (25) that if £,—e, @ tends to unity. This suggests that, for the
general case, one defines an apparent conductivity o, such that

oy~

Q: (0’1/0',1)§ or Ua/alz Q—2'

Thus

Clearly, o, must be complex in order to admit such an equivalence with a homogeneous half-
space. The concept of an equivalent or complex conductivity has been discussed previously
in connection with radio propagation over stratified media [Wait, 1953b, 1958].

Extensive numerical results for ¢ over a wide range of the four parameters are available
[Jackson et al., 1962]. These greatly extend the set of curves of |o,/0y, for a;=0 only, pub-
lished by Yungul [1961]. A sample of some of these numerical data is given in this paper in
graphical form. In the first set shown in figures 2a to 6b, the ratio /ey is fixed at 1/100.
This corresponds to an intervening layer of very poor conductivity. In each case, the abscissa
is the dimensionless ratio (oyuw)*h,.  For these five sets of curves, the values of &,;/h, are 1/50,
1/20, 1/10, 1/5, and 1/2, respectively. Thus, in all cases, the upper layer is thin compared with
the middle or intervening layer.

It is interesting to note that for the low frequencies [corresponding to small values of
(o1p0w) hi], o, always approaches oy the conductivity of the bottom layer. At the high fre-
quencies, o, approaches o; as noted above. In the intermediate region an interesting transition
takes place. The right portion of the curves is roughly characteristic of a two-layer structure
and the shape is determined mainly by the characteristics of the upper layer.

In the second set of curves shown in figures 7a to 9b, the ratio £;/h, is fixed at 1/20 and the
conductivity ratio o./g; takes the values 1, 0.1, and 107%.  In the first set shown in figures 7a
and 7b, the upper two layers combined in a single layer of thickness (h;+%h,). For this case,
the results are identical to the standard two-layer curves [Cagniard, 1953; Wait, 1953a]. The
interesting thing about the three sets of curves, in figures 8a to 9b, is their similarity. Here
it appears that the conductivity of the intervening layer o, plays a very small role.  Actually,
this is a general characteristic of all three-layer magneto-telluric curves provided o, is somewhat
less than ;.

The relative insensitivity of the factor @ to the conduectivity and thickness of a poorly
conducting intervening layer can be demonstrated directly from the basic equations given
above. For example, under the conditions that

(o) hy< <1
(}g (0'3/0'3)'}

QNI—]—(@/GI)"* tanh [ (10 ,uw)’f}zrl]. 28)
= (o/o0) +tanh [ (o pw)hy] -

and thus eq (25) becomes

Therefore, under the restriction stated above, the three-layer structure is equivalent to a
two-layer model whose parameters are ¢y, o3, and ;. The result is essentially independent of
a, and f,.

It is worth pointing out that a dual three-layer model exists which broadens the applica-
tion of these numerical results. The parameters of the dual model are indicated by primed
symbols and they are related to the original problem as follows:

os]o1=01/03
3/ a1=a1/03
’ 117/ 1
(a1mow) *hy= (0100w) Ay
(Ué,uow)%]l;: (%Mow) thy.
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It then immediately follows from eqs (25) and (26) that

Q (\/muowh' o, o k) (29)
S Q(\/Uxﬂowhl’—ofﬁ“’ )

The apparent conductivity ¢, in the dual or transformed problem is given by
oo jo1=(Q") *=¢".

Consequently, the ordinate in figures 2a, 3a, to 9a can be regarded as the quantity |(o./c))}|
in the transformed problem. The conductivity ratios are all inverted and

K _oh

hy oy by

As is obvious, the ordinate in the phase curves in figures 2b, 3b, to 9b is the negative of the
phase of Q.

In the five sets of curves from figures 2a to 6b, the values of A/, are thus 2, 5, 10, 20, and
50, respectively, and the conductivity ratio a;/c; is fixed at 100.

The dual property of magneto-telluric curves for horizontally stratified structures has
been discussed recently by Kolmakov [1961]. His analysis seems to be unnecessarily involved.
Actually, using our correction factors (i.e., amplitude and phase of ), the duality is almost
self-evident.

The curves shown in the preceding figures are based on the important and often over-
looked assumption that the exciting field is effectively uniform. Stated in another way, the
fields should not vary appreciably in the horizontal direction. To indicate the significance
of this assumption for a horizontally stratified medium, it is desirable to consider a two-
dimensional spatially periodic field. The coordinate system may then be chosen so that 0/0y=0

and 0/0z=—1ikS where k=2r/free-space wavelength=w/c and S is a dimensionless quantity
which may be complex. Therefore, the fields are of the form.
u(x,z)~f(z) exp (—ikSx) (30)

where f(z) is some function of z. The usual assumption in magneto-telluric studies is to set
S=0 insofar as the fields in the earth are concerned. Cagniard [1953, 1954] justifies the
assumption by saying that kz is always small compared with unity; consequently, exp (—ikSz)
may be replaced by unity. The fallacy in his argument is that S may be very large when
the source of the field is in the near zone. Cagniard does not recognize this important fact
and, rather surprisingly, he imagines the source field to be a uniform plane wave at a real
angle of incidence. In this trivial case S is then the sine of the (real) angle of incidence and,
of course, it could never exceed unity.

To demonstrate that S may be greater than one, we need only choose a very simple model
for the source. It is a uniform line current / at some height / above the surface of the earth.
For simplicity, it will be located at z=—H and runs parallel to the y axis of the coordinate
system (z,77,z). The primary field (neglecting the influence of the earth) of this line current
has only y component of the electric field. It is well known and is given, in terms of a modified
Bessel function, by [Wait, 1959]

EI,=°“"2°7‘:I K, [ikR] (31)

where R=[(z-+H)*+-2%]" is the distance to the current line from the observer at (z,z). If,
rather hypothetically, £R>">1, the Bessel function may be approximated by the first term

of its asymptotic expansion. Then
“‘0“’[ — kR
<2@kR> (32)




Thus the magnitude of the field is proportional to (kR)~* and the wave front is nearly plane.
However, unfortunate as it may be, this limiting form is never achieved in the micropulsation
region. For example, at w/2r=:-10"* the wavelength 2x/k=3>107 km, which is rather large.
In nearly all cases of practical interest the observer is in the near zone where kR<<1. Thus

’L. Mo wI

Ly 2w

[log (kR/2)+0.5772 . . ], (33)

which bears little similarity to a plane wave.
To demonstrate the existence of S values greater than unity, it is desirable to write the
equation in the form of an integral [Wait, 1953b], thus

_pwl ( exp [—kC|z+H|] .
c

E,,— —ikSJ:dS (34)

2r  Jo
where 0= (1—8%)* In the far field, where (kR)>>1, the important values of S are in the range
between 0 and 1 and the integral can be evaluated by the method of stationary phase to yield
eq (32). However, if kR is small the important contributions in the integral are for large
values of S.

To focus attention on the physical aspects of the problem, a single harmonic component of
the spectrum is considered. Also, initially the earth is assumed to be a homogeneous half-
space of conductivity o; and permeability u,. The earth curvature is neglected and the assump-
tion is justified in the appendix. Thus, for a source field which varies as exp (—ikSz) and
when the electric field has only & component, the surface impedance is easily found to be [Wait,
1953b, 1958]

Zim— B2 (1—ig) (350)
1
where
ﬁ:kzsz/ﬂlﬂow-
If p<<1
Zg(“‘m”"’)f (35b)
01

which is the value appropriate for a homogeneous half-space under the assumption of negligible
horizontal gradients. Since £S can be identified physically with 0/0x it follows that the condi-
tion B< <1 is equivalent to saying that the surface fields vary in the z direction in a distance
small compared with § where

§=[2/(o10)

is the skin depth of the conducting medium. At a frequency of 0.1 ¢/s and for a conductivity
012>~ 107% mhos/m, ¢ is approximately 50 km. Consequently, if the fields vary appreciably in a
distance of the order of 50 km over the surface of a homogeneous earth, some departure from
eq (35b) is to be expected at frequencies less than 0.1 ¢/s. This limitation was pointed out
previously [Wait, 1954] using a somewhat different argument.

When the earth becomes horizontally stratified, the limitation that g is small remains.
However, the stringency of this condition varies in a manner depending on the stratification as
pointed out by Price [1962]. To demonstrate this interesting phenomenon, the surface im-
pedance for a two-layer earth is considered. The model consists of a homogeneous surface
layer of conductivity o; and thickness £, and semi-infinite lower layer of conductivity o,. Then

on the assumption that a—ax=——ikS and %=0, it follows from previous work [Wait, 1953b] that

Z1=<ic':—lw>% (1—iB) 7@ &)
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where

G+ tanh x

Q=176 tanh x (37)
where
1—18 %
0= I:(tfz/ol) —i8_| (38)
and
x:(ialuw)%hl(l_iﬁ)%. (39)

If 7, tends to infinity, @ approaches unity and eq (36) reduces to (35a). Thus @ can be regarded
again as a correction factor which accounts for the stratification in the earth’s crust. If 8 is
replaced by zero, the correction factor becomes

0— (01/02)t+tanh [(iopw)h]
" 14 (01/a)* tanh [(ioyuw)ih,]

(40)

which is a special case of eq (25) when fiz=o.

To illustrate the influence of finite 8 on the behavior of ¢, a number of calculations were
carried out on a digital computer. Extensive tabulations of this quantity for a range of values
of the parameters are available [Jackson et al., 1962].  Some of the results are shown graphically
in figures 10a to 12b. In the first pair, o, is effectively zero corresponding to a conducting
layer (of thickness /) lying on an insulating substratum. It is apparent from these curves
that a finite value of 8 leads to a major change in the shape of the curves. The same behavior
is evident when the lower layer is finitely conducting as can be evidenced in figures 11a and 11b
where ¢,/c,=25. However, in this case, the effect is not so pronounced. In fact, when the
lower layer is relatively highly conducting, the influence of finite 3 is relatively small as can be
seen from figures 12a and 12b.

To discuss the significance of the results shown in figures 10a to 12b, it is desirable to
introduce a scale distance L defined by

o
ox

1
—kS=7-

It is a measure of the horizontal distance in which the field changes by an appreciable amount.
For a periodic disturbance, L is the (spatial) wavelength. Thus

B=06°/(2L?)

where 6 is the skin depth in the upper layer. For a highly insulating substratum, it appears
that 8 must be very small or that 6 must be much less than L if the standard magneto-telluric
interpretation is to be applied. For example, if

hy=1.4 km, ¢;=10"% mhos/m, f=0.1 ¢/s and ¢,< <oy,
it follows that B
6=50 km and (O’luw)%h1:1/’2h1/5g_0.02.

Then from figure 10a it can be seen that if <1073, [@| is within 10 percent of its value for
B=0. This condition is equivalent to

L>3/(Bv2)
L>>1,100 km.

or

The condition is even more stringent for the phase.

Uniformity of the exciting fields over distances of the order of 1,000 km would not be very
common, particularly in higher latitudes where the currents could be quite localized. Also, at
low l‘mtudes the presence of equatorial electrojet [Vestine, 1960] at heights of the order of 100
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km would be expected to produce considerable nonuniformity. Actually, the two-layer model
with a highly insulating substratum is a most unfavorable circumstance. Furthermore, it is
somewhat hypothetical since the poorly conducting crystalline rock will also be of finite depth.
Consequently, a three-layer model should again be adopted for a more realistic appraisal.
In this case, eq (36) may be generalized [Wait, 1953b] to

_ GQA—I-tanh X
1—|—Gé\tanh 5%

where

AN é+tanh X
14-G tanh ¥

["2/ s X = (io2u00) tha(1— iBo1/a2)?.

0'3/0'1_@6
Now, if the intervening stratum is poorly conducting such that

(g2p0w)* ha< <1 and B +orpewhe,< <1

it readily follows that

&G—I—tanh X
geLicas R
14+G@E tanh x
where
1—18
GG [03/01—1ﬂ

The latter equation for @ does not depend on oy or /i, and thus the three-layer structure is
equivalent to a two-layer model whose constants are a1, o3, and hy.  If, in addition, B< <1 this
formula for @ reduces to eq (29).

In summary, the restrictions on the use of the curves of @ given in figures 2a to 9b can be
applied to a three-layer structure provided the single condition

B <<1

is met. Thus, for highly insulating substrata, the condition can become quite stringent since
|@*] is then large compared with unity. On the other hand, for highly conducting substrata,
|@*| may be small and the condition is not at all stringent.

5. Appendix. Surface Impedance of a Spherically Stratified Conductor

In many boundary-value problems involving waves in stratified media the solutions may
be quickly obtained if the analogies with transmission line theory are exploited. In general,
the analogous transmission line is nonuniform in the sense that the characteristic impedances
may be different in the two directions on the line. Although Schelkunoff [1943] has discussed
nonuniform transmission line theory, it seems worth while to include a short exposition of its
essential features.

The starting point is the equations which connect the transverse voltage V between two
parallel wires and the longitudinal current 7 in the lower wire. In terms of distance z down
the line, these are

‘fg —ZI (A1) and LL—YI (A2)

where Z is the distributed series impedance per unit length and Y is the distributed series
admittance per unit length. Allowing Z and Y to be both functions of z one readily finds
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that
2V 7' dV

DR r—— .

Second-order differential equations of this type possess two linearly independent solutions.
The general solution is a linear combination of these solutions. For example

V(z)=AV+(z) + BV (2) (A5)

where A and B are independent of z and V* and V= are the fundamental wave functions.

Similarly,
I(x)=AI*(zx)+BI (x) (A6)

where /T and /- are the corresponding fundamental current wave functions. It is evident
that the wave functions individually satis(y eqs (A1) and (A2).
A characteristic wave impedance may now be associated with each pair of wave functions;

thus
V+(x) 1 dIt ZV+
NN T AT
KO~ ~ "V dz —dV¥dz X0,
and
V(@ 1 dI~  ZV~-

T () YT de dVds (AS)

K- (2)=

It 1s a convenient physical artifice to consider the waves associated with K" as propagating
in the positive z direction and those associated with A~ as waves propagating in the negative
z direction. In the case of a uniform line where Z and Y are constant, the meaning of these
wave functions is quite clear. In the presence of any local nonuniformity, a reflected wave
would be generated and the individual wave functions no longer are purely propagating.
Nevertheless, in many cases, the elementary wave functions bear considerable resemblance
to “traveling” waves. For example, this happens when Z and Y are slowly varying functions
of .

For present purposes the label progressive is used to describe a fundamental wave on a non-
uniform line. In the limiting case of a uniform line the progressive waves become traveling
waves.

It is important to note that there is some arbitrariness in the selection of the wave functions
on nonuniform lines. The choice is usually made on the basis of convenience.

A useful quantity is the ratio of the wave functions at two points #, and 2, on the line.
Thus, by definition,

Xi (s, xg)z%, X; (a1, ;rg):%:-% (A9)
X7 (1, o) :5‘:‘8—5;’ Xz (@1, 23) :5:_8"3 (A10)

We are now in the position to study the reflection in nonuniform lines. For example, a
semi-infinite nonuniform line is terminated in an impedance Z. If Z= K", the voltage associ-
ated with this incident wave is exactly equal to the voltage across the terminal impedance and
thus the entire incident current wave flows through this impedance. Hence, no reflection
oceurs. However, if Zz K", the incident current wave is not completely absorbed and reflec-
tion occurs. If the incident “progressive” waves are characterized by the wave functions
V¥ (z) and 17 (z), the problem is to calculate the reflection coefficient at the terminal impedance.
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These are defined by

1~ | %
q1=I—+ and qV:W (All)
for current and voltage, respectively. Now,
V,=V++V- and I,=It+1I" (A12)

where V, and 7, are the voltage current at the terminals of Z,. Furthermore,
V+=K+I+, V==K I~,V,=21,. (A13)

The latter two sets of equations are readily solved to give

M= O , 1
qV—M_+Y, where M =R%= and } =7z (A14)
and
K+ Z,

A basic problem in nonuniform lines is to form wave functions V(z) and /(z) at z=ua, in
terms of the specified impedance at z=w,. For convenience, z, >z. Using the preceding
conventions one may easily write

V@)=V @AV (a0 P (A16)
and
I@=T* @)+ T ()0 (2) 1= - (A17)

Here V* and 7T are regarded as the “‘incident” progressive wave and V- and I~ are the “re-
flected”” progressive wave.
t=}
The impedance at the point z=u, is then given by
t=] o

Vi(x) 1+ gy (22) X35 (201, 29) Xy (2,1
Z(xl)‘— 1 (xy) —K+( '1) 1‘{"91‘(12)9(? (%,%)X; (12,101)' (AIS)

This result is most useful in reflection-type problems.

To complete this very brief survey of nonuniform transmission line theory, the correspond-
ing formulas for transmission coefficients are also given.

The transmission coefficients at impedance discontinuity are defined by

I,
pv= V+ - and p= T+ (A19)

being analogous to the previous definitions of ¢ and ¢;. Then from eqs (A12) and (A13),

MMt
=T, (420)
and
K-+ K*
Pr—= K_+Zt * (A21)

As expected, these coeflicients become unity when Z,=K*" (or Y,=M").
The transmission coefficient across a section (z;,2,) of another line inserted between the
original line and impedance Z, is readily obtained. The result, given by Schelkunoff [1943]; is
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T=p(1+gx+@+ ... )xt(21,2)

R 4
TT—gx Xt (21,12) (A22)

p=p*(x) pt(x2), g=q (21) ¢ (2) (A23)

and X=X (21,2,)X"(22,2:). The result holds for both current and voltage waves which ex-
plains the absence of subscripts on 7 and V. The physical meaning of the results is very
clear: p is the product of the two transmission coefficients at the discontinuities z; and 3, ¢ is
the product of the reflection coefficient for a progressive wave incident from the right on the
junction z;, and the reflection coefficient for a progressive wave incident from the left. (Here
x increases towards the right.) In the absence of multiple reflections 7" would be equated to
pxT(@,2,). Thus, the factor (14gx+¢*x*+ . . .) represents the influence of multiple
reflections.

We now proceed to apply nonuniform transmission line theory to a spherically stratified
medium. In particular, let us consider the earth (of outer radius a,) as consisting of a homo-
geneous core of radius a, of electrical constants oy, ¢, and u, surrounded by a homogeneous man-
tle of electrical constants oy, e, and w,. It is assumed that the sources of the field are completely
exterior to the earth. Thus, within the concentric homogeneous regions the fields may be
derived from two scalar potential functions U and V. The first set which are TM (transverse
magnetic) are derivable from 7 and the second set are TE (transverse electric), derivable
from V.

For TM waves

where

| U, _
E= i (Ge—r0):  H=o s
while for the TE waves
e (T 72V>7 7,—0. (A25)
Tuw \ Or?

Both U and V satisfy

,0U , 1 . b(/ 1 0U_ .,

or? +<1n 0 00 >+sm 8 O¢° vy feet)

as can be readily ascertained from Maxwell’s equations.

Since any field may be expressed as a superposition of these two sets, it is sufficient to
discuss them separately.

Using the standard separation-of-variables technique, it is assumed that

U =u(0,¢)u(r). (A27)

On substituting this into eq (A26) one finds that u and % must satisfy

o /. _ou\, o o O
sin 6 >0 (sm 0 O_0>+DTSZ+V(V+1) sin? fu=0 (A28)
and
121 +1)7 A
;,37—; 72+V-(”,,2—):| w=0 (A29)

where » is a constant.
The u’s are Legendre functions and the general form may be expressed as

u(0,¢)=zmjf[Fm(v)P;" (cos 0)+@.,,(»)Pr(—cos 0)] dv X [F,, cos m¢+g,, sin me) (A30)

where the integration contour is suitably chosen in the complex » plane and m is an integer.
The constants F,,(v), G,(v), [, and ¢, depend on the nature of the source field. For example,
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if the source is a vertical electric dipole at §=0, F,,(v)=0, and ¢,=0. Also, for m#0, f,=0.
Thus

uszo(v)P,(—cos 0)dy. (A31)

It is known that integrals of this type can be deformed so as to enclose the poles of Go(v) and
thus u can be represented as a series of residues. Therefore,

ux~2mri > [Residues of Go(v,)] P, (—cos 6) (A32)

where »; are the solutions of [Gy(»)]7'=0. Provided |y >>>1 and 6 is not near 0 or =«

const
(sin 6)*

P, (—cos 6) =~ ¢ —ika,0S |- gir/2¢ —ika, (27"_9)‘5_‘3] (A33)

where v(v,41) 2vi~ka,;S;. Here the angular function » has the physical character of two
waves traveling in opposite directions around the cylinder. In analogy to waves on a flat
surface, S; can be interpreted as the sine of a complex angle of incidence where £ is the wave
number in free space.

It is clearly apparent from this simple example that » is related to the azimuthal variation
of the source field. In the general case, » depends both on the longitudinal and latitudinal
variations. ‘

Solutions of the radial equation are conveniently expressed in the form

2= Al (v')+BK, (vr) (A34)

where I,and K,could be any two independentsolutionsof eq (A29). Herey=[ipw(s+iew)]* where
Re v>> 0. For convenience 7,(y7) is chosen to be a solution which is finite or zero at =0 and

K, (yr) is chosen to vanish as 7 tends to infinity. In terms of modified (cylindrical) Bessel
functions

L&=(%) L (A35)

and

B =(E) K@) (A36)

where I and K have their conventional meaning.
In the present problem, the wayes associated with 7 ,(vr) are regarded as being “incident,”

whereas the waves associated with K,,('y?‘) are regarded as ‘“reflected.”
The surface impedance at r=a; is defined by

7 -

which, in general, depends on ». The medium between the limits 7=a, and a, is now regarded
as a nonuniform transmission line of length /=a;—a,. The transverse voltage V, and the
current / on the line are then analogous to the electric field —F} and the magnetic field H,
respectively, where the superseript » is to indicate the possible dependence on ».

The characteristic impedance of the line looking inward is then

ES] .
A37
-, (830

(A38)



and the impedance looking outward is

K- (717'):_"71KA—” ), (A39)
K,, (717")
In the above
Y =[tww (o1+ e w) |F
and
nlz[iﬂlw/(al"l_iflw)]%-
The line is now considered to be terminated by an impedance Z, where
Z,=[n L ””"’] : (A40)
I (vy7)
From the analogy with transmission line theory, one readily finds that
1+ q.X,(az,a1) X, (a1,a5)
Z,=K( I: ! ! A41
(nas) 14 @nXn(@2,a1) X (a4 ,a5) ( )
where

(1/Z, )—1/1(+(7101)

2 A42
9= (1/Z) F1/E- may)’ (A42)
Zi—K* () :
D=2 AR na) Sl
f,
X (a,0r) =201, (Ad4)
(1121;(')’1@1)
I%'
(a0 =221, (A43)
K (v as)
7
X;,(ag,(lq)zal A—-—y(71a2)7 (A46)
(Lsz(%al)
i
X).((M,az):aﬁz Ay(%al)' (A47)
alKv('YlaQ)

The preceding results can be greatly simplified under the assumption that y,a; and v.a.

A
are large compared with unity. For example, noting that 7,(z) satisfies the equation

A
HIL; 1
B[40 o), (A1)

it readily follows that K (yr) satisfies

Ky, P L1470 )] i, (A49)

where K=K"(yy) and z=v,r. For a first approximation, the derivative term may be neg-
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lected. Thus

K+ (v,7)=m [1 +Vgt)12) (A50)

This approximate result, obtained in a very simple fashion, corresponds to the use of the Debye
or the second order result. The theory of Bessel functions indicates that its validity, in this
form, depends on the conditions Re y7>">1 and Iylr["’ somewhat greater than »(v-1) [Sommer-
feld, 1949]. Similarly,

K~ (mir)=n l:l—f'ygj:)ll) ' (A51)
and )
K (var) 22, l:l iy VE;;{;)IZ) E (A52)

To within the same approximation, the reflection coefficients at 7=a; may then be written

o[- ]m [i-5)
T [1-(22 s [ am -2 ) | (A53)

e[y - (=T
[ QZZ: S)z]%ﬂl [1—@‘1’—2‘;—: S)T (A54)

where »(v-+1) >~ —~3S2=k?S%.  The corresponding (approximate) form for the product of
the transmission coefficients is easily shown to be

and

X, (a2,a1) X, (a1,a2) =Xn(a2,a1) X, (a1 ,02)

1
~exp [—271f [1—70&1 ] ] (A55)
0
where l=a;—a,.

Using eqs (A50), (A53), (A54), and (A55), eq (A41) for Z, can be expressed in a fairly
convenient form despite its complicated appearance. A great simplification can be made
when the thickness [ of the shell is small compared with @;. Thus, the ratios a,/a, and a,/r
in the preceding expressions may be replaced by unity. The surface impedance may then
be written

I: 7322:' +tanh[(vl ¥282)H]

Z=m| 1~ 7°S2:| =
142 22851 anh (1350

(A56)

where it has been assumed that u;=p,=pu,. This result is identical to what one would obtain
on a planar two-layer earth for a plane wave incident at an angle of incidence arc sin S [Wait,
1958]. Consequently, in this limiting case the influence of earth curvature vanishes.

The specific results developed above for the surface impedance are restricted to TM
waves. The corresponding results for TE waves are obtained by exactly the same method.
In fact the results are completely analogous if admittances are used in place of impedances.
The surface admittance defined by

Hy
Yy Ed’]r:al
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has precisely the same form as eq (A41) for Z, if K (y,a) is now replaced by the admittance
M+ (y,a) and ¢, and ¢, have the same form as eqs (A53) and (A54) except that », and 7, are
replaced by their reciprocals everywhere. The bracketed terms are unchanged.

Under the assumptions that Re v,a; and Re via: > ">1, uy=wus=po, and that a,—a,<<ay,
one easily finds that

i

This is equivalent to the result given by eq (36) in the main body of the text.

o]t (6t

14 2250 anh (i
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