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Exp ressio ns are derived for t he r esistance and reac tance of a circ ular loop of t hinly 
insula ted wire whi ch carries a uoifo rm eurrent a nd is immersed in a condu cting medium . 
The res ul t for t he resista nce is comoared with t hat known for a circul ar loop in a spheri cal 
insulating cavity. 

1. Introduction 

Thcrc is a curren t in terest in t he use of loops for t ran smitting and receiving clectromagnetic 
energy in a diss ipa t ive medium. Expressions for th e impedance of a loop in such a m edium 
are of valu e in des igning radiating and rccciving sys tems. Thc resistancc of a circular loop 
in a conducting medium has been discussed by Moore [1951] . In t he presen t papcr , expres­
sions are derived fo r both the resis tance and reactance of a circular loop of thinly insulated 
wire which carries a uniform current a nd is surrounded by an infinite, homogeneous, condu cting 
medium. These express ions are valid if the wavelength in t he conducting medium is lal·ge 
compared with the diameter of the loop and if the displacernen t current in the m edium is 
negligible. Th e result for the resistan ce is compared with tha t of Wait [1957] for a circular 
loop in a spherical in sula ting cavity . 

2. Impedance Integral 

An integral expression for the impedance of a single t urn loop carrying uniform current 
in free space is given by Schelkunoff [1943]. For a loop immersed in a conductin g medium , 
the propagation cons tan t in this expression will be complex. R eferring to figure 1, the expres­
sion reads 

where 
w= angular frequ ency of loop current 
M= permeability of conducting medium 
'Y = complex propagation constant 

ds! = differential elemen t of length along wire center 
ds2 = differential element of length along inner surface of wire 
l'!2 = distance between differential elements ds! and ds2 • 

(1 ) 

The loop wire is assumed to have a coating of insula tion which confines the impressed current 
to the wire. If this insulation is thin, the results presented here for negligible insulation 
thickness are applicable. In calculating the impedance, the current in the loop may be assumed 
to be concentrated along the center of the wire. This is a good approximation if the wire 
diameter is much smaller than the loop diameter and if the circular symmetry of the curren t 
distribution in the wire is not greatly disturbed because of the proximity effect. 

If the displacement current in the conducting medium is neglected, the complex propa­
gation constan t may b e written as 

where 

499 

( WMlY) 1I2 {3= -
2 

I 

-~ 



FIGU R E 1. Circular loop, showing wire axis 
and wire inner surface. 

and () is the conductivity of the dissipative medium. The real and imaginary parts of the 
impedance in eq (1) may then be written as 

(2) 

and 

(3) 

respectively, where R is the resistance and X is the inductive reactance. The above expres­
sion for the resistance of a loop represents external losses and does not include internal losses 
in the loop wire. Similarly, the above expression for the reactance represents only the con­
tribution of external inductance. The second integration in eq (3) should be along a curve on 
the inner surface of the wire so that only flux external to the wire is enclosed. The internal 
resistance and inductance can be computed separately from well known formulas [Ramo and 
Whinnery, 1953]. 

3 . Evaluation of Impedance Integral 

The integrands in eqs (2) and (3) may be expanded in a power series and the expressions 
for the resistance and reactance written as 

and 

R = {34'; f f [ l -{3rl z+~ (,Br12)2- ;0 ({3r!2)4 + .. .J cos if;ds1ds2 

X = {34'; ff[{3~12- 1+~ ({3r12)2-~ ({3rlZ) 3+ .. .J cos if;ds1ds2 • 

(4) 

(5) 

No great error is made in calculating the resistance if the second integration is also performed 
along the center of the wire. The error involved in shifting the second path of integration 
from the inner surface to the center of the wire is greatest for small values of r12, and for these 
values, the integrand is not strongly dependen t on r12' The greatest contribution to the 
integrand of eq (5), however, comes from small values of r12. 

3 .1. Eva luation of Resistance Integral 

To calculate the external resistance of a circular, single turn loop in a conducting medium, 
the integration indicated in eq (4) may be performed by referring to figure 2. The circle of 
radius a represents the wire axis of the loop . With dS1 = adO, dsz = adl/;, and rlz= 2a sin 1/;/2, 
the resistance is given by 
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FIGURE 2. Circular loop, showing wire axis. 

Term by term integration results in 

(7) 

For a loop of N turns, the resistance would be multiplied by the factor Jy 2. 

The radiation resistance of a single turn, circular loop in air is given by 

(8) 

where c is the velocity of light in free space. Since the displacement current in the conducting 
medium is quite small compared with the conduction current, the radiation resistance of a 
loop in air is very much smaller than the resistance of that loop when immersed in a conducting 
medium. 

3 .2 . Evaluation of Reactance Integral 

Using figure 1, the external reactance of a single t.urn, circular loop may be calculated 
by performing the integration indicated in eq (5). The wire axis and the wire inner surface 
are represented by r.oncentric circles of radius at and a2, respectively. ",Vith dS t = atdO and 
ds2= a2dl/;, eq (5) may be written as 

(9) 

The contributions to the integral of the seco nd and succeeding terms in the integrand above are 
changed little by letting al = a2 = a and r12 = 2a sin 1/;/2. In the fu'st t.erm, however , al must 
be distinguished from a2. Using the law of cosines, r;2 = ai+ a;-2a j a2 cos 1/;. Equation (9) 
may then be written as 
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{3WJ.La2 ( 271" ( .. [ 1 ( . f) 2 1 ( . f)3 ] 
+~J o J o - 1+} 2a{3 sll1 2 -'6 2a{3 sll1 2 + ... cosfdfd8. (10) 

By substituting f = 7r + 2¢ and k2=(a~~::)2' the fil'st in tegral in eq (10) may be wri tten as 

(11) 

The integrals in eq (11 ) may be recognized as the complete ellip tic integrals of the first and 
second lcind respectively. For loops of small wire diameter, al~ a2= a and P"'" 1 . In this 
case, the complete ellip tic integral of the second kind is approximately equal to uni ty. Equa­
tion (11) then becomes 

(12) 

where 
71" 

K (k) = 12 (l - p(;in2 cp) 1/ 2 

is the complete elliptic integral of the fhst kind. The remaining integrals in eq (10) are simple 
and may be integrated term by term. The expression for the reactance then becomes 

(13) 

Since the reactance of a single tum, cu:cular coil in ail' is given by 

Xalr=wJ.La[K(k)-2], (14) 

equation (13) may be written as 

(15) 

where the series of terms on the right side of eq (15) represents a correction due to the conducting 
medium. For a circular loop of N turns, the reactance would be multiplied by the factor N2. 

4. Plot of Results 

Values of the immersion correction terms for the resistance and the reactance are presented 
in figure 3. These terms are obtained from eqs (7) and (15) and are plotted as the dimension-

1 . . R cor d X cor F h" . f h . ess quantIties -- an -- versus {3a. or {3a«I , t e immerslOll correctIOn or t e resistance 
WJ.La wJ.La 

is very nearly {3a times that for the reactance. 

5. Effect of Spherical Insulating Cavity 

It is of interest to compare the expression for the resistance given by eq (7) with that of 
Wait [1957] for the resistance of a circular loop in a spherical insulating cavity. The immersion 
correction for the resistance is given by Wait as 
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FIGURE 3. I mmersion correction terms for the 
resistance and reactance of a single turn 
circular loop. 
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(16) 

H a= Go and {3a« l , Lhe .m t io of Lh o l'csis L1l11 cO C'o lTcction given by eq (16) to that g ive n 
l y eq (7) is a,ppl'oximaLoly oqu aJ to 0.86. The close ag reement between t he two immersio ll 
corrections indicates the sm all e:"l ec t 0[' a sphericn,l insulat ing cm e on the loop resistan ce. VVhell 
a/ao«l and {3a« l , the ratio 0[' the res istance cor rection terms is approxim ately equal Lo 
a/ao. This clearly shows the effect iveness 0[' t he sph er ical in suln,ting cavity in r educing losses. 
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