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Expressions are derived for the resistance and reactance of a circular loop of thinly
insulated wire which carries a uniform current and is immersed in a conducting medium.
The result for the resistance is compared with that known for a circular loop in a spherical
insulating cavity.

1. Introduction

There is a current interest in the use of loops for transmitting and receiving electromagnetic
energy in a dissipative medium. Expressions for the impedance of a loop in such a medium
are of value in designing radiating and receiving systems. The resistance of a circular loop
in a conducting medium has been discussed by Moore [1951]. In the present paper, expres-
sions are derived for both the resistance and reactance of a circular loop of thinly insulated
wire which carries a uniform current and is surrounded by an infinite, homogeneous, conducting
medium. These expressions are valid if the wavelength in the conducting medium is large
compared with the diameter of the loop and if the displacement current in the medium is
negligible. The result for the resistance is compared with that of Wait [1957] for a circular
loop in a spherical insulating cavity.

2. Impedance Integral

An integral expression for the impedance of a single turn loop carrying uniform current
in free space is given by Schelkunoff [1943]. For a loop immersed in a conducting medium,
the propagation constant in this expression will be complex. Referring to figure 1, the expres-

sion reads
L, Jw e Mz
VA :";{Hff» —— ¢0s Yds,ds,, (1)
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w=angular frequency of loop current

p=permeability of conducting medium

y=-complex propagation constant
ds;=differential element of length along wire center
ds,=differential element of length along inner surface of wire
rp=distance between differential elements ds, and ds,.

where

The loop wire is assumed to have a coating of insulation which confines the impressed current
to the wire. If this insulation is thin, the results presented here for negligible insulation
thickness are applicable. In calculating the impedance, the current in the loop may be assumed
to be concentrated along the center of the wire. This is a good approximation if the wire
diameter is much smaller than the loop diameter and if the circular symmetry of the current
distribution in the wire is not greatly disturbed because of the proximity effect.

If the displacement current in the conducting medium is neglected, the complex propa-
gation constant may be written as

w 1/2
v=(jons) 2= (i+ B,  where g=(47)
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Fraure 1. Circular loop, showing wire axis
and wire inner surface.
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and ¢ is the conductivity of the dissipative medium. The real and imaginary parts of the
impedance in eq (1) may then be written as

_ﬁrlz
R=Z—: f J‘e - sin fBrys cos Ydsids, (2)
12
and
L wu e Br12
X=-r ff cos Briz cos Ydsds,, (3)
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respectively, where R is the resistance and X is the inductive reactance. The above expres-
sion for the resistance of a loop represents external losses and does not include internal losses
in the loop wire. Similarly, the above expression for the reactance represents only the con-
tribution of external inductance. The second integration in eq (3) should be along a curve on
the inner surface of the wire so that only flux external to the wire is enclosed. The internal
resistance and inductance can be computed separately from well known formulas [Ramo and
Whinnery, 1953].

3. Evaluation of Impedance Integral

The integrands in eqs (2) and (3) may be expanded in a power series and the expressions
for the resistance and reactance written as

R f f l:l—ﬁrlz‘}‘% (Bria)—g5 (Bri)*+ . ] cos yds,ds; )
an

x=fo f f [571; — 1 (Bro)*— (Br)'+ . ] cos Ydsds.. (5)

No great error is made in calculating the resistance if the second integration is also performed
along the center of the wire. The error involved in shifting the second path of integration
from the inner surface to the center of the wire is greatest for small values of ry,, and for these
values, the integrand is not strongly dependent on 7. The greatest contribution to the
integrand of eq (5), however, comes from small values of 7.

3.1. Evaluation of Resistance Integral

To calculate the external resistance of a circular, single turn loop in a conducting medium,
the integration indicated in eq (4) may be performed by referring to figure 2. The circle of
radius @ represents the wire axis of the loop. With ds,=adb, ds,=ady, and r,=2a sin y/2,
the resistance is given by

500



Frcure 2. Circular loop, showing wire axis.

ds,

ds,

Trd Bwﬂf f ,:1 —2af sin ¢+ (‘)(,5 sin ‘f —316 ’206 sin g>4—|— .. :I cos Ydydh. (6)
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Term by term integration results in
o t=)

/wuaL (80)*—T (Ba)°+ o (Ba)— . ] @)

For a loop of N turns, the resistance would be multiplied by the factor N2,
The radiation resistance of a single turn, circular loop in air is given by

7rwp.(l ;
R alr— 6 C“ . (‘\>

where ¢ is the velocity of light in free space. Since the displacement current in the conducting
medium is quite small compared with the conduction current, the radiation resistance of a
loop in air is very much smaller than the resistance of that loop when immersed in a conducting
medium.

3.2. Evaluation of Reactance Integral

Using figure 1, the external reactance of a single turn, circular loop may be calculated
by performing the integration indicated in eq (5). The wire axis and the wire inner surface
are represented by concentric circles of radius a, and a,, respectively. With ds,=a,df and
ds;=aydy, eq (5) may be written as

Bw#@ﬂzr f [E__1+ (Brys)?— (Br12)3+ .. :| cos wdf. (9)

The contributions to the integral of the second and succeeding terms in the integrand above are
changed little by letting @;=a;=a and 7,=2a sin ¥/2. In the first term, however, a; must
be distinguished from a,. Using the law of cosines, 71,=a;-+a;—2a,a, cos ¢. Equation (9)
may then be written as
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a;-+ai—2ma, cos ¥)**

Bwu(lf J l:_H"S <205\m 7> — (Haﬁ sin f) NI ] cos ydyds. (10)

4a,a,
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By substituting y =7-2¢ and k= » the first integral in eq (10) may be written as

_eunaaf(2rlata) 2t ) (T i s ] \
l:( 1y aﬁ—a;)f 1—k251n qs)”’ (s Jﬂ (Sl i)

The integrals in eq (11) may be recognized as the complete elliptic integrals of the first and
second kind respectively. For loops of small wire diameter, ¢;~a,=a and k*~1. In this
case, the complete elliptic integral of the second kind is approximately equal to unity. Equa-
tion (11) then becomes

L=wpalK(k)—2], (12)

where

- 3 de
KW= g

is the complete elliptic integral of the first kind. The remaining integrals in eq (10) are simple
and may be integrated term by term. The expression for the reactance then becomes

X—ana | KB—2=F (o) 415 o'~ ... ] (13
Since the reactance of a single turn, circular coil in air is given by
Xar=owpa[K (k) —2], (14)
equation (13) may be written as
- u s 4 4
X=Xur—wpa| 5 (Ba)' =z (Ba)* =+ .. | (15)

where the series of terms on the right side of eq (15) represents a correction due to the conducting
medium. For a circular loop of N turns, the reactance would be multiplied by the factor N2

4. Plot of Results

Values of the immersion correction terms for the resistance and the reactance are presented
in figure 3. These terms are obtained from eqs (7) and (15) and are plotted as the dimension-

cor

less quantltles and " " versus fa. For fa<1, the immersion correction for the resistance
W

is very nearly Ba tmles that for the reactance.

5. Effect of Spherical Insulating Cavity

It is of interest to compare the expression for the resistance given by eq (7) with that of
Wait [1957] for the resistance of a circular loop in a spherical insulating cavity. The immersion
correction for the resistance is given by Wait as

502



XCOY
wpo
io0-! 163

Reor
wpa

1072 164

N\

Reor
m

Fraure 3. Immersion correction terms for the
resistance and reactance of a single turn = P
circular loop.
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where
a—radius of loop with center at the center of sphere
a,—radius of spherical insulating cavity.

Il a=a, and Ba<1, the ratio of the resistance correction given by eq (16) to that given
by eq (7) is approximately equal to 0.86. The close agreement between the two immersion
corrections indicates the small eifect of a spherical insulating core on the loop resistance. When
a/a, <1 and Ba<1, the ratio of the resistance correction terms is approximately equal to
a/ay. This clearly shows the effectiveness of the spherical insulating cavity in reducing losses.
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