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The propagatio n of a ud iofrequpncy a nd sub-a udiofrequency waves be tween t he earth 
a nd an ionos phere whose conductivity varies co nt inu ously with altit ude is co nsidered in 
deta il. The fie lds a re represe nted in te rms of t ll'O scalar potentials satisfy ing a ppropria te 
wa ve eq uations in spherieal coordina tes. 

It is s hown , on t he basis of exist in g data on t he ion osphe re, t hat waves i n th is fl'equency 
range can be cons idered to be confin ed to a t hin , but not s ha rp ly bounded , s pheri cal s hell 
abo ut t he eart h . Greatly simplified radia l wave equations in dimensionless form are 
deri ved in co rporatin g t hi s a pprox imation . Solu t ions of t hese equations a rc given fOI' two 
r egions, v iz, for t he low-altitude reg ion whe re u/W€o< < 1 a nd, in the case of cer ta in 
rest ri cted types of cond uct iv ity profile, for t he h igh-alti t ude reg ion where u/W€o> > 1. 
An itera t ive method is presented , based on a n in tegra l equatio n, which makes possib le 
a computation of t he radia l wave fun ction in t he transit ion region a nd a jo inin g of in te ri or 
and exteri or solution s for t he propagatin g TM mode. The resu lt is a direct mathematical 
rela t io ns hip between t he condu ctiv ity pro fi le a nd t he complex propagation constant as 
a funct io n of freq uency . 

It is demon trated t hat at freq uencies above abo u t 50 cycles t he propaga Lion cons ta nt 
ca n be obta ined from measure me n ts of t he horizontal co mponents of electric a nd mag netic 
fi elds in individ ual sferics a t air plane a lt it udes, whi le a t lower freq uencies t he sa me infor­
mation can be obtained thr ougll ground-based observa t ion of cavity resonance e ffects in 
sferic noise. Existing data on t hcse cavity resonances a re used to calcula te t he complex 
p ropaga t ion co nstant as a fun ction of freq ue nc.v from 6 to 3,1. cycles. The re ults , when 
extrapolated to hi gher frequencies, predict atte nu a t ion rates in ex cell ent agree ment wit h 
currently ava ila ble data. 

The effect of t he diurnal vari ation in con du ctivity o n obse rvable qu anLiti es is br ir fl y 
examined, a nd te ntat ive co nclu sio ns as to its magni tude a re drawn. 

1. Introduction 

The propagation characteristics of ELF and sub-audiofrequency mdio waves in the 
earth-ionosp here cavi ty are cri tically dependent upon the detailed electrical properties of the 
ionosphere. Most previous t heoretical treatments [Budden, 1957 ; Wait, 1957 ; Wait, HI5S; 
Wait, 1960 a and b] of the problem have assum ed an ionosphere sharply bounded at some 
definite height, with a conductivity which, from that height outward, either remained co nstant 
or varied stepwise or continuously with height. For a numb er of reasons, such models can 
never adequ ately represent the actual physical situation. The same observation has been 
made recently by Wait [1962] in a paper treating the case of a continuously varying conduc­
tivity which becomes constant at high altitude. The work presented b elow, while confining 
itself substantially to the ELF region, is an attempt to approach a somewhat more general 
problem from a different point of view. In particular, this paper is directed toward the 
possibility of inferring the properties of the lower ionosphere from field measurements taken 
over a range of frequencies. 

For frequencies low compared to the electronic collision frequency- a condi tion easily 
satisfied in the VLF range and below- the ionosphere b ehaves like a m edium with unit 
dielectric constan t, unit relativ e permeability, and a conductivity which is a function of 
position. The conductivity affects the local behavior of the electromagnetic field only as 
it en ters into the complex relative permittivity E, which can b e represented as follows: 

I This work was sponsored in part by the Geoph ysical Research Di rectorate, Air Force Cambridge Research Laboratories, Bedford , M ass. 
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• Wr E= l-J -
W 

(1) 

where Wr is a real number, related to the conductivity, which depends upon position but not 
frequency. At altitudes where (wr/w) is much smaller than unity, the medium behaves 
essentially like a vacuum. Where this ratio is much larger than unity, it behaves like a good 
conductor. Although (1) makes no provision for the effect of the terrestrial magnetic field , 
it has been shown [Wait, 1960 b] that this can be quite simply taken into account at low 
frequencies through the use of an effective W r , dependent on the vertical component of magnetic 
field. 

The transition region, in which (wr/w) is comparable with or at most a few orders of magni- ~ 
tude greater than unity, can playas significant a role in determining the propagation of ELF I 

waves as does the upper region. It is precisely this region which is omitted from sharply r 
bounded models. Moreover, it can be seen from the form of (1) that the height at which the I 
effect of finite conductivity is first felt is progressively lower for waves of lower frequency. 
On the other hand, because of a phenomenon analogous to the familiar skin effect, the total 
penetration of the waves into the ionosphere increases with decreasing frequency. When 
viewed in this light, the concept of a single "ionospheric height," even if this height is per-
mitted to vary with frequency, clearly loses its physical meaning and probably its mathe-
matical utility. Certainly some effort to take into account a continuous variation of Wr with 
height is warranted. 

Any theory which attempts to relate the conductivity profile of the ionosphere to observed 
fields must take into account both the real and the imaginary parts of the effective propagation 
constant as functions of frequency. Unfortunately experimental data [Chapman and Macario, 
1956; Jean, 1961] to date, with few exceptions [Balser and Wagner, 1960a and b], are capable 
of giving inrormation only about the attenuation characteristics of the wave and yield nothing 
about its phase velocity. Future experiments on ELF and sub-audiofrequency radiation, if 
they are to lead to increased knowledge of ionospheric properties, must provide for measure­
ment of both attenuation and phase lag. 

2. Scalar Solutions for the Spherically Symmetrical Ionosphere 

In the oversimplified, but important, case in which the conductivity depends only on the 
radius of spherical coordinates, solutions of Maxwell's equations can be found in the form of 

~ ~ 

TM waves (r-component of H absent) and TE waves (r-component of E absent). Each type 
of solution can be derived from a single scalar potential. For the TM wave, the fields are 
given by 

where if; is a scalar solution of 

~ A 

H = r X W 

~ 

~ VXH 
E=-.-

JWEOE 

(2) 

(3) 

(4) 

The symbol k is here used to represent the free-space propagation constant of a wave of the 
given frequency. For the TE wave, one obtains 

where x is a scalar solution of 

-) A 

E = r XVx 

~ 

-) VXE 
H = - - .­

]WJ.i.o 
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- V'. -,. V'x +PX= O. 1,2 (1 ) 
e 1'2 

(7) 

Both (4) and (7) are separable in spherical coordinates, giving solutions of the form 

f = L;L;a~<p",( </» e~'(O)R,(1') (8) 
, m 

X= L;L;br;:<p",(</»er;: (0) Sp(1') . (9) 
I" m 

The functions <p",(</» are linear combinations of exp 
and the e;,nor 1"(0) are appropriate Legendre functions. 
t lJe following equations: 

(±jm</» where m is zero or an in teger, 
The radial parts of the solutions satisfy 

e j£ (! dR')+[Fe_ p (lI+l) ] R,=O 
d1' e d1' 1'2 

(10) 

(11) 

The perm issible values, or eigenvalues, II and J.L for a given frequency a,re determined by 
two boundary conditions. These a,re, in general, that the fields remain fmite at the center of 
the earth and vanish at infinity. In the case of it perfectly conducting earth, t lwfirst condi­
tion is replaced b~T 

( dR,) = 0 
dr r= ro 

(12) 

(13) 

where 1'0 is the radius of the earth. It should be noted that the eigenvalues for a par t icular 
Jrequen cy are uniquely determined by the radial equation alone, and are in general complex. 
The Legendre functions, which can be written p:norl"( ± cos 0), will therefore in general possess 
at least one singularity (at 0= 7r if the + sign is used , or 0= 0 if the - sign is used), correspond­
ing to the fact that a source is needed to drive the system at an arbitrary frequency. There 
will, however, be certain (complex) frequencies at which one of the eigenvalues becom es equal 
to an integer n. Since the P'::(cos 0) have no singularities, these are the natural resonant fre­
quencies of the system, at which oscillation is possible in the absence of a source. 

3. Altitude Dependence of the Relative Permittivity 

The parameter Wr depends on the electron density N and the collision frequency Pc as 
fo llows: 

WT=e:: (~) (14) 

where e and m are the charge and mass of the electron. Existing data [Pierce, 1960; Ratcliffe. 
1959] on N and Pc have been used to construct the curve of figure 1, which shows the probable 
approximate variation of W T with height above the surface of the earth during daylight hours. 
It is seen that the function , although continuous, is very rapidly varying and reaches extremely 
h igh values in the fu'st 100 km. The increase continues thereafter, rather more slowly, until 
a broad peak at an altitude of 300 or 400 km is reached, where Wr is several orders of magnitude 
larger than at 100 km. A relatively slow decrease then sets in, which results in a significant 
r eduction of W T only after an altitude of several thousand kilometers is reached. 

If the conductivity, given by 
(15) 

were even to remain constant from 100 km upward for several hundred kilometers, the skin 
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depth in t]mt region for ELF radiation would be very small. At the very low frequency of 
10 cycles, the skin depth would be only of the order of 1 km . Therefore, it would seem safe to 
assume that the wave is attenuated essentially to zero within a vertical distance which is small 
compared with the radius of the earth. Although figure 1 may be in eITor by an order of 
magnitude or more at a given altitude, and although the nighttime profile is somewhat different, 
certainly one can still be confident that all significant phenomena are confined to a shell not 
more than 100 to 150 Ian in thickness. 

The argument just outlined, together with the fact that the attenuation is also large in the 
earth itself, leads to an important mathematical simplification in the radial wave equations, 
which may now be written 

(16) 

(17) 

The variable l' in the final terms has been replaced by a constant effective radius r , which can 
be chosen to be somewhat larger than 1'0. The form of the relevant solutions will be practically 
unaffected by this change, even if the independent variable is allowed to go to infinity in 
satisfying the outer boundary condition. 

The simplified form s of the rad ial equations make it easy to attach a direct ph:ysical mean­
ing to the eigenvalues. Equations (16) and (17) are identical to those whicK are obtained for 
the potentials in the case of a wave propagating between infulite plane-parallel walls having 
the same electrical characteristics as those of the earth and the ionosphere, providing only that 
the following replacemen ts are made: 

(18) 
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., 

(19) 

wher e kTM :tnd k TE :trl' the propaga t ion constants of T~1 and TE waves, r espectively , III a 
direction p:tr:tllel to the walls. 

4. Dimensionless Form of the Radial Equations 

For simplicity of nota tion, it is convenient to rewri te (18) and (1 9) in dimensionless form , 
as follows: de dUa) E - - - + (e- a) ua= O 

dx e dx 
(20) 

d2v~ 
(21 ) p + (e- {3)vp= O 

ex 
where 

x= k(l'-l'o) (22) 

v(v+ l ) 
a= F f 2 (23) 

(3 
1i (1i+ 1) 

(24) p".2 

u a (x) = R ,(l') (25) 

v~ (x) = Sp.(r) . (26) 

In ord er to sec approxima tely the nature of t he solutions fwd the order or nl :tgni tud e of th e 
eigenv:tlues, it is in teres ting to cons id er th e case of perfectly conducting earth ILlld ionosphere, 
separated by a vacuum of thickn ess h. The solu tions would t ben be of th e form 

Ua= cos [./ l - ax] 

v~= sin [.J 1- {3xl. 

The bound ary condi t ions at x= kh r equire that 

-- p7r 
.,JI - a= kh (p= 0, 1, 2,3 ... ) 

... /l - {3 = q7r (q 1 2 3 ) , kh = " .. . . 

(27) 

(2 ) 

(29) 

(30) 

Since, at frequen cies of the ord er of those under discussion, kh is much sm aller t han 
unity, all TE eigen values and all but th e lowes t TM eigenvalue ar e large and n egative. Using 
(18), (19 ), (23 ), and (24), we have for the equivalen t parallel-plane propaga tion constants 

k .p7r 
TM ""-J T (31) 

(32) 

These modes are all f:tr b elow cutoff, and are attenuated in horizontal dist:tllces sm all conl­
pared wi th the vertical h eigh t of the ionosphere. Th e lowes t TM mode, however , corresponds to 

(33) 
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(34) 

The introduction of an earth and ionosphere of reasonably high conductivity will not affect 
the eigenvalues drastically; ao will still be of the order of unity, although it will now be com­
plex, and the remaining eigenvalues will be large and primarily real and negative. The low­
est TM mode will still be the only one capable of propagation over significant distances. 

The following orthogonality relations are of interest in connection with the application 
of the radial wave functions to actual situations: 

f OO 1 (a' ~a) (35) - u",u""dx= O 
- 00 I: 

I _O>o> v{Jv{J,dx= 0 «(3' ~ (3). (36) 

The infinite limits represent integrations into fictitious "flattened" spaces above and below 
the surface of the earth. This artifice is permissible because of the high conductivity of both 
bounding media. 

An exact solu tion of either of the radial wave equations, or even an approximate solu- j 

tion by any conventional method, is extremely difficult in any practical case. It is possible, 1 
however, to obtain a solution valid below the transition region and, in special cases, a solu-
tion valid above that region. In the case of a perfectly conducting earth and finitely con-
ducting ionosphere, the interior solutions are given by (27) and (28) , as long as (wT/w)«l. 
If the effect of the earth is represented by a wave impedance Z.-this will be small compared 
to 1)0- (27 ) and (28) become 

[ /- . Ze ] 
U", = COS "\ 1- ax-J 1 

1)!J"\l - a 

. [ ~ .ZJl~J V{J = Slll "\/1- (3x - J 1)0 . 

The exterior solutions which can be obtained apply only where (wT/w) is large. 
soluble case is that for which W T is given by a simple power law. If 

1: = 1- jel(X- Xl)n ~ - jel(X-X1)n 

where n can have any real positive value, the solutions are 

(37) 

(38) 

One 

(39) 

(40) 

(41) 

The above expressions are restricted to the region where (wT /w)>> la l. Another soluble case, 
which would appear to represent more nearly the true state of affairs , is the exponential "I 
variation of conductivity: 

( 42) 

The corresponding exterior solu tions are 

r (2) (2 r) u",= A-YI:H..j!+ (4/a2) (",-1) (i,-ve (43) 

(44) 
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wh ere Lhe res triction is that (wrlw)>> l. It should be noted that for the propagating mode 
(4Ia2)(a - 1)«1 for the real ionosphere, and that therefore the order of the H ankel fun ction 
becomes essen tially unity for that mode. 

For many purposes, only the propagating mode is of interest. It h appens that, in this 
excep tional case, a good method exists for joining the interior and exterior solutions, and cal-

;0 culating the eigenvalue. Because t he p ermit tivity varies very greatly over dis tances shor t 
compared wi th a wavelength, no vVKB or qmLsi-WKB method is applicable in the t rans ition 
region. However , the rapidity of this variation ensures tha t U" O will not change greatly from 
its value a t X= O until after the r egion of validity of the exterior solu tion is r eached . F or thi 
reason, a good approximation to the solution in th e interior and transition r egions can be 
obtained by transforming (20) into an integral equation . II we let 

u,,(O)= l (45) 
then 

( 1 dU,, ) . Ze 
-; dX x = o=.7 ~· (46) 

~ OTE: H ere a nd in most of what follows, IX will be used to denote the lowest eigenvalue only. 

The first in tegration of (20) yield s 

_1_ du,, _ . Ze_ J' x (') l '+ I X u,, (x ' ) d ' 
( ) d - .7 u" X G X a ( ' ) X 

f X X 1/0 0 0 f X 
(47) 

and a second in tegration leads to 

Z I X I X J'x' I X fI' U (x" ) u,,(x) = 1 + j ~ E(x ' )clx' - E(X') u,,(x")dx" clx' + a E(X ' ) ~( II ) clx" clx' . 
1/0 0 0 0 0 0 E X 

(48) 

If x is no t too large, an iterative process star ting with 

u,,(x" )= l (49) 

will converge to give as accurate a value of u,,(x) as may be desired . The eigenvtl,lue may t hen 
be calcula ted by se tting th e value of (l iEU,, ) (clu"lclx) ob tained by means of (48) equal to that 
obtained from (40) or (43) a t some heigh t Xo, chosen as small as consis ten t with the vfLlidity 
of the exterior solu tion . 

At sufficiently low frequen cies, and of course depending upon the actual sha pe or the 
conductivi ty profile, the first-order approximation in which u,,(x) is simply unity can be used , 
lind (47) gives 

1 clu" . z. rx clx' 
-; dx = .7 ~-x+a Jo E(X')' (50) 

Und er these circumstances, one obtains 

.Z,+( 1 du,,) xo- .7 - - -
1/0 EU" clx X= Xo (51 ) 

wher e the last term in the nmnera tor is to be calculfLted from th e exterior solu tion . Th e 
term in Z, can usufLlly be neglected at these frequ encies. :Moreover , the integral in the 
denomina tor is of the order of Xo, and so a more convenient form of (5 1) is 

+( 1 clu,,) 
Xo ;u;, dx x=xo 

J' xo ( 1) . 
xo- 0 1--; dx 

(52) 

469 

--I 



It should be remembered that (52) represents only a first-order solution, but that the range of 
applicability of the technique can be greatly extended by repeated iterations of (48). 

Equation (52) gives a means for calculating the lowest eigenvalue if the conductivity 
profile is known. Actually, however , the problem at hand is exactly the reverse- that of 
calculating t he profile if the eigenvalue is known as a function of frequency. The latter infor­
mation may be obtained experimentally in a number of ways, two of which are described in 
the following sections. If a reasonable approximation for the upper ionosphere profile is 
known, (52) permits the calculation of the integral in the denominator as a function of fre­
quency. This information is, in a general sense, a transform of the desired information on 
the variation of f with height. 

The desired information must be obtained by means of an inversion of this transform . 
Although the transform in question is not among those which have been well investigated in 
the past, several avenues of approach are open. It is conceivable, of course, that a rigorous 
analytical method for performing the inversion may be found. It is more probable, however , 
that recourse will have to be had to some approximate analytical technique. If all else fails , 
the transform can always be inverted by purely numerical methods. 

5. Field of a Vertical Dipole 

The atmospheric noise observed at ELF and below is due primarily to the vertical com­
ponent of current in lightning strokes occurring at relatively large distances from the observer, 
and can therefore be described in terms of t he field of an infinitesimal vertical dipole located 
just above the surface of the earth. This field is composed of TM waves of all orders with 
the azimuthal index m equal to zero. If the dipole is located at 0= 0, x= o we have 

if; (x, 0) = 2: a.P.( - cos O)Ua(X). (53) 

It is shown in the appendix that 

. kp 
a. SIn jl'lr = i 00 I 

4 - u~dx 
o f 

(54) 

where p represents the current moment of the source. Except in the immediate vicinity of 
the source, only the lowest-ord er wave is significant, and therefore 

./,( 0) = kp [PvC-COSO)] () 
'+' X, j 'oo ? . U a x 

4 u-;' dx sm V 7r 

o f 

(55) 

where a denotes the lowest eigenvalue. When m = O, as in this case, the only field components 
present are the following: 

E . ka 
T = ]Tlo - if; 

f 
(56) 

. I o2if; 
Ee = ] Tlo rf o xoO (57) 

I oif; 
(58) H q,=;;,; - ' 

r 00 

The eigenvalue can, in principle, be determined by comparative measurements of these 
three field components in individual sferics. Actually, insofar as the determination of iono­
spheric properties is concerned, it is the quantity (a - I) which is significant. A comparison 
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of E T and I-f", is not suitable for several reasons. First, and most inlportant, is the fact that 
(a- I ) enters into the ratio only in second order. Second is t he fact that the ratio depends 
to some extent on O- that is , on th e distance or the observation point from the source. Third 
is the fact that the horizon tfd magnetic field measured by a loop antenna will depend upon the 
direction of incidence of the wave, while the vertical electric field will not. Consequently, 
two loop antennas will be required to determine the actual magnitude of H", . 

Comparative measurenlents of Eo and ET would yield (a- I ) in first order, although the 
experiment would have to be carried out at tLll altitude sufficiently great that Eo were indeed 
measurable. However, knowledge of the source distance and direction of incidence would 
still be required . 

The best procedure would be to measure and compare Eo and H", . The complex ratio of 
these two field components is entirely independent of the source distance, so long as this distance 
is grea t enough for the evanescent modes to be negligible. ~10reover, the responses of two 
suitably oriented antennas will both depend in exactly the same way on the direction of inci­
dence, so that the response ratio will be independ ent of the location of the source. An addi­
tional important advantage is that the ratio is entirely unaffected by the presence of scattering 
centers such as discontinuities in the ionosphere (again provided the higher-order modes in 
the refiections can be neglec ted ). Th e field-component ratio is given by 

Eo . 1 du" - = J --.-' 
"IoH ", ~u" dx 

(59) 

If the measurements Me made in an airplane at dimensionless heigh t Xa, (37) is applicable, 
the first-ord er approxim a tion to tan.J1 - ax is valid, and ~ can be taken as un ity, so t hat one 
has (with Z.""' O) 

Eo . 
E7 = Jxa(a- l) . 

7]0 ~ '" 

(60) 

It should be emphas ized that the \'alues of a obtained in t his Wtly are those cOl'l'esponding 
to the instantaneous conductivity profi le above t he po in t of observation. This method is 
therdore potentiall,\- ctLpab le of detecting both temporal and geographical variation in the 
ionosphere. In region s where the mtLgnetic field of the etuth is steeply clipping, the results 
obtained are simply those cOl'l'esponding to tb e profile of (wr)eIT [Wait, 1960b], rather tban wT. 

6. Representation of the Field in Terms of Cavity Resonances 

Since (a - I ) is a quite slowly varying quantity, the field component ratio sbown in (60) 
depends primarily on Xa or, for a given altitude in feet, on the first power of frequency. The 
ame is approximately true of the ratio Eo /E T • It is this latter ratio which limi ts the measur­

ability of Eo, due to the effect of errors in aircraft attitude. Assuming an altitude of 40 ,000 
Jeet and an accuracy oJ 0.1 degree in the determination of aircraft attitude, the probable error 
in Eo reaches 10 percent at about 50 cycles. Fortunately, the range below this frequency 
can be effectively covered through studies of the cavity resonances. A great deal can be 
inferred from ground-level measurements of the vertical electric field as a function of frequency 
in this range. However, such data can yield information on ionospheric properties only as 
averaged over the earth . ~ore complete information could be obtained from simultaneous 
measurement of the other field components, but the following analysis is based on the vertical 
field alone, as these are the only data [Balser and Wagner, 1960a and b ] presently available . 

The theoretical basis for this method is the following expansion: 

P v(-eos 0) 
SIll 117r 

1 ± (2n+l)Pn(cos 0). 
7r n=O 11(11 + 1) - n(n+ 1) 

(61 ) 

The vertical component of electric field at the surface of the earth, due to a single source, can 
be found hom (45) , (55 ), and (61). It is given by 
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(62) 

where 

C(w) J nop • 

J'''' " 41r1'~ U a dx 
o € 

The total vertical field observed at a point is the result of some distribution of such sources 
over the surface of the ear th. It is instructive to examine the case of a uniform distribu tion 
of a large number of noncoherent sources. The mean-square value of electric field is given by 

(64) 

where N p is the total number of sources. Using (62) and the orthogonali ty properties of the 
L egendre polynomials, one obtains 

(65) 

For the rapidly varying ionospher e, C(w) is roughly inversely proportional to w. 

7. Interpretation of Observed Atmospheric Noise Spectrum 

It was pointed out in the preceding section that airborne measurements would lose accuracy 
at lower frequencies and would cease to be valid below some minimum frequency. In order 
to determine that frequency, it was necessary to find the approximate relative magnitudes of 
the horizontal and vertical electric fields to be expected at fligh t altitudes. The noise spectrum 
observed by Balser and Wagner in the range from 5 to 34 cycles, which shows a series of pro­
nounced peaks and valleys, has therefore been interpreted according to the scheme described 
below. The figure of 50 cycles as the lowest useful frequency for airborne measurements is a 
result of that analysis. 

The development leadin g to (65) applies to a distribution of noncoherent sources at a 
single frequency. Actually, the noise energy is distributed throughout the frequency spectrum. 
The power per uni t frequency in terval received by an electrically short vertical monopole will 
be given by 

(66) 

where a and b are the real and imaginary parts of v(v+ l) , respectively, and F(w) is a real function 
very nearly proportional to the frequency spectrum of the square of the current moment, 
(p2), of the sources. 

The problem of using (66) t.o find a as a function of frequency is not completely determi­
nate, since there is an infinite number of ways to choose the frequency dependence of a, b, and 
F, all of which will yield the observed spectrum. However , it is inconceivable that a and b 
could be anything but smooth, monotonic functions of w, and unlikely that F(w), which includes 
geographical an d time averaging of the sources, should be other than smooth and monotonic. 
The problem thus becomes that of choosing smooth forms for a and b such that the form of F 
then requir ed to reproduce the spectrum is also smooth . 

The first step in the procedure is to plot w2(dP/dw) as a function of frequency from the 
experimental data. The peaks in this function occur because of the resonances of successive 
terms in the series of (66), and will be located approximately at those frequencies where a is 
equal to n(n+ l ). This fact is used to plot several points in the (a,w) plane. A smooth 
curve is drawn through these points, and is represented as nearly as possible by a power law, 
or a combination of power laws. In this way, an initial approximation to a(w) is found . Next, 
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it is assumed that both b and F are constant in the immediate neighborhood of each resonant 
peak. This permits an approximate determination of b, by means of (66), from the shape of 
each peak. The poin ts thus found provide a fU'st approximation to b(w), which is also repre­
sented as a power law. Equation (66) is then used to calculate the ini tial approximation to 
F(w) over the entire frequency range, which in general shows some irregularities. 

From this stage onward, the process is one of "cut and try" to find the smoothest possible 
F(w). It does not appear to be possible, with these data, to obtain a perfectly smooth F(w ) 
using this model. There is a tendency for small apparent peaks of F(w) to occur near resonances 
of even n, and small valleys near resonances of odd n. This should not be too surprising, 
however, as the t ime-averaged distribution of ligh tning strokes is no t really uniform, but 
rather is more highly concentrated in a belt centered on the geographical equator. Such a 
distribution would be expected to couple more strongly to the even-numbered cavity modes. 
Furthermore, the fixed latitude of the observation point relative to this belt of exeitation will 
tend to favor some modes over others. Still another possible source of discrepancies in the 
analysis is the fact that no accoun t has been taken of the diurnal variation of f. However, as 
will be pointed out in the following section , the diurnal variation probably does not seriously 
affect the validi ty of the analysis. 

Tb e expressions obtained for a and b represent, to fil'st order, an average of day and night 
conditions. The more laborious part of t he analysis has not yet been carried to the point 
where the results can be presented with complete confidence. However, a reasonably good 
fit of the data was obtained with the following expressions: 

{ 
( 1 )1.9 

a= 11.4 20 

1 2. 0 

a= 11.4 (20) 

( f)!. 7 
b= - 2.22 20 . (67) 

The expression for a is believed to be accurate within a very few percent, while that for b may 
be in elTor by as much as 10 per cent, over the range 6 to 34 cycles. 

The corresponding source function F(w ) can be represented very well by 

F = const.X {1+8.38 exp [-3.1S({O)]}· (68) 
This function is shown in figure 2, and the theoretical and experimental noise spectra are 
displayed in figure 3. 
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Because b2«a2, it is possible to write for the equivalent plane-parallel propagation constant 

From this, one has 

A=O.67S(:[J) 

~= 2Ja9 (fo) 

(6Q) 

db/1000 km (70) 

(71) 

where A is the attenuation constant and v IS the phase velocity. The values of these 
quantities obtained with (67) are shown as functions of frequency in figure 4. Although 
there is no reason to suppose that the empirical equations (67) should hold outside the range of 
the original data, it is nevertheless interesting to extrapolate them to higher frequencies. The 
extrapolated attenuation at 100", is 1.375 db / lOOO krn, a value which is intermediate between 
existing experimental values [Jean, 196]] for day and night at that frequency. The predicted 
phase velocity remains nearly constant over the whole range, and at 100", is equal to 0.797 
times the velocity of light. 
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8. Effect of the Diurnal Variation 

It is welllmowll that t he properties of' the ionosphere during da ylight. hours differ qu ite 
Jllm·kecl1y from those at night. The question rlrises as to how the observed c<wity resonances 
rue al'fected b y this varia tion. In t he 11 bsence of any diUl'nal variation, cach ca vi t.\' mod e is 
associated with a pair of integer indices m and n, and corresponds to rL particuhtr co mplex 
resonant frequen cy Sm n (where s= ~+jw) . Th e modes are frequency d egen era te, as lS",n 

depend s only on n. The introduction o f' an angular dependence of f removes this degenenLCY, 
splitting apart the r esonant Jrequencies of the SrLm e n bu t different m. One would expect this 
to result in a certain a.mount of blurring of the observed resonant peaks with a consequent 
lowering of the apparent Q and raising of the apparent b. 

To a first approximation , the diurnal variation can be r epresented b y a discontinuity in f 

across a plane which divides the spherical coordinate system in hrtH at 0= 7r/2. III each hemi­
sphere , the electromagnetic field can be represented in terms of solu tions of t he form described 
in (2) through (7). The boundary conditions wh ich must be satisficd along t his plane are t hat 
H " H e, H "" E" fEe, and E", be continuous. 'When the expressions for the field components are 
comb ined with the partial di fferentia l equations satisfied b y the potentials immediatel~T Lo eHch 
s id e of th e discontinuity, and account is taken of' th e fact t hat in theneighborhood of 0= 7r /2 Lhe 
ine of' e is both stationary and eqUid to 1I11it~T, we arc led to t he f'ollowing system of f'0ul' f'unc­

tions, Lb e continuit~T of w hi ch is sufficient to ensure that t he bOlUlclary con ditions are sati sfied : 

0"" . 02X 
(72) 

170 09- J oxQ¢ 

oX . 1 02"" 
00 +'77;0 -; oxo¢ (73) 

02X 
oxz+ fX (74) 

~ (~ 0"")+"". ox e o .r 
(75) 

Th e nppjicHlio l1 of t lr r nboH conditions to the problem of a, verticr1l dipo le radialing HL Hn 
flJ"b iln lJ":" point in one o f the hel1lispheres is extremely complex. T he cOll:fi gumLion is r1S shown 
in figure 5, w here tbe somce is located at A , rL point not s~~mmetl" i cfLll~~ placed relative to the 
di scontinuity. The total field consists of (1) a primary T)'1 Wrlve set up by Lir e source in its 
own hem isphere snd describable by 111eans of ,L potential ""0, (2) reflected waves in the sam e 
hemisph ere, and (3) transmitted waves in the other hemisphere. 

The primary TM potential ""0 is independent of azimuth in the coordinate system x, 0' , cj>', 
which has OA as its polar aAis. Provided A is not too close to tIl e discontinuity, (55) can be 
used to compute this potential , which can t hen be expressed in terms of x, 0, cj>, coord inates 
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FIG URE 5. Configuration for study of diurnal 
e.Uect. 
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centered on OB. The potential does depend upon azimuth in this coordina te system. The 
reflected and t ransmitted waves, in general, contain both TM and TE componen ts. The 
po tentials in th e hemisphere containing th e source are oJ the form 

kp [ P vo( - cos ()o cos () - sin eo sin () cos ¢)] 
1/;1 f OO . Uj vo(x) < 

4 ( 2 / ) I sin /l07r ' U1 ,vO El G X 
o 

+ L:L:a:, cos m¢P,:, (cos e)Ul , vex) (76) 
• m 

xl=L:L:b~ sin m¢P,(: (cos e)Vl ,I'(X) (77) 
I' m 

while Lhose in the oth er h emispher e are given by 

1/;2= L:L:c:n cos m¢p~n ( - cos e)U2,.(X) (78) 
K m 

X2= L:L:d;:' sin m¢P;:, ( - cos e)V2.X(X) . (79) 
A m 

Th e reflec ted wa ve has + cos () and the transmit ted wave - cos e, as no singularity must 
appear at either () = o or e = 7r . The indices 1 and 2 refer to the two hem.ispheres ; /10 is the 
lowest eigenvalue in H emisphere 1 ; the /I and J.L are eigen values in H emisphere 1, and K and A 
are eigenvalues in H emisphere 2; (0, ()o, 0) are the coordinates of A in the sys tem of OB. 

The coefficients in (76) through (79) can, in principle, be evaluated by application of the 
boundary conditions, which yields a separate set of equations for each value of m : 

j '7oL:a:np~n ' (O)Ul , ,.(x) - mL:b~'P'(:(O)v; . 1' (x) + j'7oL:c~'p~n' (0)U2 .• (x) 
I' 

jm '70 L:a:'P ,:, (O)u ;., (x)+ L:b~P'(:'(O)Vj . I' ( x) - j m '70 L:c:;'P~' (O)u~ . .(x) 
€ 1 II J.I. €z K 

(81) 

(82) 

where primes deno te differentiation with respect to the argument of a function , and where 

(84) 

Equations (80) through (83) have no t ye t been studied a t great length. It can be seen , how­
ever , that sever e difficulties exist . A sufficient number of linear equations for the coefficien ts 
can be obtained by utilizing the orthogonali ty properties of the U or the v, but all these equations 
still have an infinite number of terms. 
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The case in which no source is present and the two hemispheres are not very different has 
been briefly considered in an approxim a te way. The right-hand sides of all the equation s are 
then zero , and oscillations can occur only at certain complex natural resonant frequencies. 
E ach of th e corresponding resonant modes has associated with it some particular valu e of m­
that is, there is no mixing in m. For each value of m, modes ar e possible having an ind ex n 
which m ay tak e on any integer value from m to infmity. These indices corres pond to t hose 
of the P~(cos 8) which one h as in the absence of the discontinuity in EO . There is, of course, 
mixing of eigenfun ctions in 11, /J. , K, and A. 

The highly tentative con clusions r each ed can bes t be explained with r efer en ce to the 
diagram of figure 6, which shows a portion of the complex frequency plan e. Point E represents 
the r esonant frequency corresponding to n = 3 and a perfectly conducting ionosphere located 
a t some finite h eight. Ther e is a four-fold degeneracy, since the modes for m = O, I , 2, 3 all 
hav e the saIne r esonant frequency. Point F represents the complex r esonan t frequency for an 
ionosphere having 

2EJ Eo 
E= - - -· 

El + E2 
(85) 

The four-fold d egeneracy is still presen t . Points 0 , II, J , and f{ show the way in which the 
introduction of th e discontinuity separates t he r esonan ce or the sam e n and differ ent m. If 
LLte vertical and horizontal shifts from E to F are r egarded as fu·s t order , then , very roughly 
speaking, the horizontal separa tion of J and f{ is of third ord er , while th e ver t ical separation 
is of fourth order. R e onances having (m +n) odd tend to b e shifted upward and to the right, 
while th e r everse is true when (m + n) is even. The shifts seem too small to impair the validity 
of the an alysis of sec tion 7, although this shoulclnot b e r egard ed a defiJ1itelyes tablisbed . 
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9. Appendix 

In order to evaluate th e coeffi cients a. in (53), the fields on a small verti cal cone surrounding 
th e dipole and extending to infinity will be consider ed . It can b e shown that 

2 sin V7r I 8 Lim p .( -cos 8) n , 
0-70 7r 

(86) 

and ther efore tha t 

Lim >/;(x,8) =3. In 8L:,a. sin V7r u,,(x). (87) 
0-70 7r 
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In this region the magnetic field is 

lof 2 . 
H q,=- >-O = - O::8av sm V7rUa (x). 

T U 7rr v 
(88) 

On the other hand , the magnetic field must be given by 

H pOeT-To) kpo(x) 
q, 27rTO 27rTO 

(89) 

where p represents the mom ent of the source, or the product of current and vertical current 
path: 

p= Il. (90) 

Equating the two expressions [or Hq" one obtains 

:z;:av sin V7r Ua(X)=k: o(x) . (91) 

The earth will be considered to be perfectly conducting, and ua(O) will be taken equal to 
unity. Then (91) can be multiplied by Ua' (X) / f and integrated . Making use of the fact that 
f (O) "'" 1, the orthogonality of the U a then yields (54). 
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