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The propagation of audiofrequency and sub-audiofrequency waves between the earth
and an ionosphere whose conductivity varies continuously with altitude is considered in
detail. The fields are represented in terms of two scalar potentials satisfying appropriate
wave equations in spherical coordinates.

It is shown, on the basis of existing data on the ionosphere, that waves in this frequency
range can be considered to be confined to a thin, but not sharply bounded, spherical shell
about the earth. Greatly simplified radial wave equations in dimensionless form are
derived incorporating this approximation. Solutions of these equations are given for two
regions, viz, for the low-altitude region where o/we< <1 and, in the case of certain
restricted types of conductivity profile, for the high-altitude region where o/we, > >1.
An iterative method is presented, based on an integral equation, which makes possible
a computation of the radial wave function in the transition region and a joining of interior
and exterior solutions for the propagating TM mode. The result is a direct mathematical
relationship between the conductivity profile and the complex propagation constant as
a function of frequency.

It is demonstrated that at frequencies above about 50 cycles the propagation constant
can be obtained from measurements of the horizontal components of electric and magnetic
fields in individual sferics at airplane altitudes, while at lower frequencies the same infor-
mation can be obtained through ground-based observation of cavity resonance effects in
sferic noise. Existing data on these cavity resonances are used to calculate the complex
propagation constant as a function of frequency from 6 to 34 cycles. The results, when
extrapolated to higher frequencies, predict attenuation rates in excellent agreement with
currently available data.

The effect of the diurnal variation in conductivity on observable quantities is briefly
examined, and tentative conclusions as to its magnitude are drawn.

1. Introduction

The propagation characteristics of ELF and sub-audiofrequency radio waves in the
earth-ionosphere cavity are critically dependent upon the detailed electrical properties of the
jonosphere. Most previous theoretical treatments [Budden, 1957; Wait, 1957; Wait, 1958;
Wait, 1960 a and b] of the problem have assumed an ionosphere sharply bounded at some
definite height, with a conductivity which, from that height outward, either remained constant
or varied stepwise or continuously with height. For a number of reasons, such models can
never adequately represent the actual physical situation. The same observation has been
made recently by Wait [1962] in a paper treating the case of a continuously varying conduc-
tivity which becomes constant at high altitude. The work presented below, while confining
itsell substantially to the ELF region, is an attempt to approach a somewhat more general
problem from a different point of view. In particular, this paper is directed toward the
possibility of inferring the properties of the lower ionosphere from field measurements taken
over a range of frequencies.

For frequencies low compared to the electronic collision frequency—a condition easily
satisfied in the VLF range and below—the ionosphere behaves like a medium with unit
dielectric constant, unit relative permeability, and a conduectivity which is a function of
position. The conductivity affects the local behavior of the electromagnetic field only as
it enters into the complex relative permittivity e, which can be represented as follows:

1 This work was sponsored in part by the Geophysical Research Directorate, Air Force Cambridge Research Laboratories, Bedford, Mass.

463



. W,
e=1—j2 (1)

where o, is a real number, related to the conductivity, which depends upon position but not
frequency. At altitudes where (w,/w) is much smaller than unity, the medium behaves
essentially like a vacuum. Where this ratio is much larger than unity, it behaves like a good
conductor. Although (1) makes no provision for the effect of the terrestrial magnetic field,
it has been shown [Wait, 1960 b] that this can be quite simply taken into account at low
frequencies through the use of an effective w,, dependent on the vertical component of magnetic
field.

The transition region, in which (w,/w) is comparable with or at most a few orders of magni-
tude greater than unity, can play as significant a role in determining the propagation of ELF
waves as does the upper region. It is precisely this region which is omitted from sharply
bounded models. Moreover, it can be seen from the form of (1) that the height at which the
effect of finite conductivity is first felt is progressively lower for waves of lower frequency.
On the other hand, because of a phenomenon analogous to the familiar skin effect, the total
penetration of the waves into the ionosphere increases with decreasing frequency. When
viewed in this light, the concept of a single ‘“lonospheric height,” even if this height is per-
mitted to vary with frequency, clearly loses its physical meaning and probably its mathe-
matical utility. Certainly some effort to take into account a continuous variation of w, with
height is warranted.

Any theory which attempts to relate the conductivity profile of the ionosphere to observed
fields must take into account both the real and the imaginary parts of the eifective propagation
constant as functions of frequency. Unfortunately experimental data [Chapman and Macario,
1956; Jean, 1961] to date, with few exceptions [Balser and Wagner, 1960a and b], are capable
of giving information only about the attenuation characteristics of the wave and yield nothing
about its phase velocity. Future experiments on ELF and sub-audiofrequency radiation, if
they are to lead to increased knowledge of ionospheric properties, must provide for measure-
ment of both attenuation and phase lag.

2. Scalar Solutions for the Spherically Symmetrical Ionosphere
In the oversimplified, but important, case in which the conductivity depends only on the

radius of spherical coordinates, solutions of Maxwell’s equations can be found in the form of

=
TM waves (r-component of 7 absent) and TE waves (r-component of l?‘ absent). Each type
of solution can be derived from a single scalar potential. For the TM wave, the fields are
given by

= A
H=rxw (2)
. -
p—vXHd (3)
Jwepe
where ¢ is a scalar solution of
72V - (riz,é v¢>+k2¢:0. 4)

The symbol £ is here used to represent the free-space propagation constant of a wave of the
given frequency. For the TE wave, one obtains

. A
1By 3% (5)
N -
g=-YXE ©)
Jwkko

where x is a scalar solution of
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Cv-(x )+ Ex=0. @)
Both (4) and (7) are separable in spherical coordinates, giving solutions of the form
tﬁzgzm)ai'@,n((ﬁ)ei"(f))lh(r) (8)
XIZﬂ%”T‘I’m(@@I‘”(@)S“(H- )
The functions ®,(¢) are linear combinations of exp (47m¢) where m is zero or an integer,

and the 0, ,(0) are appropriate Legendre functions.  The radial parts of the solutions satisty
the following equations:

d ([1dR, ) 1 .
€ o \c ‘%)‘{‘[lﬁ‘e—y@—;{;-—)] R,=0 (10)
d*S, . u(ut1) - .

The permissible values, or eigenvalues, v and u for a given frequency are determined by
two boundary conditions. These are, in general, that the fields remain finite at the center of
the earth and vanish at infinity. In the case of a perfectly conducting earth, the first condi-
tion is replaced by

dRr,\ ‘
( dr >r=r0m—0 (12)
Su(ro)=0 (13)

where 7, is the radius of the earth. It should be noted that the eigenvalues for a particular
frequency are uniquely determined by the radial equation alone, and are in general complex.
The Legendre functions, which can be written ). ,(& cos 6), will therefore in general possess
at least one singularity (at 6= if the - sign is used, or =0 if the — sign is used), correspond-
ing to the fact that a source is needed to drive the system at an arbitrary frequency. There
will, however, be certain (complex) frequencies at which one of the eigenvalues becomes equal
to an integer n. Since the P)'(cos 6) have no singularities, these are the natural resonant fre-
quencies of the system, at which oscillation is possible in the absence of a source.

3. Altitude Dependence of the Relative Permittivity

The parameter », depends on the electron density N and the collision frequency v, as
follows:

e (N
ar6 o

where ¢ and m are the charge and mass of the electron. Existing data [Pierce, 1960; Ratcliffe.
1959] on N and », have been used to construct the curve of figure 1, which shows the probable
approximate variation of w, with height above the surface of the earth during daylight hours.
It 1s seen that the function, although continuous, is very rapidly varying and reaches extremely
high values in the first 100 km. The increase continues thereafter, rather more slowly, until
a broad peak at an altitude of 300 or 400 km is reached, where w, is several orders of magnitude
larger than at 100 km. A relatively slow decrease then sets in, which results in a significant
reduction of w, only after an altitude of several thousand kilometers is reached.
If the conductivity, given by
T=€yw;, (15)

were even to remain constant from 100 km upward for several hundred kilometers, the skin
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Fraure 1. Approximate  daytime  ionosphere
profile.
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depth in that region for ELF radiation would be very small. At the very low frequency of
10 cycles, the skin depth would be only of the order of 1 km. Therefore, it would seem safe to
assume that the wave is attenuated essentially to zero within a vertical distance which is small
compared with the radius of the earth. Although figure 1 may be in error by an order of
magnitude or more at a given altitude, and although the nighttime profile is somewhat different,
certainly one can still be confident that all significant phenomena are confined to a shell not
more than 100 to 150 km in thickness.

The argument just outlined, together with the fact that the attenuation is also large in the
earth itself, leads to an important mathematical simplification in the radial wave equations,
which may now be written

d /1dR, ,  v(v+1) _
rlE et Y
2 1
%rg J{k_ﬂ(%ﬂ] 8,=0. (17)

The variable » in the final terms has been replaced by a constant effective radius 7, which can
be chosen to be somewhat larger than 7.  The form of the relevant solutions will be practically
unaffected by this change, even if the independent variable is allowed to go to infinity in
satisfying the outer boundary condition.

The simplified forms of the radial equations make it easy to attach a direct physical mean-
ing to the eigenvalues. KEquations (16) and (17) are identical to those which are obtained for
the potentials in the case of a wave propagating between infinite plane-parallel walls having
the same electrical characteristics as those of the earth and the ionosphere, providing only that
the following replacements are made:

— :k%‘M (18)



) (19)

where kpy and kg are the propagation constants of TM and TE waves, respectively, in a
direction parallel to the walls.

4. Dimensionless Form of the Radial Equations

For simplicity of notation, it is convenient to rewrite (18) and (19) in dimensionless form,
as follows:

1 dug :

(11' Pl >—f—(e—a)ua—0 (20)
1?

(== (21)

where

r=k(r—r,) (22)

ag’(;“) (23)

~ u(pt1) SV

B‘*kzrji (34)

(=1 () (25)

vs(x) =8Su(r). (26)

In order to see approximately the nature of the solutions and the order of magnitude of the
eigenvalues, it is interesting to consider the case of perfectly conducting earth and ionosphere,
separated by a vacuum of thickness 4. The solutions would then be of the form

Ua=c0s [y 1—az] (27)

vg=sin [ 1—6,:“] (28)

The boundary conditions at z=Fkh require that

Vi—a=2Z  (p=0,1,2,3.. ) 29)
kh
\j"‘_’g:% (g=1,2,3 .. .). (30)

Since, at frequencies of the order of those under discussion, kh is much smaller than
unity, all TE eigenvalues and all but the lowest TM eigenvalue are large and negative. Using
(18), (19), (23), and (24), we have for the equivalent parallel-plane propagation constants

ICTM~_J Z;:r (31)
krp~—] (ﬁzr (32)

These modes are all far below cutoif, and are attenuated in horizontal distances small com-
pared with the vertical height of the ionosphere. The lowest T'M mode, however, corresponds to
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krao=k. (34)

The introduction of an earth and ionosphere of reasonably high conductivity will not affect
the eigenvalues drastically; «, will still be of the order of unity, although it will now be com-
plex, and the remaining eigenvalues will be large and primarily real and negative. The low-
est TM mode will still be the only one capable of propagation over significant distances.

The following orthogonality relations are of interest in connection with the application
of the radial wave functions to actual situations:

f %uauﬂu:o ( #a) (35)

f 1’51‘5'(1I:O (B’ #ﬂ) (36)

The infinite limits represent integrations into fictitious “flattened’” spaces above and below
the surface of the earth. This artifice is permissible because of the high conductivity of both
bounding media.

An exact solution of either of the radial wave equations, or even an approximate solu-
tion by any conventional method, is extremely difficult in any practical case. It is possible,
however, to obtain a solution valid below the transition region and, in special cases, a solu-
tion valid above that region. In the case of a perfectly conducting earth and finitely con-
ducting ionosphere, the interior solutions are given by (27) and (28), as long as (w,/w)<1.
If the effect of the earth is represented by a wave impedance Z,—this will be small compared
to no—(27) and (28) become

Ue= COS l:\’l—ax—j »Z—':l (37)
eyl —a
R [
Pg=sin [\fl—ﬂx——j Zﬁﬁl—ﬂ:l (38)
0

The exterior solutions which can be obtained apply only where (w,/w) is large. One
soluble case is that for which w, is given by a simple power law. If

e=1—jea(x—x)" ~—je (x—,)" (39)

where n can have any real positive value, the solutions are

uu:A(r—rl)”%FeH;% [7—]’% \r:(x—rl)] (40)
= B(r—~xl)”2H;£_2 [7% \:(x—xl)]- (41)

The above expressions are restricted to the region where (w,/w)>|a|. Another soluble case,
which would appear to represent more nearly the true state of affairs, is the exponential
variation of conductivity: :
e=1—je 6™ ~—je, ™. (42)

The corresponding exterior solutions are

— ENs {
ue=AVeH jiraim e <6‘ ‘) v
@ LW
Ta:BH @/a)yB—1 5 A (44)
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where the restriction is that (w,/w)>1. It should be noted that for the propagating mode
(4/a*) (a— 1)1 for the real ionosphere, and that therefore the order of the Hankel function
becomes essentially unity for that mode.

For many purposes, only the propagating mode is of interest. It happens that, in this
exceptional case, a good method exists for joining the interior and exterior solutions, and cal-
culating the eigenvalue. Because the permittivity varies very greatly over distances short
compared with a wavelength, no WKB or quasi-WKB method is applicable in the transition
region. However, the rapidity of this variation ensures that wu., will not change greatly from
its value at z=0 until after the region of validity of the exterior solution is reached. For this
reason, a good approximation to the solution in the interior and transition regions can be
obtained by transforming (20) into an integral equation. If we let

Ua(0)=1 (45)

then
Ldus\ _ . Ze .
().~ 45

Nore: Here and in most of what follows, « will be used to denote the lowest eigenvalue only.

The first integration of (20) yields

Ti«)% _/ J ua(r’)(lz—l—J ““(” s’ (47)

and a second integration leads to

ua@)=1+i % | " iz — [

0

e(r’)J Uo(2"") dr”dw’—%aJ) e(r’)f fhelt ,,) l,r (48)

1f 2 1s not too large, an iterative process starting with
A )=l (49)

will converge to give as accurate a value of uq(x) as may be desired. The eigenvalue may then
be calculated by setting the value of (1/ew,)(dua/dz) obtained by means of (48) equal to that
obtained from (40) or (43) at some height x,, chosen as small as consistent with the validity
of the exterior solution.

At sufficiently low frequencies, and of course depending upon the actual shape of the
conductivity profile, the first-order approximation in which u.(z) is simply unity can be used,

and (47) gives
Ldua .2, z dx’ .
S x—{—aﬁ @) (50)

Under these circumstances, one obtains

o % 1 due
—J —+ €l dx) z=1,

7y dx
0 €

where the last term in the numerator is to be calculated from the exterior solution. The
term in Z, can usually be neglected at these frequencies. Moreover, the integral in the
denominator is of the order of z;, and so a more convenient form of (51) is

1 due
f()+< >
€le dx Jo= 7,

—J (1--) e
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[t should be remembered that (52) represents only a first-order solution, but that the range of
applicability of the technique can be greatly extended by repeated iterations of (48).

Equation (52) gives a means for calculating the lowest eigenvalue if the conductivity
profile is known. Actually, however, the problem at hand is exactly the reverse—that of
calculating the profile if the eigenvalue is known as a function of frequency. The latter infor-
mation may be obtained experimentally in a number of ways, two of which are described in
the following sections. If a reasonable approximation for the upper ionosphere profile is
known, (52) permits the calculation of the integral in the denominator as a function of fre-
quency. This information is, in a general sense, a transform of the desired information on
the variation of e with height.

The desired information must be obtained by means of an inversion of this transform.
Although the transform in question is not among those which have been well investigated in
the past, several avenues of approach are open. It is conceivable, of course, that a rigorous
analytical method for performing the inversion may be found. It is more probable, however,
that recourse will have to be had to some approximate analytical technique. If all else fails,
the transform can always be inverted by purely numerical methods.

5. Field of a Vertical Dipole

The atmospheric noise observed at ELF and below is due primarily to the vertical com-
ponent of current in lightning strokes occurring at relatively large distances from the observer,
and can therefore be described in terms of the field of an infinitesimal vertical dipole located
just above the surface of the earth. This field is composed of TM waves of all orders with
the azimuthal index m equal to zero. If the dipole is located at =0, x=0 we have

Y(z,0)=27 a,P,(—cos ) ua(x). (53)
It is shown in the appendix that
@, sin uw:fﬂ‘—
4f Luids &2
0o €

where p represents the current moment of the source. Except in the immediate vicinity of
the source, only the lowest-order wave is significant, and therefore

k; Py(—cos@
A= '“’Iq)ﬁ [ V(s‘in(y(:rs ) Ua (2) (55)
4J Ta(l,r ) i
0

where « denotes the lowest eigenvalue. When m=0, as in this case, the only field components
present are the following:

.k
E,:Jnof‘x& (56)
1o .
E":]""ﬁﬁ) (57)
_}_ %. FQ
Ho=2 3 (58)

The eigenvalue can, in principle, be determined by comparative measurements of these
three field components in individual sferics. Actually, insofar as the determination of iono-
spheric properties is concerned, it is the quantity (a—1) which is significant. A comparison
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of I, and H, is not suitable for several reasons. First, and most important, is the fact that
(a—1) enters into the ratio only in second order. Second is the fact that the ratio depends
to some extent on §—that is, on the distance of the observation point from the source. Third
is the fact that the horizontal magnetic field measured by a loop antenna will depend upon the
direction of incidence of the wave, while the vertical electric field will not. Consequently,
two loop antennas will be required to determine the actual magnitude of H,.

Comparative measurements of £ and £, would yield («—1) in first order, although the
experiment would have to be carried out at an altitude sufficiently great that s were indeed
measurable. However, knowledge of the source distance and direction of incidence would
still be required.

The best procedure would be to measure and compare 5 and /1,. The complex ratio of
these two field components is entirely independent of the source distance, so long as this distance
is great enough for the evanescent modes to be negligible. Moreover, the responses of two
suitably oriented antennas will both depend in exactly the same way on the direction of inci-
dence, so that the response ratio will be independent of the location of the source. An addi-
tional important advantage is that the ratio is entirely unaffected by the presence of scattering
centers such as discontinuities in the ionosphere (again provided the higher-order modes in
the reflections can be neglected). The field-component ratio is given by

Ey 1 du, .
e e (59)
If the measurements are made in an airplane at dimensionless height z,, (37) is applicable,
the first-order approximation to tany1—az is valid, and e can be taken as unity, so that one
has (with Z,=0)

E .
" 1”[4): jrala—1). (60)

it should be emphasized that the values of o obtained in this way are those corresponding
to the instantaneous conduectivity profile above the point of observation. This method is
therefore potentially capable of detecting both temporal and geographical variations in the
ionosphere. In regions where the magnetic field of the earth is steeply dipping, the results
obtained are simply those corresponding to the profile of (w,) [Wait, 1960b], rather than w,.

6. Representation of the Field in Terms of Cavity Resonances

Since (a—1) is a quite slowly varying quantity, the field component ratio shown in (60)
depends primarily on z, or, for a given altitude in feet, on the first power of frequency. The
same is approximately true of the ratio £/F,. It 1s this latter ratio which limits the measur-
ability of Fj, due to the eifect of errors in aircraft attitude. Assuming an altitude of 40,000
feet and an accuracy of 0.1 degree in the determination of aireraft attitude, the probable error
in F reaches 10 percent at about 50 cycles. Fortunately, the range below this frequency
can be eifectively covered through studies of the cavity resonances. A great deal can be
inferred from ground-level measurements of the vertical electric field as a function of frequency
in this range. However, such data can yield information on ionospheric properties only as
averaged over the earth. More complete information could be obtained from simultaneous
measurement of the other field components, but the following analysis is based on the vertical
field alone, as these are the only data [Balser and Wagner, 1960a and b] presently available.

The theoretical basis for this method is the following expansion :

P,(—cosf) 1 2n+1)P,(cos 6)
sin yr wizor(v+1)—n(nt1)

(61)
The vertical component of electric field at the surface of the earth, due to a single source, can
be found from (45), (55), and (61). It is given by
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7 _gr (1) N e (2n+1)P,(cosb) X
E.(0,6)== o ¥(0,0) =C(w)v(v+1) nzzw(y 1) —n(nt 1) (62)
where
O(w)=—-I8 (63)

=
u,

47rr§J —dz
0 €

The total vertical field observed at a point is the result of some distribution of such sources
over the surface of the earth. It is instructive to examine the case of a uniform distribution
of a large number of noncoherent sources. The mean-square value of electric field is given by

N

2w L4
1E)2=Ne J f E,E* sin 0d6ds (64)
4 Jo Jo

where N, is the total number of sources. Using (62) and the orthogonality properties of the
Legendre polynomials, one obtains

e nr e @D 1) 2 -
B =10 2 e (65)

For the rapidly varying ionosphere, ('(w) is roughly inversely proportional to w.
7. Interpretation of Observed Atmospheric Noise Spectrum

It was pointed out in the preceding section that airborne measurements would lose accuracy
at lower frequencies and would cease to be valid below some minimum frequency. In order
to determine that frequency, it was necessary to find the approximate relative magnitudes of
the horizontal and vertical electric fields to be expected at flight altitudes. The noise spectrum
observed by Balser and Wagner in the range from 5 to 34 cycles, which shows a series of pro-
nounced peaks and valleys, has therefore been interpreted according to the scheme described
below. The figure of 50 cycles as the lowest useful frequency for airborne measurements is a
result of that analysis.

The development leading to (65) applies to a distribution of noncoherent sources at a
single frequency. Actually, the noise energy is distributed throughout the frequency spectrum.
The power per unit frequency interval received by an electrically short vertical monopole will
be given by

dP F(w) & @2n+1)(a*+b%

do ,,;0 [a—n(n-+1)]24 b2 (66)

where @ and b are the real and imaginary parts of »(v+1),respectively, and F(w) is a real function
very nearly proportional to the frequency spectrum of the square of the current moment,
(p?), of the sources.

The problem of using (66) to find « as a function of frequency is not completely determi-
nate, since there is an infinite number of ways to choose the frequency dependence of @, b, and
F, all of which will yield the observed spectrum. However, it is inconceivable that ¢ and b
could be anything but smooth, monotonic functions of w, and unlikely that #(w), which includes
geographical and time averaging of the sources, should be other than smooth and monotoniec.
The problem thus becomes that of choosing smooth forms for @ and b such that the form of F
then required to reproduce the spectrum is also smooth.

The first step in the procedure is to plot w?(dP/dw) as a function of frequency from the
experimental data. The peaks in this function occur because of the resonances of successive
terms in the series of (66), and will be located approximately at those frequencies where a is
equal to n(n-+1). This fact is used to plot several points in the (a¢,0) plane. A smooth
curve is drawn through these points, and is represented as nearly as possible by a power law,
or a combination of power laws. In this way, an initial approximation to a(w) is found. Next,
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it is assumed that both b and /" are constant in the immediate neighborhood of each resonant
peak. This permits an approximate determination of b, by means of (66), from the shape of
each peak. The points thus found provide a first approximation to b(w), which is also repre-
sented as a power law. Equation (66) is then used to calculate the initial approximation to
F(w) over the entire frequency range, which in general shows some irregularities.

From this stage onward, the process is one of “cut and try” to find the smoothest possible
F(w). Tt does not appear to be possible, with these data, to obtain a perfectly smooth F(w)
using thismodel. Thereis a tendency for small apparent peaks of F(w) to occur near resonances
of even 7, and small valleys near resonances of odd 7n. This should not be too surprising,
however, as the time-averaged distribution of lightning strokes is not really uniform, but
rather is more highly concentrated in a belt centered on the geographical equator. Such a
distribution would be expected to couple more strongly to the even-numbered cavity modes.
Furthermore, the fixed latitude of the observation point relative to this belt of excitation will
tend to favor some modes over others. Still another possible source of discrepancies in the
analysis 1s the fact that no account has been taken of the diurnal variation of . However, as
will be pointed out in the following section, the diurnal variation probably does not seriously
affect the validity of the analysis.

The expressions obtained for @ and b represent, to first order, an average of day and night
conditions. The more laborious part of the analysis has not yet been carried to the point
where the results can be presented with complete confidence. However, a reasonably good
fit of the data was obtained with the following expressions:

a=11 4(i>]‘9 (/‘<00~)\
“\20 e

j 2.0
a=11.4 (20 (f>20~)

b——220(L)". .
==\ 20 (67)

The expression for @ is believed to be accurate within a very few percent, while that for 6 may
be in error by as much as 10 percent, over the range 6 to 34 cycles.
The corresponding source function /(w) can be represented very well by

F=const.X {1+S.238 exp [—3.15 <27;)>:|} (68)

This function is shown in figure 2, and the theoretical and experimental noise spectra are
displayed in figure 3.
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Fraure 4. Phase velocity and attenuation versus
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Because b*<a?, it is possible to write for the equivalent plane-parallel propagation constant

kij—;<\‘a—+j¥_) (69)
zva
From this, one has
A=0.678 <::b) db/1000 km (70)
va
v_2.69(f o
¢ ya () )

where A is the attenuation constant and » is the phase velocity. The values of these
quantities obtained with (67) are shown as functions of frequency in figure 4. Although
there is no reason to suppose that the empirical equations (67) should hold outside the range of
the original data, it is nevertheless interesting to extrapolate them to higher frequencies. The
extrapolated attenuation at 100~ is 1.375 db/1000 km, a value which is intermediate between
existing experimental values [Jean, 1961] for day and night at that frequency. The predicted
phase velocity remains nearly constant over the whole range, and at 100~ is equal to 0.797
times the velocity of light.
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8. Effect of the Diurnal Variation

It is well known that the properties of the ionosphere during daylight hours diifer quite
markedly from those at night. The question arises as to how the observed cavity resonances
are ailected by this variation. In the absence of any diurnal variation, each cavity mode is
associated with a pair of integer indices m and 7, and corresponds to a particular complex
resonant frequency s,, (where s=&+jw). The modes are frequency degenerate, as s,
depends only on n. The introduction of an angular dependence of e removes this degeneracy,
splitting apart the resonant frequencies of the same 7 but different m. One would expect this
to result in a certain amount of blurring of the observed resonant peaks with a consequent
lowering of the apparent ¢/ and raising of the apparent b.

To a first approximation, the diurnal variation can be represented by a discontinuity in e
across a plane which divides the spherical coordinate system in half at §==/2. In each hemi-
sphere, the electromagnetic field can be represented in terms of solutions of the form described
in (2) through (7). The boundary conditions which must be satisfied along this plane are that
H,, Hy, H,, I, e, and E; be continuous. When the expressions for the field components are
combined with the partial differential equations satisfied by the potentials immediately to each
side of the discontinuity, and account is taken of the fact that in the neichborhood of §=m/2 the
sine of 6 is both stationary and equal to unity, we are led to the following system of four func-
tions, the continuity of which is sufficient to ensure that the boundary conditions are satisfied :

o gj_j oalzaxcb 72)
O'g—l—jro l aa,la/; (73)
2w

The application of the above conditions to the problem of a vertical dipole radiating at an
arbitrary point in one of the hemispheres is extremely complex. The configuration is as shown
in figure 5, where the source is located at A, a point not symmetrically placed relative to the
discontinuity. The total field consists of (1) a primary TM wave set up by the source in its
own hemisphere and describable by means of a potential ¢, (2) reflected waves in the same
hemisphere, and (3) transmitted waves in the other hemisphere.

The primary TM potential ¢ is independent of azimuth in the coordinate system z, ', ¢’,
which has OA as its polar axis. Provided A is not too close to the discontinuity, (55) can be
used to compute this potential, which can then be expressed in terms of 1, 6, ¢, coordinates

SOURCE

o Sttt I+

HEMISPHERE | 6
El(i) ’\05/
e
1
DISCONTINUITY - . . . .
0 Fraure 5. Configuration for study of diurnal
effect.
HEMISPHERE 2 €200
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centered on OB. The potential does depend upon azimuth in this coordinate system. The
reflected and transmitted waves, in general, contain both TM and TE components. The
potentials in the hemisphere containing the source are of the form

2 P, (—cos 6, cos —sin 6, sin 6 cos ¢)
= — l: : : sin vy 0 U, (%)
4 f (a1 fer)dn v
0
+>7>7ar cos mPp (cos O)uy ,(x)  (76)
Xy = >, > b7 sin mo P (cos 0)vy u(x) (77)
while those in the other hemisphere are given by
Yo=> > ™ cos moPr(—cos 0)us () (78)
Xo= >, > d% sin me Py (—cos 0)v, \(2). (79)
N m

The reflected wave has +cos # and the transmitted wave —cos 6, as no singularity must
appear at either 6=0 or ==. The indices 1 and 2 refer to the two hemispheres; », is the
lowest eigenvalue in Hemisphere 1; the » and g are eigenvalues in Hemisphere 1, and « and \
are eigenvalues in Hemisphere 2; (0, 6,, 0) are the coordinates of A in the system of OB.

The coeflicients in (76) through (79) can, in principle, be evaluated by application of the
boundary conditions, which yields a separate set of equations for each value of m.:

I 22 Py (0)ur, »(2) — m2 36 (0)0y, () 4 gno 2 e P (0) uz « ()
2w
+ m>dRPR(0)vs, 5 (2) =D, (x) cos HOJ P, (—sin 8, cos ¢) cos med¢ (S0)
A 0

gm 2 3 PrO)u, () + 0P ()0, (2) — i T S0erPr(0) s ()
v In 2 K

1 2T
ISP (0)0s () =D () S”é”’" f P}, (—sin 8, cos @) sing sin medg  (81)
A i 0
Zn(u+1)b;’fPT(0)i'l,n(I)—“%)\(ML1)(1?1’3”(0)02,x(w):0 (82)
yn

—j f;;vmt DarPr0)uy ,(2) +j}2 S(cE 1P (0) s, o(2)

() Vi@—‘;j——l)ﬁn P,O(—sin 0, cos ¢) cos modep (83)

where primes denote differentiation with respect to the argument of a function, and where

D, :<1~- 6 = (@ ], 4
() ) 47rf0 (u?,yo/ﬂ)dx [sin vmr] o

Equations (80) through (83) have not yet been studied at great length. It can be seen, how-
ever, that severe difficulties exist. A sufficient number of linear equations for the coefficients
can be obtained by utilizing the orthogonality properties of the u or the », but all these equations
still have an infinite number of terms.

476



The case in which no source is present and the two hemispheres are not very different has
been briefly considered in an approximate way. The right-hand sides of all the equations are
then zero, and oscillations can occur only at certain complex natural resonant frequencies.
Each of the corresponding resonant modes has associated with it some particular value of m—
that is, there is no mixing in m. For each value of m, modes are possible having an index n
which may take on any integer value from m to infinity. These indices correspond to those
of the 27 (cos 6) which one has in the absence of the discontinuity in e. There is, of course,
mixing of eigenfunctions in v, u, k, and \.

The highly tentative conclusions reached can best be explained with reference to the
diagram of figure 6, which shows a portion of the complex frequency plane. Point / represents
the resonant frequency corresponding to n=3 and a perfectly conducting ionosphere located
at some finite height. There is a four-fold degeneracy, since the modes for m=0, 1, 2, 3 all
have the same resonant frequency. Point /7 represents the complex resonant frequency for an
ionosphere having

2¢1€5

€e—=— 5
ete€

(85)

The four-fold degeneracy is still present. Points G, I, J, and K show the way in which the
introduction of the discontinuity separates the resonances of the same n and different m. If
the vertical and horizontal shifts from £ to /' are regarded as first order, then, very roughly
speaking, the horizontal separation of JJ and K is of third order, while the vertical separation
is of fourth order. Resonances having (m-n) odd tend to be shifted upward and to the right,
while the reverse is true when (m-+4n) is even. The shifts seem too small to impair the validity
of the analysis of section 7, although this should not be regarded as definitely established.

PERFECTLY CONDUCTING IONOSPHERE
(degenerate) E

AVERAGE IONOSPHERE -
(degenerate) N

m=3 J

Ficure 6. Nondegeneracy produced by diurnal
variation of e.

9. Appendix

In order to evaluate the coeflicients a, in (53), the fields on a small vertical cone surrounding
the dipole and extending to infinity will be considered. It can be shown that

2 sin »r
— 11

Lim P,(—cos 0)= 10, (86)
-0
and therefore that
2 .
Lim ¢(2,0)==1n 02 a, sin vr u.(z). (87)
6->0 ™ v
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In this region the magnetic field is

REVEETN
II¢_; &mmﬂ;a” sin v, (). (88)

On the other hand, the magnetic field must be given by

_pd(r—ry) __kpé(x)
s 2mr0 2mrf L
where p represents the moment of the source, or the product of current and vertical current
path:

=41l (90)

Equating the two expressions for /1, one obtains

>, sin v Ua(z) =-I%) o(x). (91)

The earth will be considered to be perfectly conducting, and u,(0) will be taken equal to
unity. Then (91) can be multiplied by u. (z)/e and integrated. Making use of the fact that
e(0) =1, the orthogonality of the u, then yields (54).
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