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An approximate treatment of modes in a waveguide of variable width is prese nted . 
It is assumed that the boundaries satisfy impeda nce-type boundary conditions. The model 
consists of two paralle l plate waveguide regions connected by a linearly tapered section. 
The results have application to the theory of VLF radio wave propagation when the iono
spheric heights a re not constant along the path. 

1. Introduction 

The waveguide mode theory has been quite successful in explaining many of the broad 
features of propagation of VLF radio waves to great distances. Furthermore, the diurnal 
variation of phase of a cw carrier can often be interpreted in terms of the relative amount, of 
solar illumination on the great circle path. In carrying out such an in terpretation, it is usunJly 
assumed that a waveguide mode passes smoothly through the day/night transition without 
change of field pattern across the guide. Indeed, the experimental data show li ttle evidence 
of distortion of the field in this transition region. Exceptions are indi cated in the data of 
Lauter and Sprenger [1952] who observcd amplitude variations in East Gcrmany from the 
GBR transmission from England which indicated an undulating field . He explained this 
qualitatively in terms of diffraction from a ledge of ionization which was truncated at sunrise 
and sunset. 

An alternative approach is followed here which would appcar to be more appropriate for 
propagation to great distances. The model chosen is a parallel plate waveguide of constant 
width h which is connected to a waveguide of constant width h+ !J.h by a linearly tapered 
section. The nature of the waveguide modes in the two parallel plate waveguides is well 
Imown. The character of the modes, in the tapered section, is fu 'st obtained by examining 
the permissible solutions in idealized wedge regions. Then an approximate method is applied 
to evaluate the coupling between the three waveguide regions. 

2. Wedge Solutions 

We consider a wedge consisting of two nonparallel plane surfaces. With respect to a 
cylindrical coordinate system (p,c/>,z), the apex of the wedge is the z axis and its surfaces are 
at c/> = O and C/> = if;. The situation is shown in figure 1. For simplicity the fields are taken 
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FIGURE 1. The wedge region. 
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not to vary in the z direction so that 0/0 2= 0. This restricts the direction of propagation to 
be normal to the apex of the wedge region. Furthermore, the magnetic field is taken to have 
only a z component. Since the lower surface (¢ = O) is to represent the ground, it will be 
assumed that E p= O for cf> = 0 and O< p< 00. The upper boundary which is to represent the 
lower edge of the ionosphere is assumed to be characterized by a surface impedance Z. Thus 

(1) 

A suitable solu tion within the region O< cf> < >/; is of the form [Wait, 1959] 

H z= AZv(kp) cos vcf> (2) 

where A is a constant and Zv is a cylindrical Bessel function of (complex) order v and argument 
kp. The choice of the factor cos v¢ automatically assures that the boundary condition at 
¢ = O is satisfied. 

The boundary condition at ¢ = >/; can be rewritten in the form 1 

O:!z= -i~wpZ (p) H z (3) 

where it is indicated that the surface impedance is a function of p. To Facilitate the solu tion , it 
is necessary to choose the p dependence such that 

where Po and Zo are constants. Thus 

Z(p) = Zo Po 
P 

(4) 

(5) 

where ~ is the dielectric constant in the wedge region. On applying eq (5) to eq (2) we see that 

(6) 

Solution of this equation yields a set of values of v which are denoted Vs' 

vVe shall now demonstrate that these modes are orthogonal over the angular domain of 
the wedge. For example, consider 

(7) 

where V s and Vq both satisfy eq (6 ). Since 

I s,q 
sin (vs- vq )>/; + sin (v s+vq )>/; 

2 (v s-vq) 2 (v s+ vq ) 
(8) 

it is not difficult to show that 

which demonstrates the orthogonality. The normalization constant for the modes is 

(9) 

It is now a simple matter to express the field H z (p,cf> ) at any point in the wedge in terms of 
its value over the surface P= PJ , O< ¢ < >/; . Since the modes form a complete set, 

I rrhe time factor is cxp (iwt) . 
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H z (p,cf» = L:A8Z '8 (kp ) COS vscf> (10) 
8 

where t he summation is over all modes. T hen, because of orthogonality, th e coefficien t A s 
for the 8th mode may be expressed as 

A P s 

s Z (Ie ) t [1 sin (2vsif;)] 
'8 PI 2 2vsif; 

(ll) 

where 

Thus, if we can find a sui table approximation for H :(PI ,¢) the corresponding function H z(p,¢ ) 
Citll be obtained by performing an integration. 

Before proceeding further i t is desirable to discuss something about the properties of the 
modes in the wedge region . Until the source itself is prescribed , the radial or p dependence of 
t he fi eld is not known . However , in general , the cylindrical B essel function Z's(lep ) m ay be 
represented as the linear combin ation of Lwo Hankel fun ctions, of tbe first and second kind , 
of order v8 • Thus a mod e is of t he form 

(12) 

II' lcp > > 1 and kp >ivsi it is permissible to rephtce the Hankel fun ction s by their D cbye or 
second-ord er approximations [Wait, 1959]. Thus 

[ .. n;) (kp) ~ . 2 exp [± i lcp (s in a- a COS a)]e 'Fi .. /4 
(I ) (2 ))0 

7rlcp sin a 
(13) 

wh ere IX is defined by 
vs= kp cos a. 

An alterna tive form is 

(1 ) (2)! [ ( 7r)] [ .. n;) (lcp)~ 7rkp sin a exp[ ± i lcp sin a]exp =f i avs+4 . (14) 

It is evident tha t these have the character of tmveling waves propagating in neglttive and 
positive p directions, respectively. In this case t he mode equation Vs tan v sif; = i~wpoZo CiL ll 

be wri tten in the form 

or 

where 

and 

o tan k Oh' = i Z /TJ o 

O-Z/TJ o e- i2kch' = 1 
O+Z/TJ o 

O= cos a= vs/lcp , 

Z - !!2. Z 
~- p 0, 

h' = pif; . 

(15) 

It is seen that eq (15) has precisely the form of the modal equation for a paraJlel place wave
guide of equivalent height h' and surface impedance (on one wall) equal to Z [Wait, 1960]. 
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The choice of the kind of Hankel function (i.e., first or second) is dictated by the nature of 
the problem. In general, a linear combination is required. However, if the waves are excited 
over the aperture plane P= PI then for p> PI in an infinite wedge region the Hankel function of 
the second kind only is needed. 

3. Composite Problem 

We shall now consider the composite waveguide problem mentioned in the introduction. 
The situation is illustrated in figure 2. 

A Cartesian coordinate system, (x,y,z), is chosen such that the earth's surface (assumed 
flat) is the plane z= O. An ionospheric reflecting layer of surface impedance ZI is located at 
z= h and x< O. A similar reflecting layer of surface impedance Z2 is located at z= h+ tJ.h for 
x> b. The transition section extends from x= O to x= b with a linear variation of height 
from h to h+ tJ.h. The surface impedance of the surface of the transition section must be a 
linear function of P in order to make use of the orthogonal set of modes discussed above. It is 
convenient to choose Z = ZoPo/ p where po=a sec if; which is equivalent to 

z = zo +a for the interval O< x< b. 
x a 

A single waveguide mode is now considered to be incident from the left. It is taken to 
be of the form [Wait, 1960] 

H z=e-ikXSp cos kCpz (16) 

where Sp= (1-C;)t and Cp is a solution of 

(17) 

where p= O, 1,2, ... and 

The integer p is the order of the waveguide mode under consideration. A general incident 
field is obtained by superimposing all possible p modes. 

In a rigorous treatment of this problem we would need to set up a general representation 
of the fields in the three waveguide regions. To evaluate the unknown coefficients it is then 
required to match the tangential electric and magnetic fields across the aperture planes at 
x= O and x= b. This leads to a very cumbersome (infinite) set of equations which must be 
solved for the infinite sets of coefficients. The problem is also complicated since the plane 
x=constant is not a coordinate surface in the natural cylindrical coordinates for the wedge 
region. 

In order to obtain a useful result, albeit approximate, a number of simplifying assumptions 
are made. The justification for these are mainly on physical grounds. Essentially, the idea 
is to neglect the reflected waves at the aperture planes at x=O and x= b. This approach has 
been used by Solymar [1959] who treated a number of analogous problems in microwave guides, 
and by Furutsu [1957] who considered related problems in radio propagation over mixed paths. 
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FIGURE 2. The transition problem (not drawn to 
scale since >1- «1). 
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In view of the above assumption, the field in the wedge transition region has the form 

H z= ~ A sH ;!) (kp) cos JlA) (18) 
S 

where JI s is a solution of 

The coefficients A s are given by 

A }Js 

s H (2) (k ) t [ l+sin (2J1 sV/)J 
Vs Po 2 2J1 so/ 

(19) 

where 

If the length of the trans ition section, b, is large compared with the height change, t:..h , it 
is reasonable to assume that H z(Po,cp ) is given adequately by the inciden t mode. This has the 
form 

(20) 
and thu 

(21) 
where 

Therefore 

(22) 

where the superscript p is to indicate that this is the value appropriate to the pth incident 
mode. The function }J(~) in the form given above may be rewritten in the form 

where the integral I of the four variables, is expressible in terms of Fresnel integrals 
appendix). This is restricted only by the previously imposed condition that 0/< <1. 

A somewhat simpler approach is possible if, in addition, kp00/2< <1. Then 

and 

it follows that (when ZO=ZI) 

i '" { t [1 + sin 2J.to/J for JI = 
o cos J.t<i> cos JI¢WjJ= 2 2J.t0/ J.t 

o for JI~ Jl. 

The second in tegral of eq (24) can be reduced in the following way 
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(23) 

(see 

(24) 

(25) 



1 J'(~-V)'" ] J'(~+V)'" 
2 (J..L - 1')3 0 x2 COS xdx+ 2(J..L + 1')3 0 x2 cos xdx 

2(J..L~1')3 [2 (J..L - v)1f cos (J..L - v)If+ [(J..L - 1')2lf2_2] sin (J..L - I')If ] 

+ 2 (J..L ~ 1')3 [2 (J..L + v) If cos (J..L + v;lf + [(J..L + v Flf2_ 2] sin (J..L + v)If]. (26) 

Thi s latter resul t is usable for J..L,cv . When J..L =V the in tegral may be handled in the manner 

'While this is essentially the solu tion of the problem it is desirable to make some fur th er 
simplifications to pel'mit discussion . Sin ce the important mod es at VLF are neal' grazmg 
we can approximate J..L and v as follows [W ai t, 1960] 

p = l , 2, 3 . . . 

s= 1, 2, 3 . .. 

Thus 

r'" . rt for p =s J 0 cos J..Lcj> cos vcj>dcj>= I 2 
I.... 0 for p,c s. 

i '" If If cj>2 cos J..Lcj> cos vcjxlcj>= -( --)" cos 7r(p-s)+ -( + )2 cos 7r (p +S) 
o J..L -v· J..L v 

_~ [ (- 1) P -s (-l) P+S- Il . 
- 2 ( )2 + ( + l )"J for p,cs. 7r p-s p s- -

(28) 

On the other ha nd , if p = s, th e integral is given by 

(29) 

\tVe are now in a position to write down some relatively simpl e formulae wh ich descr ibe the 
transitio n. First, we see that 

(30) 

where O(lf2) is a quantity which is of second-order smallness in If. Consequently 

A~P)=H(2)~k ) [1 + 0 (lf2)]. (31) 
v, Po 

In th e case of th e modes where p,cs, 

p (p)=ikpolf3 [ (_1)1' -8 (- 1)7>+ 8- IJ 
S 2 7r2 (p-S)2 + (p+s- l) 2 (32) 

and th erefore 

(33) 
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A measure of th e mode con version is expressed by the ratio 

Pi1}) '" ikhl/; [_1_" __ 1 ] (- l) S-P 
P~1})= 71"2 (p -S)2 (p + s- 1)2 . 

"Wh en th e incid ent mode is of order p = l , this ratio is simply expressed by 

and for s= 2 

(34) 

We are now in a position to calculate the field in the parallel pla te region for :1> b. H ere 
th e fi eld may also be \vritten as a sum of mod es in the manner 

H z='L,Bne-ik(X-b)Sn cos (kCnz ) (35) 
n 

for O<z<h+ tlh. The mod al equation in t his case is 

Cn tan [lcOn (h+ M )] = iZ z/ 1'Jo 

and in vi ew of th e or thogolltdi ty or the modes 

( "+t1h 
) 0 [Hz(x= b)] cos (lc Cnz)dz 

Bn £ [1+ sin 2lc~nh] , 
2 2kCnh 

(36) 

wh ere h= h+ D.l~. Following earlier r easoning, the field Hz over th e aper ture x= b IS now 
approximated by the field incident from the wedge transition region . Thus 

where 

and 

H z(x= b) r:;;;{,Hz ( p~, </» eix~kSn 

p~= [b2+ (h+M)2J1 /2 

~ p' (~_</>2) 
- 0 2 2 

(37) 

Again, for the sake of simplicity, one may choose Z (b)= Z2 so there is no discontinui ty in t he 
surface impedance. 

4 . Summary of Final Results 

We are now in a position to summarize and res tate the results obtained above. The fi eld s 
in the three waveguide regions have the followin g (approximate) forms 

for x< O, 

( h){ - ik r" S. (x) dx 
H zr:;;;{, h+ xl/; ~ a se Jo cos [kCs(x) z] for O< x< b, 

( h)~ -ikS; ' (x-b) " 
H zr:;;;{, h+ bl/; ~ {3 qe cos (k Cq z ) for x> b. (38) 
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The respective modal equations are 

0' tan (kO' h) = iZJ/710, 

O(x) tan [kO(x)h(x)] = iZ(x)/710, 

(39) 

The coefficients a . and {3q are expressible in terms of Fresnel integrals which are functions of the 
angle if;, b, Zl, Zz, and Z(x) as discussed in previous sections. Furthermore, in order to assure 
orthogonality of the modes in the wedge region, it was necessary to choose 

and a } 
Z(x) = Zo -+ a x 

x for O< x< b. 

h(x) = h+-r/lh 

(40) 

It can be expected that the nature of the coefficients a. and (3g are not significantly influenced by 
the finite values of the surface impedances Zl, Z(x), and Z2. This is particularly so in the case 
of grazing modes where the phase shift on reflection at the upper boundary is near 71". Therefore 

and 

for 
8~p. 

If 
p = l , 

and 
ikh if;[ 1- 28 ] • 

a8~ ----:;;:z 82(8- 1)2 (- 1) 

for 
8= 2,3,4 .... (41) 

Now at the junction at x= b, the situation is very similar. Thus {3p~ 1 and (3 s~ - a, for 
8 ~p. This implies, of course, that reconversion from modes of order 8 (~p) back to the mode 
of order p are neglected. In view of our previous assumption about the smallness oJ if; , this 
is entirely justified. 

We see from the present analysis that the mode conversion is probably an extremely small 
effect and can be neglected in most cases of practical interest. Indeed, experimental data on 
amplitude and phase variations do not appear to have any pronounced and reproducible fea
tures which could be attributed to mode conversion at a day/night transition.2 However, 
local ionospheric disturbances may well produce abrupt height changes which could lead to 
effective values of if; which are not small. Further effort is being directed toward a better 
understanding of these phenomena. 

I thank Mrs. Alyce M. Conda for pointing out a number of copying errors. I am also 
indebted to Prof. J. E. Lindsay for a number of valuable comments. 

' A. O. Jean (personal communication) indicates that there is a consistent phase distortion for the path NBA (Panama) to Boulder. It is pos
sible this could be attributed to the interaction with the spurious second mode produced at the transition boundary. 
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5 . Appendix 
Evaluation of 

{
¥ 2 I (J.I-,)),{X,ifi) = cos wI> cos ))r/leia.p dr/l . 

• 0 

The above integral can be transformed in the following manner 

1 -i (I' -v) , 1'" ia (<I>'+" -V <1>+ (I' -V)' ) 
=- e 4", e '" 4a' dr/l+ 

4 0 

1 . (,,- v)' 1'" . ( "- v)' - ,-- • I", <1>+-
= - e 4", e 2", dr/l+ 

4 0 

1 - i (I' - v)' 1'2 i~x' ( 7r)t 
=- e 4a e 2 - dx+ 

4 XI 2a 
(42) 

where 

and 

Thus 

I (J.I- ,)) ,a,ifi)=e-i
: { F[C:y (ifi+J.I-;:v)]+ F[C:y(ifi=J.I-;:v)]} (2:y 

. (,,+ v) , 

+ e-'~ { F[ (~)! (ifi+J.I-~))) ]+F[ C:)! (ifi-J.l-~)))]} (2:Y (43) 

,,,here F(x)= Sox ei~x'dx is a Fresnel integral. 
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