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An approximate treatment of modes in a waveguide of variable width is presented.
It is assumed that the boundaries satisfy impedance-type boundary conditions. The model
consists of two parallel plate waveguide regions connected by a linearly tapered section.
The results have application to the theory of VLI radio wave propagation when the iono-
spheric heights are not constant along the path.

1. Introduction

The waveguide mode theory has been quite successful in explaining many of the broad
features of propagation of VLE radio waves to great distances. Furthermore, the diurnal
variation of phase of a ew carrier can often be interpreted in terms of the relative amount of
solar illumination on the great cirele path. In carrying out such an interpretation, it is usually
assumed that a waveguide mode passes smoothly through the day/night transition without
change of field pattern across the guide. Indeed, the experimental data show little evidence
of distortion of the field in this transition region. Exceptions are indicated in the data of
Lauter and Sprenger [1952] who observed amplitude variations in East Germany from the
GBR transmission from England which indicated an undulating field. He explained this
qualitatively in terms of diffraction from a ledge of ionization which was truncated at sunrise
and sunset.

An alternative approach is followed here which would appear to be more appropriate for
propagation to great distances. The model chosen is a parallel plate waveguide of constant
width ~ which is connected to a waveguide of constant width A-+Ah by a linearly tapered
section. The nature of the waveguide modes in the two parallel plate waveguides is well
known. The character of the modes, in the tapered section, is first obtained by examining
the permissible solutions in idealized wedge regions. Then an approximate method is applied
to evaluate the coupling between the three waveguide regions.

2. Wedge Solutions

We consider a wedge consisting of two nonparallel plane surfaces. With respect to a
cylindrical coordinate system (p,p,z), the apex of the wedge is the z axis and its surfaces are
at =0 and ¢=y. The situation is shown in figure 1. For simplicity the fields are taken
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; Frcure 1.  The wedge region.
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not to vary in the z direction so that 0/0z=0. This restricts the direction of propagation to
be normal to the apex of the wedge region. Furthermore, the magnetic field is taken to have
only a z component. Since the lower surface (¢p=0) is to represent the ground, it will be
assumed that /,=0 for ¢=0 and 0<p<~. The upper boundary which is to represent the
lower edge of the ionosphere is assumed to be characterized by a surface impedance Z. Thus

E,=—ZH. for p=y and 0< p< . (1)
A suitable solution within the region 0<<¢<y¢ is of the form [Wait, 1959]
H.=AZ, (kp) cos vp (2)

where A is a constant and Z, is a cylindrical Bessel function of (complex) order » and argument
kp. The choice of the factor cos v¢ automatically assures that the boundary condition at
¢=0 is satisfied.

The boundary condition at ¢=y can be rewritten in the form *

of, . ‘
—agz-—%ewpz(l’)}]z (3)

where it is indicated that the surface impedance is a function of p. To facilitate the solution, it
is necessary to choose the p dependence such that

Z(0)=2%" )
where p, and Z, are constants. Thus
oM. .
WZ—ZeprZOHZ at o=y (5)

where e 1s the dielectric constant in the wedge region. On applying eq (5) to eq (2) we see that
v tan w=1ewp . (6)

Solution of this equation yields a set of values of » which are denoted »,.
We shall now demonstrate that these modes are orthogonal over the angular domain of
the wedge. For example, consider

¥
]s,qzﬁ cos (vy¢) cos (v,0)de (7)

where v, and », both satisfy eq (6). Since

_sin (vs—w,) ¢ | sin (vs+v) ¥
L= 2 (ws—v,) 2(vstv,) &

it 1s not difficult to show that
I, ,=0if v, v,

which demonstrates the orthogonality, The normalization constant for the modes is

(v ¥ sin (2v@)7]
]s,s_ﬁ cos’ (Vs¢)d¢_2[1+ v :' Y

It is now a simple matter to express the field /.(p,¢) at any point in the wedge in terms of
its value over the surface p=p;, 0<<¢p<¢. Since the modes form a complete set,

1 The time factor is exp (iwi).
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H.(p$) =2 A7, (kp) cos v (10)

where the summation is over all modes. Then, because of orthogonality, the coefficient A,
for the sth mode may be expressed as

A= (11)

Zo (kp) \l/|'_1+sm (2v5¢):l

2v

where

2
P— f H.(p1,0) cos v,
0

Thus, if we can find a suitable approximation for /1.(p;,¢) the corresponding function H,(p,)
can be obtained by performing an integration.

Before proceeding further it is desirable to discuss something about the properties of the
modes in the wedge region. Until the source itself is prescribed, the radial or p dependence of
the field is not known. However, in general, the cylindrical Bessel function Z» (kp) may be
represented as the linear combination of two Hankel functions, of the first and second kind,
of order »,., Thus a mode 1s of the form

HY (ko) \ ‘
H (kp)} COS vsp. (12)

If kp >">1 and kp >|r,| it is permissible to replace the Hankel functions by their Debye or
second-order approximations [Wait, 1959]. Thus
712,
HS ( ]1;))"‘( ) exp [+ ikp(sin a—a cos a)]eFi*/A (13)
1r£p sin a
where « is defined by
vi=kp cos a.

An alternative form is

245 (ILp>~(m . a) i e [m <ows—}—g>jl~ (14)

[t is evident that these have the character of traveling waves propagating in negative and
positive p directions, respectively. In this case the mode equation v, tan vy =iewp,Z, can
be written in the form

C tan kCh' =1iZ/n,

or
C= Z/770 —i2kCh! __ =
¢ =il 1
C+Zfm, (15)
where
C=cos a=v/kp,
:&) ZO)
p
and
h'=py.

It is seen that eq (15) has precisely the form of the modal equation for a parallel place wave-
guide of equivalent height A" and surface impedance (on one wall) equal to Z [Wait, 1960].
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The choice of the kind of Hankel function (i.e., first or second) is dictated by the nature of
the problem. In general, a linear combination is required. However, if the waves are excited
over the aperture plane p=p, then for p>>p, in an infinite wedge region the Hankel function of
the second kind only is needed.

3. Composite Problem

We shall now consider the composite waveguide problem mentioned in the introduction.
The situation is illustrated in figure 2.

A Cartesian coordinate system, (z,y,z), is chosen such that the earth’s surface (assumed
flat) is the plane z=0. An ionospheric reflecting layer of surface impedance 7; is located at
z=h and £<0. A similar reflecting layer of surface impedance 7, is located at z=h+ Ak for
2>b. The transition section extends from z=0 to z=5 with a linear variation of height
from A to h+4Ah. The surface impedance of the surface of the transition section must be a
linear function of p in order to make use of the orthogonal set of modes discussed above. Tt is
convenient to choose Z=Z;p,/p where py=a sec ¥ which is equivalent to

a

Z:ZO x+a’

for the interval 0<z<b.
A single waveguide mode is now considered to be incident from the left. It is taken to
be of the form [Wait, 1960]
H,=e%*5p cos kC,z (16)
where S,=(1—C;)* and C, is a solution of

C—A
C+A,

e—i?th:€—~127rp:1 (17)

where p=0,1,2, .. .and
_Z
Mo

Ay

The integer p is the order of the waveguide mode under consideration. A general incident
field is obtained by superimposing all possible p modes.

In a rigorous treatment of this problem we would need to set up a general representation
of the fields in the three waveguide regions. To evaluate the unknown coefficients it is then
required to match the tangential electric and magnetic fields across the aperture planes at
t=0 and z=b. This leads to a very cumbersome (infinite) set of equations which must be
solved for the infinite sets of coefficients. The problem is also complicated since the plane
r=constant is not a coordinate surface in the natural cylindrical coordinates for the wedge
region.

In order to obtain a useful result, albeit approximate, a number of simplifying assumptions
are made. The justification for these are mainly on physical grounds. KEssentially, the idea
is to neglect the reflected waves at the aperture planes at =0 and 2=5. This approach has
been used by Solymar [1959] who treated a number of analogous problems in microwave guides,
and by Furutsu [1957] who considered related problems in radio propagation over mixed paths.

Ficure 2. The transition problem (not drawn to
scale since ¢<<1).




In view of the above assumption, the field in the wedge transition region has the form

— 33 AHE (kp) cos v (18)

where v, is a solution of
v, tan vW="1ewp,Zo.
The coeflicients A, are given by

A=

¥ sin (2vy) (8)
Hm%m)[hk 2]

where

v
Z)s:f Hz(p0y¢) cos Vs¢d”-
0

If the length of the transition section, b, is large compared with the height change, Ak, it
is reasonable to assume that H.(py,¢) is given adequately by the incident mode. This has the
form

Hire=¢=%5p cos kC)z (20)

and thus

]Iz (P0y¢> e ik,rOSp CcOS (kP0(7;;¢’) (21 )
where

2o=(po—2%)1— po COS Y
V' ¢
gW<§—§'

Therefore

P — f o (e A s (8 (“(pI: zksppo( ) ]d¢ 22)
where the superseript p is to indicate that this is the value appropriate to the pth incident
mode. The function P® in the form given above may be rewritten in the form

P = ¢=ikSpent* 2] [k pyCy, v,k p0S,/2,¥] (23)

where the integral [ of the four variables, is expressible in terms of Fresnel integrals (see
appendix). This is restricted only by the previously imposed condition that y<<1.
A somewhat simpler approach is possible if, in addition, kp@?<< 1. Then

¥ ; v
P® ~ g—ikpySyy2/2 { f COS ug cos V¢d¢+&2”m f ¢? cOoS ug cos v¢(l¢} (24)
0 0

where u=kp,C,~khC,/¢ and v=»,. In view of

v tan w=—1ewp,Zo
and

wtan w—1ewp,Z1
it follows that (when Z,=Z%;)

¥ sin 2uy

¥ v o

f cOS u¢ cos vopdp—< 2 [1+ 2uy for v=p
0

0 for v pu.

(25)

The second integral of eq (24) can be reduced in the following way
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¥ Y 'y
[ ¢* COS ug Cos u¢d¢'=% J ¢? cos (u—V)z;bdd)—{-%-J ¢? cos (u+v)pde
JO 0
__ 1
" 2(u—)?
1
T 2(p—)?

*u—v)y - Z (utv)y - v
JO xr’ cos x(.)c-l—z( + BE J % cos xdux
[2(u—w)¢ cos (p—n)¥+[(u—»)¥*—2] sin (u—»)¢]

1
+o5r o [2(utv)¥ cos (wtv¥+[(p+r)W*—2] sin (u+r)¥].  (26)
2(p+v)
This latter result is usable for u>v. When p=v the integral may be handled in the manner
R L
f ¢?* cos vopdp=—— f ¢*(1+cos 2p¢)d¢—~ @ )3f x? cos 2xdx

¥
—6+

S;ﬂ [(2ud) cos (2up) +[2(up)*—1] sin 2up)].  (27)

While this is essentially the solution of the problem it is desirable to make some further
simplifications to permit discussion. Since the important modes at VLE are near grazing
we can approximate w and » as follows [Wait, 1960]

™ 1 .
,u:l; (p——§>; p=1,2,3...

1
v:vs=£ <S—§>y s=1,2,3...
Thus

2
¥ = for p=:
f COS p¢ COS v¢(l¢:{2 orp=¢
0

L0 for ps=s.

y ¢? COS e COS u¢d¢=(—uf—y)2 cos m(p—s)+ M + WE cos m(p+s)

(= i
(=" T (s

:I for p#s. (28)

On the other hand, if p=s, the integral is given by
lp'd
(2p—1)%

We are now in a position to write down some relatively simple formulae which describe the
transition. First, we see that

v ¢3
f ¢* cos uPplp=—"— (29)
0 6

PP~ N‘/’ [1+0@1)] (30)
where O?) is a quantity which is of second-order smallness iny. Consequently
1
» — 2 .
App —H,(,f) (kpo) [1’*_0(‘»0 )] (31)

In the case of the modes where p#=s,

iy zkpotﬁ’“' (—*1)“ (=1)zo=t
U [(p—6)2 (p+s—1)2:|

o tke*(=D°? 1 1 N
A= D () I:(p—s)2 (p+s_1)2]' : (33)
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A measure of the mode conversion is expressed by the ratio

])(p) ’lkh¢ . .
et | e | o (34)

When the incident mode is of order p=1, this ratio is simply expressed by

P ;kw .

Py ikhy 3

POTT

and for s=2

We are now in a position to calculate the field in the parallel plate region for 2=>b. Here
the field may also be written as a sum of modes in the manner

H,=> B¢~ *@=98 cos (kCyz) (35)

for 0 <<z<h-+Ah. 'The modal equation in this case is
C, tan [kC, (h+Ah))=1Z/n,
and in view of the orthogonality of the modes

h+4Ah
[ [ .(x=b)] cos (kC,z)dz
B,="— ) (36)

o ~ A
1+s1n Jc(;,,h
2kC,h

where h=7h+Ah.  Following earlier reasoning, the field /., over the aperture z=b is now
approximated by the field incident from the wedge transition region. Thus

o =>

H.(a=b) =H (p},¢) ™" (37)
where
(b (Al
ro= (o2~ i cos ¥
ﬁ_ff’,
= pO %
and

H.(py,0)= ZA(’)H(Z)(kp()) COS vy .

Again, for the sake of simplicity, one may choose Z(b)=~Z; so there is no discontinuity in the
surface impedance.

4. Summary of Final Results

We are now in a position to summarize and restate the results obtained above. The fields
in the three waveguide regions have the following (approximate) forms

H,=¢ 5% cos (kC)z)  for 2<0,

h H —ikfz Sy@dz . . .
IIZ:(thN) = ae b RGN e

—ikS," @—b)

cos (k('z) for x>b. (38)
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The respective modal equations are
C’ tan (kC'h)=1Z/no,
C(2) tan [EC(x)h(x)]=1Z(x)/n,,
C'" tan kC"’ (h-+Ah)=1iZs/x,. (39)

The coeflicients «; and 8, are expressible in terms of Fresnel integrals which are functions of the
angle ¢, b, Z,, Z,, and Z(z) as discussed in previous sections. Furthermore, in order to assure
orthogonality of the modes in the wedge region, it was necessary to choose
a
and for 0<a<b. (40)
h(x)=h+3 Ak

It can be expected that the nature of the coefficients «, and 3, are not significantly influenced by
the finite values of the surface impedances Z;, Z(z), and Z,. This is particularly so in the case
of grazing modes where the phase shift on reflection at the upper boundary is near =. Therefore

a,~1
and
azikh‘p[ S ](-1)3-11
T (p—9)?* (p+s+1)? ’
for
SFEP.
If
p=1,
a1
and
for
§=2,3,4.... (41)

Now at the junction at z=¥b, the situation is very similar. Thus 8,~1 and B,~ —a; for
s#p. This implies, of course, that reconversion from modes of order s(3p) back to the mode
of order p are neglected. In view of our previous assumption about the smallness of y, this
is entirely justified.

We see from the present analysis that the mode conversion is probably an extremely small
effect and can be neglected in most cases of practical interest. Indeed, experimental data on
amplitude and phase variations do not appear to have any pronounced and reproducible fea-
tures which could be attributed to mode conversion at a day/night transition.? However,
local ionospheric disturbances may well produce abrupt height changes which could lead to
effective values of ¥ which are not small. Further effort is being directed toward a better
understanding of these phenomena.

I thank Mrs. Alyce M. Conda for pointing out a number of copying errors. I am also
indebted to Prof. J. E. Lindsay for a number of valuable comments.

2 A. G. Jean (personal communication) indicates that there is a consistent phase distortion for the path NBA (Panama) to Boulder. It is pos-
sible this could be attributed to the interaction with the spurious second mode produced at the transition boundary.
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5. Appendix

Evaluation of

v
I (py,e )= L COS u¢ Cos y¢eia¢2d¢.

The above integral can be transformed in the following manner

1 4 tadl ] v iad?
5 cos (u—v)peta® (l¢+§ cos (u-+v) e'*dep

0 Jo

¥ v

___if ei(‘.—y>¢eia¢2{1¢+if e—i(y—v)¢eia¢2(w_+_ .

Jo 0

_.(u.—v)2 Y ia 2+u-v (u—»)?
=ie e f 6' ("’ @ 1a? >d¢+
0

 (p—w)?
P g
0
1 (n v)? zy
:1(7 da f ( >(Lr—l— (42)

where
n=() (%)
=
and
()
m™ (o34
Thus

== ([ o [ 20T )
+E (eI )

.
i-2? 0 .
where F'(z)=| e? drisa Fresnel integral.
@ t=)
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