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The purpose of the paper is to study theoretically the interaction between an obliquely
incident plane electromagnetic wave and an electron beam. We assume that a static
magnetic field of arbitrary strength is present in the axial direction.

Machine computations made for the case of a eylindrical electron plasma show that
resonances occur in the backscattering cross section as a function of the angle of incidence
of the plane wave. The dependence of the resonance angles on the plasma frequency for
fixed gyrofrequency suggests a possibility of utilizing the results of the investigation for
diagnostics of a eylindrical plasma.

Introduction and Summary

The interaction of an obliquely incident plane electromagnetic wave and an electron beam
has been studied by the author in a number of previous reports [Wilhelmsson, 1954, 1958a,
1958b], particularly in the presence of an infinitely strong static magnetic field in the direction
of the beam and in the absence of a static magnetic field. In an earlier report [Wilhelmsson,
1958¢] the author discussed the wave solutions for the waves excitable in a eylindrical electron
beam in the presence of a static magnetic field of arbitrary strength. The investigation also
covered the case of azimuthally asymmetric modes which, together with the azimuthally
symmetric modes, constitute the complete set of normal modes excitable, e.g., by means of an
obliquely incident plane wave.

The purpose of the present report is to give the complete formal solution of the problem
of interaction between an obliquely incident plane wave and an electron beam in the presence
of a static magnetic field of finite strength in the axial direction.

The investigation suggests a new interesting diagnostic technique for a beam or a plasma
utilizing the dependence of the resonance angles of incidence on the plasma and gyrofrequencies.

1. General Assumptions and Fundamental Equations

Let us review the assumptions and the notations introduced by the author in previous
communications on this subject. We consider a circular electron beam of radius ¢ and of
infinite extent in the axial direction. The beam has a drift velocity », along the lines of force
of a homogeneous magnetic field of strength H,. We assume that the beam travels through
a neutral ionized medium that exists only in the same domain as the beam. The static elec-
tron densities of the beam and the ionized medium are further assumed to be homogeneous
in space. Let usintroduce the critical angular frequencies w., = (N,¢*/m &) and we= (A\}(l‘z/lne'.)l""
corresponding to the electron densities NV, and N, of the beam and the ionized medium, re-
spectively.  Here ¢ is the charge of the electron, m its mass, and ¢, the dielectric constant of
vacuum. In the following we consider frequencies of an order of magnitude such that the

ions can be regarded at rest.
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In order to study the interaction between an obliquely incident plane electromagnetic
wave and an electron beam in the presence of a static magnetic field of finite amplitude, we
introduce circular cylindrical coordinates (z, p, ¢) and assume that the incident plane wave
hits the beam with an angle of incidence ¢. We further assume that the dielectric constants
are different outside and inside the beam. By virtue of the last assumption, the axial phase
velocity of the incident wave can be adjusted to the velocity of the beam by a suitable choice
of the dielectric constant of the surrounding medium.

We represent the axial wave propagation by the factor ¢/“*~%1? where « is the angular
frequency of the oscillations, ¢ the time, kj=Fk, sin ¢, where k;=cw+/u €, is the wave propaga-
tion constant of the incident plane wave (u; and ¢ are the permeability and the dielectric
constant of the surrounding medium). A convenient notation is further &, =%, cos¢. zis the
axial space coordinate. For vacuum we introduce correspondingly ko=w+pees.  The wave
impedances we denote by le\/eﬁl and ZO:\/?- We represent the angular dependence of

1 0
the wave functions by the factor ¢/7¢.
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The cyclotron frequency of the electrons we denote by w5=% uoHo, where g 1s the vacuum

permeability. We furthermore make use of the notation a1=;o—y “the phase constant of the

0
) 27 Wey . :
electron beam,” and k,=>—=""1, the relative space charge wave propagation constant, where
>‘170 7“‘0 ’
Ay, 18 the plasmic wavelength of an infinitely wide beam. Collisional effects are taken into
account by introducing the effective collision frequencies »; and », for the electrons of the beam
and for the electrons of the ionized medium respectively.

In a previous investigation [Wilhelmsson, 1958¢c] the author obtained the following coupled

equations for the quantities II, and II, defined by II,=Z, and sz\/@ H,
€

(Pp+ AL = BiII, (1)
(P, +A)T,= BiIL,, (2
where P, is the operator
10 o

“Tropfop
and A;, A;, B, and B; depend on the parameters we have already defined.
An alternative way of writing the eqs (1) and (2) is
(P,+a}),=biP,I0,, (1a)
(P,+a3),=biP,I0,, (2a)

where again a;, as, b;, and b, can be expressed in the parameters that we have introduced.

The equations were derived from the equation of motion of the electrons, the equation of
continuity, and Maxwell’s equations, taking into consideration the drift Lorentz term vox H _,
where FI_ is the a-c magnetic field, and the relativistic effects. Let us here introduce the
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for the ratio between the drift velocity of the electron beam and the velocity

We obtain the following expressions for the constants in the coupled field equations
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The quantities that we have introduced are sufficient to determine the coupled eqs (1, 2)
and (1a, 2a) completely. To construct expressions for all the field components that we need to
satisfy the boundary conditions on the surface of the cylinder, it is convenient to introduce
the following quantities:

2 2
I R T T,
0= w [(w_”ok\_.']-Vl)szQH(l"Bz) w (1=) (w0—jv2)’— i |

2 @, w—"0ok— v . Wz, w— Vs
Rt I:]_ G . OwH LA Oy S R ]

k3 (w—"2ok)—jv1)* —wi(1—F%) (w— Jv2)2—w¥ w
Q[ w‘l w:g?
o—rnok— gy =1 — Pt »zr—wﬁ]’
K e, e—toki—jn ]
= ’“‘[l il (ool ) (1= w U= a
_hky <, @) %H
o nl—g—aa—p 18 ¢ Gb)

2. Wave Solutions of the Problem

We consider two different directions of polarization of the obliquely incident plane
electromagnetic wave, viz, the cases with the magnetic or the electric field vector polarized
perpendicularly to the electron beam. The general solution for the case of an arbitrarily
polarized incident plane wave can be obtained by superposition of the solutions for the two
separate cases.

2.1. The Magnetic Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam

The field vectors of the incident plane electromagnetic wave can be written
Tine __ J(wt+k cos ¢—k;2)
Fine— 4eilwitkip GG

I lnc:A Z_l, (j(wt+]|‘Lp cos ¢Ak“z)‘ (4)
il

From the Jacobi series

ereeose— 35 T, (ky p)elre (3)
n=—o
we deduce the following expansions that we need to express the field components of the
incident plane wave in a suitable form
—1 d =i 2

g?FLp o08 ?:r Z njan (k_Lp)Pj"‘Py (6)

sin e fkLp €08 o—
Jkip de© oy —=

T 0= BT i @

We then obtain (the axial propagation factor e/(«'~%2 is omitted in the following)

c0Ss (p()/AJ_p CoS o _— __]

Ere=—FE™ cos g=—A cos ¢ Z g (k1 p)e’e

n=—ow

¢

Eme—=FE™ sin ¢ sin o= — A sin ¢ ﬁp >0 ngrJ,(kip)elme

n=—

Hoom—H™ cos p=—A 5 >3 - TalkLp)e™™. (8)

(il n=—
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The general solution of the coupled field equations (1) and (2) that we need in order to
describe the internal field, we write in the following form

Er= 3 Audy(ap)e oo Zo 35 Budu(hap)e™, )
n=—owo L1y 2 n=—ow
. B 1 & _ E _
Hit=—1—"05— 25 Apdu(hp)e™+ 35 B (hep)e’™ (10)
Ag—hl AO n=-—owo n=—ow
where i, and hy satisfy the relation
(h— A?) (h*— A2)=BB:. (11)

In eqs (9) and (10) A,, and B, are amplitude coefficients, which are to be evaluated later on
by introducing boundary conditions. Since J, (—z)=(—1)"%J,(z) it is sufficient in eqs (9)
and (10) to consider only two roots A, and h, of the 4th-order equation (11) that do not differ
only by sign in order to construct the complete solution for the internal field.

The second term of the right-hand side of eq (9) and the first term of the right-hand side of
eq (10) are terms introduced by the coupling expressed by the right-hand sides of eqs (1) and (2).
The remaining terms of eqs (9) and (10) correspond in the limit of infinitely strong static
magnetic field to pure transverse magnetic (TM) and transverse electric (TE) modes
respectively.

We choose

=} [A3+A3—(A3— A3 +4B2BY,

h=} A3+ A3+ (4] — AP+ 4B By, (12)
so that
lim h,=A,

Why— o
and
lim h,=A,.

Wy—

We furthermore have the relations

4‘15—415:'1'):) (p*—q*a?),

N iEs , A ’
183185 = A\* v (13)
Hence
2 2 1 2 2 / P 2\ 9 2 - 1 9 9492 2 9A2\2 QA2
A — W=7 [ A= A (B AV T 4B Bl =— 55 [p'— 8+ (p'— FA) 4477,
A=W [A3— Ay (B A 4B Bl = [ 9 — @8 (P — A LA, (14)
and

s I e v e e
W= pe | P+ @A =~ (p*— *A%)* 44747,

. 1 ) ey 7 e Cmr S
h;z:}?}—z [ P2+ PATH-+/ ( p*— ¢PA%) >4 A°A%].
Let us introduce
("=2T\ [?A2— p2++/(p’— A7) +44°A%. (15)
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We then have

B .,
A=A
B3 .

The internal wave solutions (9) and (10) can therefore be written

mt Z Aln n(hlp)(’jn?_{_?[]A 2ZO Z Blne] (hgp)@jn‘p

N=—o = ==ic0]

Hmt_.](/ 7 Z Aln n(h1P>6J""+ Z B],,J (hop)@'m‘p <17)

071—— n=—c

For the azimuthal components of the internal electric and magnetic fields we have the fol-
lowing expressions in E.*, H.* and their first radial derivatives

Tint l n int aEmt int aZIiZnt
= | P2 Bkt 255 — 2@ R H g 2 |

a3

Fp— [ ki, g L % aEe oL b ™ II‘“‘—kékuQaHm:I (18)

The formulae (17) and (18) contain sufficient information on the internal electromagnetic
field to determine the amplitude coefficients by introducing the boundary conditions on the
surface of the cylinder. The determination of the amplitude coefficients will be the subject of
a following section of the investigation.

The radial components of the internal fields may, if desired, be obtained from the following
expressions and relations (17) and (18)

By = (ZoHs+ %)

int___i Jint 2 Jint ),
Hy'——1o (lcub¢ 0 ) (19)
We write the field components of the scattered wave (p_>a) in the following way

TM modes

Esc Z A%H@) (kJ.P) e]ﬂp

n=-—x

Ey=—jtang > ApHP (kip)e™
n=—ow»

Es— tzllfb Z Ay, H? (k1 p) e’
1P n=—o
Hsc__ 1 1 ® A O .
=7 T 008 ¢ n, MAantls (kLp)e
1
Hsc« —7 Z cOqunZ Ay, H®" (k_[_p)e’"*’
e (20)
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TE modes

E=0
By=Zh o 3 nBuH P (kLp)e™

"fipcos e

LS B H P (kpp)eim

Be=iZ, COS ¢ =

Hy=—jtang 3 BoHP (kip)e™™

H;c:t]‘c‘fp‘f’ i_ By HE (k1 p) e’
He— >3 BuHP (kip)es. @1)

In the relations (20) and (21), By, and B,, are amplitude coefficients of the scattered wave,
which have to be determined by the boundary conditions. The total field in the external
region consists of the incident plane wave (8) plus the scattered wave (20) and (21).

2.2. The Electric Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam

In the case where the electric field vector of the incident plane wave is polarized perpen-
dicularly to the axis of the beam, the particular field components of the incident plane wave
that we are interested in to satisfy our boundary conditions become

Er——E™ cosg——A >3 o 4(kLp)e

n=—w

Hre=H™ cos p—=A 7i cosop >, j%S,(kip)e’s
£ n=—ow

) . . 1 . 1 “ . .
Hiye=—H™ sin ¢ sin p=A —-sin ¢ — > nj"J ,(kirp)e’™. (22)
Zl k_LP n=—w
For the axial components of the internal electromagnetic field and the polarization that we
here consider we introduce the amplitude coefficients «;, and g;, which then substitute A;,
and By, in relations (17). Accordingly we have

Eizm: i aann(hlp)ejn¢+jUA_QZO _i Bann<h2p)ejmp7

n=—o

N - . = . ‘
H=jU 7 35 andu(hip)e”™+ 35 Bine (hop) e’ . (23)
0on=—w n=—ow

Correspondingly we introduce a,, and f,, as the amplitude coefficients of the scattered wave.
The field components of the scattered wave we obtain, without unnecessary rewriting, from
relations (20) and (21) by direct substitution of a,, and @, for A,, and B,, respectively.

As a final remark to this section on the wave solutions of the problem we would like to point
out the following. The propagation of the different modes of the field as described by the
factor e« it where n takes positive as well as negative values in the summation,
may be thought of as helical or screw waves for which the velocity of azimuthal rotation is
/’% and the axial phase velocity is kﬂ The total internal field for example is then obtained by
superposition of such modes properly weighted as indicated by our formulae above.
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3. The Amplitude Coefficients

As boundary conditions on the surface of the cylinder of radius @ we take the tangential
components of the electric and magnetic field vectors to be continuous through the surface.

3.1. The Magnetic Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam

Let us introduce the following convenient notations

t T
Z 3 s (kiB+ QU cos ¢ (ha) Hi? (k10) =T () H " <kla>+—Z—§)[ e

di=7

— L (AU cos 6 |20, () 2 s,

ti 1 Z ’
d2=[ = "’—ﬁ—g (P4-KQU) cos ¢:|2Jn (ha) H}? (k1) =52 U () I (k)

s (A U cos 6 T4 ) T2 k1),
2

d3=—-[tan¢ qzl 5 (@*—AA~2) ky cos ¢:| J,, (hoa) H? (/cLa)——AﬁUJ (hya) H?' (k1 a)

qgaz (k) Q—koRA2U)k2hy cos ¢ o (hoa) H (k1 a),

dy=J , (hoa) H®' (lcla)-@ —1— (@2— AA=2U))kohs cos & oJ, (hoa) HS (/m)+é tan ¢ \ o7
7y ¢*a3 A

2 (HQ— T4~ cos 8 BTt 2 (s (24
2

The amplitude coefficients A;, and B, can then be simply expressed as

— An— 12 1 d4
A=A T
dad,
. 121 da
Bu=AT 7 e ady
dad, (25)
We obtain the remaining amplitude coefficients Ay, and B,, from
A= 0 ! [A1ne] (@) +JAT2U Zy By,  (hoa) +A cos ¢j" T, (k1a)]
HP (kya)
By | U~ Au o (haa)+ Bind (h.a):l~ (26)
2n H;Z) (k_L(l) Zo 1n¥/ n \Il1 1n¥ n \702

3.2. The Electric Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam

For the polarization we here consider we have the amplitude coefficients of the internal
field
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2»] ([3

Fn= A g k1(l ddg
dyds
121 d
e n+1 _—
Bon=—Al e e lidy
o (28)
and of the scattered field
Qgp=— H(z)(k )[Olan (hla) +.7A 2U ZoB1nd, (hza)]y
1 1
anzm Otan (7@) +Bune (hat) — ‘Osd’f J"(kla):l (29)

4. The Field in the Center of the Beam

Let us consider the axial components of the electric and magnetic field vectors in the
center of the beam.

4.1. The Magnetic Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam

From the relations (17) and (25) we find for p=0,

E,(p=0)=A1,+jUA2Z,B1,

BRI S B SRS/ :
432 <(14 Us ) (30)
‘(13(14 n=0
or
ffz(p:())ﬁ‘g_lﬁ#‘ I 2/0
Eﬂ,"ffﬁ'l 7 kv cos ¢ |dyd, <(l4 Loy 7 d),),_o
‘(/;;([4‘,,20 (30a)
Furthermore
R
Hz(p:()):_yU,7Am—|—Bm
&0
121 1 7 .
_A:Tkla (lldQ (d2+l’ ZO d4>n=0 (3]>
(13d4 n=0
or
H.(p=0)_2 1 o ) -
THY aha dldz d”LL . Gty
da(]m,nuo

where H''® is the magnetic field of the incident wave in this case.

4.2. The Electric Field Vector of the Incident Plane Wave Is Perpendicular to the Electron
Beam
From eqs (23) and (28) we obtain
Ez(P:O):Oflo%“.'l'UA#2 oB10

421 1 (L 2 ) .
all— <d3 UatRd) (32)
(13(14 n=0
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or

E(p=0)_ 21 ( N )
Emn = - kla d1d2 d3 UA Z1 dl . ) (323)
d3d4 n=0
where K is the electric field of the incident wave in this case.
Correspondingly
oy 1
Hz(PZO) :]U 7 aigtBio
0
121 Z
]A Z] ™ kl(lx d1d2 <d1+U d3> -0 (33)
dady|n=o
or
Hp=0) .2 1 (a0 Za) . ,
Hie s 7 kia cos ¢ dxd2 d1+D -y (33a)
dydy|n=o

5. The Scattering Cross Sections

We define the following three scattering cross sections,
Differential cross section:
3o Re (ByH: — EH)

g(w):% Re (E'™¢XH™) cos ¢ ’ (34)
Total cross section:
2T
b do Re (B — A
Ttot™ 2 R inc inc* : (35)
1 Re (E™c X H™) cos¢
Backscattering cross section:
_ 3027 - Re (BEyH " —EHY ) o0 :
0B= T Re (E™XH™) cos ¢ (36)
We here have
S Re (EmexX Hi*) cos g=A2 — Z cos ¢.

Let us furthermore introduce the expressions for the field components of the scattered wave
in the relations (34) to (36) and do the integration in (35). We then obtain the following
results for the polarization where the magnetic field vector of the incident plane wave is per-
pendicular to the electron beam,

g (37)

], (38)
i (39)

27
The total scattering cross section amzf a(p)d as expressed by relation (35) and (38)
0

(‘”) Z B, em('”‘z)

n=—ow

>

n=—w

+2

il P2

F Az cos? ¢ Tk,
1

AZcos’ ¢ chL n_z_"w

E ]AZn

n=—cw

0 tot™

Ay

B27L

©
=

1
IB= A2 cos? 6 kll:

is the ratio between the total power scattered per unit length by the cylinder to the component
of the incident power per unit area that is normal to the axis of the beam.

The backscattering cross section defined by relation (36) and explicitly expressed in the
amplitude coefficients of the scattered wave by (39) we may think of as the cross section of a
fictitious scatterer that scatters energy isotropically with the intensity observed as backscat-
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tering (in the plane defined by the wave-normal of the incident wave and the cylinder axis,

0=0).
From relation (37) we notice that

o(o=—5)=mreorasii | ] a0

To facilitate comparison between the scattering at right angle from the plane of incidence
and the backscattering let us furthermore introduce

Z A2n

n=—ow

+Z1 Z.‘, B2n

n=—c

2210 <¢= —’21> (41)

2

where ¢, corresponds to the cross section of a fictitious scatterer that scatters isotropically

|

with the intensity observed at right angle <<p: —72—r> from the plane of incidence (¢=0).

For the case where the electric field vector of the incident plane wave is perpendicular to
the electron beam we obtain the results for the different cross sections from the formulae (37)
to (41) by substituting as, and B, for 4., and B,,, respectively.

6. Scattering of an Obliquely Incident Plane Wave by a Cold Cylindrical
Plasma in a Magnetic Field

We obtain the results in this case by making the following specifications in the relations (3),

we, =0, We, =W, vo=v,

2

where w, and » are the critical angular frequency and collision frequency of the electron plasma.
The expressions can then be simplified to

) .
2| e e e o !
=) [(Ob ¢ (T ]

I e 2 s*
g*ai=rh} I:(,()s ¢ (w~w,, ]V] l:(os ¢— w(erwH—l”):I

2
9 W
A=]—— e
w(w—gv)’
) .
T T B =
R e A
Q_wH w%

T w (0—p)—oek

o 2 2
2 YH | Y% e
=[] =
pP= g D*— k2T,

2

e 8 Wi W TR .
A=k} sin ¢ ” w(w—jv)z—wf, ssing - Q,
2
rR=%,
0
I'=koq* sin ¢. (42)
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2

For p*—¢?A? that enters hy, hy, and U we have in this case the simple result

2A2_ 2 7
P ki ‘;u @,
and accordingly

- B ) :
= 25m¢> w—] cos’ ¢ \/(w ) cos* ¢4-4A* Sln ¢J

=577 [P2+QZA2 Qks \/ (2)-%3;)— cos* ¢-+4A? sin? ¢

=

hi= 375 l:p?+ A — Qk ‘/( cos4¢+4A2 sin® ¢ . (43)
7. Results of Machine Computation

Extensive machine computations have been made for the case of the cylindrical electron
plasma neglecting the effect of collisions.

In order to demonstrate the possibility of utilizing the results of this investigation for
diagnostic purposes let us consider here only the results for a particular case.

For the polarization where the magnetic field vector of the incident plane wave is perpen-
dicular to the axis of the cylindrical plasma we study the backscattering cross section as a
function of the angle of incidence of the plane wave. In figures 2 and 3 we have taken w, >
wg > w, where w, is the plasma frequency (w,=w,).

|
I
L H =
w
2. |
- woros ———
koa=0.316 —-—-- |!|
koa=l
w, koa=1 —_— ,I!
s} _.Q_;i=4 100 - |_ —
a 'm
20} 1 {IE
O’ "
o3 lll
i
) . ) ; :
0 20 40 60
¢

Ficure 2. The backscaltering cross section over the
radius of the plasma cylinder as a function of the
angle of incidence of the plane wave for different

w
values of —*
w

0 10 20

Ficure 3. The backscattering cross section over the
radius of the plasma cylinder as a function of the
angle of incidence of the plane wave for different
values of koa.
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Figure 2 clearly demonstrates that resonances occur in the backscattering cross section at
different angles of incidence for different values of the plasma frequency, i.e., the density of
the plasma cylinder, and a fixed value of the gyrofrequency, i.e., the magnetic field. In figure
2 we have taken &7 equal to three different values 8, 6, and 5 for “H__4 and koa=1. Measure-

w w
ments of the values of the resonance angles might possibly be useful to determine the density
of the plasma cylinder.

In figure 3 we have plotted backscattering curves for three different values of ke and

. . W Wy . . .
fixed values of = and ==+ Apparently there is no observable change in the value of the reso-
w w

nance angle when kg varies between 0.1 and 1.

[t remains to be shown by experiment that resonances of the kind predicted by these calcu-
lations do play a role for a cylindrical cold plasma and if so whether or not they can be utilized
for diagnostics of such a plasma.

The machine computations were made on the IBM 704 computer in New York, on time
available for the Plasma Physics Laboratory of Princeton University, of which the author was
a member during the year 1960-61. It is a pleasure to acknowledge the very generous help
of L. Hoffman, M. Sc.; who did all the coding work. The work was finally written up at
Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden.
It forms a continuation of earlier work by the author as a part of the general electronic research
program of the Research Laboratory of Electronics.
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