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A solut ion is given to the problem of r epresentin g the complex proper ties of ionospheric 
cha racteristics on a worldwide scale, including their diurnal variation, by num eri cal analysis 
of ionospher ic data as they a re obtained fr om a network of so undin g statio ns, wit hout prior 
han d operations. The problem is compli cated by t wo bas ic diffi culties : (1) t he da ta ar e 
affected by noise (ran do m fiuctuation) an d (2) t he stations are irregularly posit ion ed in t he 
two s pace dim ens ions. The second diffi culty is over co me by a general met hod for construct
ing functions orthogonal relative to the dist ribution of t he sta t ions . Spccial filterin g p roc
esses a re employed for t hc optimum separation of noise from real p hys ical var iat ions . The 
en d product of t he a na lys is is a table of numerical coeffi cie nts definin g a fun ction r (A, 0, I) 
of t hrec variables, latit ude (i--) , longitude (0) and time (I) , w hich can be used to compute t he 
ionospheri c characteristic at a ny desired location or instant of t ime. The method applies 
to a ny ionospheri c characterist ic; however, a s a means of illus tration we use in t he p resent 
paper only t he characterist ic, monthly med ian of t he F2-layer cri t ical freq uency (fo F,). 

1. Introduction 
I t is well known that Lil e ionosphere expen-· 

ences diurnal a nd geograp hic varin,tions, as well as 
long term variations connected wiLh seasons alld the 
11 year solin cycle. AlLhough many of Lhese varia
tions arc systematic and predictable with a consid·· 
crable degree of ttccumcy, for Lh e F-layer Lheo retical 
models do no t yet give good representation or many 
of the details. T herefore , worldwide representations 
of F-layer chamcteristics arc best m n,de using meas · 
urements obtained from a neLwork or sounding 
sta tions. 

Ionospheric maps have been m ade and sLill ,1.1'e 
being produced by persons having considerable 
knowledge of ionosph eric da ta and experience in 
drawing maps. Nlany graphic teclmiques arc em
ployed [or smoothing mw data and for eliminating 
inconsistencies. However, such procedures are rela·· 
tively slow and tedious and, to some extent, are not 
repeatable. Th e accuracy, as well as repeatability, 
arc dep endent upon the skill, knowledge, and expe · 
rience or the people carrying out the subj ec tive steps 
of the process. 1/[oreover, as a means of simplifying 
hand operations, unrealistic assumptions have been 
made, slIch as the " long-itu.de zone system ," in which 
no longitudinal variation is taken into account or 
represented within the defined longitude zones. 

Severfl.l years ago, the authors attacked the prob
leJJl of represen ting the complex properties of iono .. 
sph eric characteristics on a worldwide scale, including 
their diurnal variation, by numerical analysis of iono
sph eric data as they are measured at the sta tions , 
without prior hand operations.! The problem is 

• A sequel pa per on " M ethod s for applying numerieal m aps of ionospheric 
characteristics" will appear in an earl y issue of this journal. 

1 Tile n eed for ma pping methods based on numerical methods and the use of 
high-speed com puters h as been felt for se vera l years [CCrR, 19591. 

com plica ted by Lwo basic difficul Lies: (1) t il e d,1. La 
are }1.ffecLed by lloise- mndorn fluctu,1.tions produced 
rrom a number of sources (c ll . 4)- and (2) Lhe iono·· 
sph eric sL,tLion s (fig. 1) arc irregularly positioned on 
the ear th . Th e noise would produce a very rough 
and physically unaccepL'1.ble map if the origin al daLa 
were represenLed exacLly wiLhouL time and space 
smoo thing. Thus a COl' Lain amount of smoothing is 
necessary, buL too much smoothing would gi ve a map 
whiell does not respect the Lrue physictd variation as 
well as possible. Th e i7Tegular distribution of stations 
presenLs problems both in d,t La··fitLing (ch. 2) and in 
preserving Lh e stability and p hysical soundness of 
Lhe represenL'1.Lion in areas wh ere few if any sLa Lion s 
arc n,vailable (ell. 5). Also Lhe [acL Lhat Lhe set of 
available stations varies from month to month CO I11 -

plie'1. tes the dat,t .. fitting processes and the comparison 
o[ numerical represenLations for different monLh s. 
In the past, people experienced in drawing m aps have 
overcom e these difficulties m ore or less intuitively 
using empirical knowledge of the ionosph ere and good 
sense. It is not easy to give these qu,alities to a com
puting machine. 

The solution 2 to the problem consists of vell
defined mathematical operations- described and 
illustra ted in the present paper- which have been 
programed for use on several large-scale digital com
pu ters.3 Input to the computer program co nsists 
of the measurements of an ionospheric characteristic 
from all available stations for a given month. The 
diurnal variation is represented by Fourier analysis of 
the 24 hourly measurements from each available 

2 For a brief summary the reader can refer to [Jones and Gallet, 19601. 
3 T he computer program has been developed completely fer both th e IBM 704 

and 7090 computers and in part [or tbe CDC 1604. 
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FIGURE 1. Map of ionosphel'ic stations for December 1957. 

station (sec. 3.1). T~en the w:orld~vide geograJ?hic 
variation of each Founer coefficIent IS expanded 111 a 
series of functions analogous to surface spherical 
harmonics (sec. 3.3). The optimum separation of 
noise is obtained by truncation of orthonormal series 
(ch. 4). .At t~e ~nd of the analysis t~le .diurnal and 
aeoo-raphic vanatIOns of the charactenstIC are repre
~ented by a relatively small. table of . coefficien~s 
definina a function of three vanables: latItude, longI
tude a~d time of day. Such a function is referred 
to a~ a "numerical map" (ch. 7). 

The methods used here arc general enough to be 
applied to any ionospheric ch~ractcristic. In fact , 
they have already been successIllll~T used to represent 
such characteristics as: the critical frequency (JoFz) , 
the 3 000 km maximwn usable frequency factor 
(F2-113 000) , the maximum electron densi~.r (N 
max), the height of N-max, and the qua~ter t~llckness 
of a layer. With only sligh.t .mochfi~atIOn . the 
methods can also include vanatIOns wIth heIght 
above the surface of the earth. For the sake of 
illustration we restrict ourselves here to the charac
teristicjoF 2' monthly median, sinc~ this chara~teristic 
is the most important one for radIO propagatIOn, and 

its variations are the most difficult to represent. In 
chs. 2 and 6, we outline briefly the mathematical 
methods employed in this analysis. 

2 . General Data Fitting Method 

As was mentioned in the introduction, the geo
graphic variation of eacl~ F~urier coefficient (obt~inec~ 
fro111. the diurnal analysIs) IS represented by senes 01 
functions analogous to surface spherical harmonics. 
The approach generally used in global analyses of 
geophysical data has been to fi~s t draw. con tom maps 
by hand and then to analyze 111 sph~ncal ha~mol1l?s 
the values read from the maps at the mtersectIOns of a 
regular grid. Ho,~ever, such methods incorporate 
many of the undeSIrable features ~f the han.d opera
tions used cmrently to produce IOnospherIc maps 
(ch. 1). 

We have attacked this problem from the opposite 
direction by first analY7.ing the da ta directly as they 
are obtained from the stations. Then contour 
maps are computedjrom the analyses when desired. 4 

• E xamples of sucb con tour maps are shown in figures 11a, llb, 12, and 13. 
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The method used is mathematically well defined, 
, entirely repeatable, well adapted to automatic com

puting and, in a sense, more objective than the 
hand methods previously mentioned. As a result of 
this new approach, we have had to face some addi
tional complications (ch. 5). In the expansion of 
the geographic variation it is natmal to use 
orthogonal 5 functions, since an optimwll cutoff of 

, the series has to be made (ch. 4) . The classical 
spherical harmonic functions [Byerly, 1893, pp. 
144- 218] could not b e used, however , since they are 
not orthogonal relative to the positions of stations. 
Thus we have had to construct functions- analogous 
to spherical harmonics (sec. 3.3)- whichare orthogonal 
with respect to the irregularly spaced coordinates of 
the stations. The problem is even more complicated 
by the fact that the set of available stations varies 
from month to month, making it necessary to con
struct new orthogonal functions for the analysis of 
each month's data. 

For this purpose we have employed the very 
general data-fitting method described briefly in this 
chapter. Of comse, the m ethod also applies to the 

~ Fourier analysis of the equally spaced measurements 
of the diurnal variation. In the following discussion, 
the points Xi (where the measmements are made) 
can be any set 

i= 1,2, ... , N 

irregularly positioned in an NI dimensional space. 
The coordinate functions Gk(X) , which are fitted to 
the data by the method of least squares, can b e any 
linearly independent functions of 11([ variables (e.g., 
elementary tran cendental functions, Chebychev 
polynomials, or spherical harmonics). 

2.1. Least Squares Method 

Let Y I, Y 2, •• • , YN denote measurements of an 
ionospheric characteristic tak en at the points XI, 

X2, ••• , XN. Suppose that a class oj junctions 
Y",(x) is given and a criterion for evaluating how 
well each of th ese functions fits the values Yi. (We 
will take Y",(x) as linear sums of coordinate functions 
Gk(x).) Then the problem of da ta-fitting is to 
determine that function Y(x) from the given class 
which "best" fits the Yi relative to the given criterion. 
W e have chosen the least squares criterion since it is 
well-adapted to the analysis of data affected by 
noise and it is far easier to compute than other 
methods such as the minimax [Stiefel, 1959]. The 
question of choosing the proper classes of functions 
Y",(x) is discussed in chapter 3. 

'Ve assume given a set of linearly independent 
coordinate functions, Go (x) , GI (x) , .. . , GK(x) , with 
K< N, and it is required by the least squares 
criterion to find that function 

(1) 

[or which the sum o[ squares of r esiduals 
6 T ile term "orthogonal" is used here in tllC sense of a discrote distri bu t ion 

[Szego, 1959, pp. 33-37J. 
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(2) 

has a minimum value with respect to all real coeffi
cients Dk.6 It is easily shown that n ecessary and 
sufficient condi tions for EK to be minimized are 

k= O, 1, ... , K . (3) 

These give the well known normal equations 

m = O, 1, ... , K (4) 

where we adopt the notation 

and 

(5) 

and we williatel' use 

N 
(y,y)= 2:, y~. 

;=1 

For solving the normal equations (and for a number 
of other reasons to be discussed) we have made 
extensive use of orthogonal functions. 

2.2 . Gram-Schmidt Orthogonalization 

A set of functions .110 (x) , AI (x), ... , .11K (X) is 
said to b e orthogonal with respect t o the points 
XI, X2, • • . , XN, if 

·when k ~m . (6) 

Thus we see that if the coordinate fun ctions Gk(x) 
were orthogonal, the system of nonnal eq (4) would 
be uncoupled and its solution would b e simply 

k= O, 1, ... , K . (7) 

On the other hand, we can apply the Gram
Schmidt orthogonalization process [Davis and 
Rabinowitz, 1954]7 to form the system of functions 

AD (x) = Go (X) (8) 

6 For simplicity we have written D it. with only one subscript k. However, we 
must rem em her that the terms in (1) are generall y not independent and therefore 
all of the coefficients depend on the value of [(. 

7 Our proced ure differs from that of Davis and Rabinowitz [19541 in that we 
ha\7c reversed tho order or orihogona1i zation and ]10r1l1ulizatioll in order to reduce 
Lhe accumulaLive roun ding error. (Sec sec. 2.3 and also ch. 6.) 



satIsfying (,0), where the coefficients akp are given by 

(9) 

Then the least squares solution YK(x) can be written 
in the form 

(10) 

where 

k= O, I , .. . ,K. (11) 

The orthogonal series (10) is, of course, sufficient 
for many purposes, but in our applications it is 
useful to have YK(x) in the simpler form (1). For 
this purpose we compute the triangular matrix 

lK- I .O lK- I.l 

lK.O 

l O.K- 2 lO.K- 1 lO .K 

ll .K-2 ll .K- l 

(12) 

where the elements l pk are obtained by 

l Ok=ak 

l pk= l p-I, k+ l p-I,K- (p-l)aK - (p- l ),k l~p~K (13) 

of the orthogonal functions A k(X) we use only the set 
of points Xi and the functions Gk(x). Consequently , 
when several different sets of values Yi are measurecl 
at the same set of points Xi and are to be fitted by 
sums of the same functions Gk(X) , only one orthogonal 
system is required to uncouple all of the resulting 
systems of normal equations . Thus in the repre
sentation of geographic variations of Fourier coeffi
cients , the same set of orthogonal functions can be 
used for all Fourier coefficients for a given month. 
This is an important factor in the economization of 
computer t ime, since- as will be shown in chapter 
4- there are 17 Fourier coefficients to be represented 
in the analysis of j oF2 • 

2.3. Normalization 

A set of functions F I (x), F 2 (x), ... , FK(xl is said 
to be orthonormal with respect to the points Xl) 

X2, .. • , XN if, in addition to the orthogonality i 

conditions (6), they also satisfy 

for k= O, 1, ... , K. (17) 

When Y K(X) is expressed in the form 

(18) 

the orthonormal coefficients dk have the simplified 
formula 

O~k~K-p and 
k= O, 1, ... , K (19) 

(20) 

starting with tbe top row and going from left to 
right. Then we have for the desired coefficients 

(14) 

A number of fldvflntages are gained from the use of 
orthogonal functions . As was previously shown the 
A k(X) uncouple the system of normal equations so 
that terms in the series (10) are independent. As a 
consequence we obtain automatically the least 
squares solution Y k(x) for all degrees from zero 
through K, flnd therefore can test the physicfll 
significance of each term to determine where the 
series should be truncated (ch. 4). Moreover, the 
computation of EK is greatly facilitated since by 
substituting (10) into (2) and applying (6) and (11) , 
We obtain 

(15) 

Hence E k is computed recursively for each degree by 

(16) 

for l~k~K. 

One main advantage of this normalization is that the 
significance of each term dkFk (x) in (18)-dctermined 
by the reduction it makes on the sum of squares of 
residuals (20)- is seen in tbe relative size of d~ . 
Another advanLage is obtained from the simplified ! 

interpretation of these functions as unit (orthogonal) 
vectors in an N dinlensional vector space (ch. 6). 

Using the relation 

(21) 

and (8), the generation of the orthonormal functions 
Fk (x ) becomes 

where 

O~p~k- l 

and 

(23) 

Then from (19) , (22), and (11 ), tb e coefficien ts in 
It should fllso be mentioned that in the construction the solu tion (18) become 
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(24) 

The application or the GntlTl-SchmidL ol'thogonal
ization process to least sq UrLres problems ha been 
tl'ecLted in rL paper by Davis and Rabinowitz [1954]. 
For completeness we included here an outline of 
their development with one modificatio n- the order 
of orthogonalization and normalization is reversed. 
Tl:lC advantage of this modification is that accumula
ti ve rounding error can b e considerably reduced. 
'Whereas we compu te (A k,Ak ) as a sum of squ ares, 
the procedure in the reference cited above is to com-· 
pute it as a difl'erence of positive numbers 

k-1 

(A k ,A k )= (Gk ,Gk)-:6 CGk, Fp) 2, 
p~O 

which can be so small as to result in total loss of 
significan t digits. As can be seen from (23 ), enol'S 
in (A k,Ak ) have a s trong accumulative effect on the 
construc t ion of t he fun ction s Fk(x ). 

W e have also found, however , chat tL very serious 
additiontl,lrounding error 8 accuInuhttes in the Gram·· 
Schmidt orthogonalization process when Lhe coordi· 
nate funcLions Gk(x) are far from being orLhogonal. 
That such rounding elTors can have a significanL 
efl' ect on the l east squares solu tion is shown in chapter 
6 by a numerical exam ple with errors occurring by 
as much ,1,S 30 pOI·cenL. [L is well known that similar 
types of errors occur when solving the normal eq (4 ) 
by other methods. 9 Thus the danger of accun1 ulatiw' 
rounding error is not so much a chamcterisLic of th e 
particular method we have used , but is an inh eren t 
difficulty in all large-scale least sq unl'es problems. 
Also included in chapter 6 tl, re an explaLMLion or th e 
process of accumuhttion of th e enol', a quantitative 
method for estim,l,ting its effect, ,wei a reOlthogonal
ization process which keeps t he rounding error uneier 
control no m a tLer how large t he sys telll. 

For t he diurnal represent,ltion or the da ta, we 
usc Fourier series which arc particular orthononnal 
series [or equally-spaced data poinLs. For the geo
graphic variation we employ an orthonormal series 
construc ted from Lh e procedures describ ed above. 

3 . Choice of Functions 

3. 1. Diurnal Variation 

Th e most natural method for representing the 
diurnal variation is Fourier analysis, since iono
spheric characteristics are periodic functions of time. 
Moreover, the trigonometric functions associated 
with Fourier analysis are automatically orthogonal 
with respec t to the equally-spaced points of measure
ment ; h ence the computational problem s o[ least 
'lquares fttting are greatly simplified. Since the 
observations are made at each hour in the zone 
time (ZT) of each station, they cannot b e intercom
pa.red for difrerent stations until time correc tions 

8 The process of accumulation of roundin g error is similar to that described by 
LanclOS [1956, pp . 123- 130J . 

• See for example [Lanczos, 1956, pp. 118-122; KUIlZ, 1957; Forsythe, 1957, p . ;77 
Forsytbe and Rosenbloom, 1958, Pl'. 20- 21, and references contained therein1. 
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arc made. As will b e shown , Fourier analysis pro
vides a simple m eans /'or s uch correction s . Th e 
mos t important usc of Fourier analysis, h owever, 
is in tbe separation of "noise" (rando m error) from 
the " real" diurnal vtl,riation o[ th e datil, (ch . 4). 
. vVe give here t ile . essential formulas employed ; 
for more compreh ensIve treatmen t , the rende r C,1,11 

rerer to numerous texts on Fourier an'l,lysis. Let. 
x denote the zone tim e hour angle (degrees) defined by 

(25) 

where ZT is given in hours. Thus, for example 
x = Oo at noon (ZT). 'VVe let Yl, Y2, ... , Y24 denote 
the hourly measurements corresponding to th e hours 

i = I,2, ... , 24, (26) 

respectively, and we choose 1, cos .ix and sin jx 
(j = l , 2, . .. , H , ,wd 2H+ 1 ;:;; 24 ) as coordinate 
fun ctions G,, (x). It is well known that t hese func tions 
ar e or thogonal with respect to the point s (26). 
Therefore from (7 ) the least squares solution has 
the form . 

where 

{J 

Y2H+l (x) = ao+ :6 [a j cos jx+ {3 } in jx], (27 ) 

1 24 

aO=24 ~ Yi 
' ~ 1 

j~ l 

1 2,1 . 

a j= 12 ~ Yi cos JXi , 
1~ 1 

] ~ .. 
{3 j= 12 ~ Yi s In p.' , 

t~ 1 

(28) 

1 ;:;;j;:;; II. 

Equation (27) ca n also be wriLlen in the convenient 
form 

J( 

Y21I+I(x) = ao+:6 Cj cos (jx - </> j) (29) 
j~ 1 

where the ampli tude Cj and phase </> j ar c given by 

Cj= ,1a;+ b; (30) 

Corrections to Local Mean Time 

Tn order to in tercompare data from ciiffel"en t 
stations it is necessary to correct for Lhe small 
difference between the actual local mean time (L~![T ) 
at each station and th e time a t the reference lon gi
tude en of th e zone. Such corrections can be m ad e 
very sLmply in (29 ) by a shifL of the pha se where 

(31 ) 

e is the longitude (degrees east of Greenwich ) of the 
station. Therefore t he representation oj the diurnal 
variation takes the form 



II 

U2H+1'(t) = ao+ ~ raj COS jt + bj sin jtj (32) 
j =l 

where the Fourier coefficients corrected to LAlIT are 
given by 

and t denotes the local mean hour angle, 

t= 15° (LMT) - lS00. 

3.2. Main Latitudinal Trend 

(33) 

The Fourier coefficients are corrected to LMT 
(sec. 3.1) so that their main geographic variation 
becomes latitudinal and is therefore greatly simpli
fied.lO Among the first problems to be solved for 
representing this variation was that of selecting a 
suitable set of coordinate functions Gk(x) for the least 
squares fit. Polynomials seemed to be the most nat
ural type of function, but the question arose as to 
what would be the best independent variable for the 
polynomials. The simplest variable tried was the 
g~ographic latitude A. However, when a sufficiently 
hIgh degree was taken, the polynomials in A became 
unstable (i.e. , wildly fluctuating) in regions such as 
near the poles where little or no data were available 
(figs. 2 and 3). Much more stable representations 
were obtained by using polynomials in sin A. More
over, it was found that the equatorial variation 
could be represented in more detail by these functions 
than by the polynomials in }... of the sarne degrees 
(figs. 2 and 3). '. 

10 An atlas o[ gra phs of the geographic variations o[ the Pourier coemcieuts [or 
[ oF, media n [or four seasonal months has been lH"epared and will soon appear as 
an N BS T eclmi cal Note [Jones, 1962]. This atlas illustrates the very system
atic a ld well-defined varia tions of these cocfn cicnts . 
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One explanation of the superiority of the variable 
s~n A is the following. The fitting of polynomials in 
sm A to data located at a set of latitudes Ai is equiva
lent to fitting polynomials in a variable x to the same 
data located at the correspondingly shifted set of 
l?oints ~i= Sin ~i' T~e shifting of the data resulting 
from thIS transformatIOn has the effect of pulling the 
data symmetrically away from the eq uator toward 
t~e l?oles. ~hus the. data become more uniformly 
dlstnbuted m the mterval - l~x~l, and the 
sharpness of the variation near the equa tor is reduced. 
To illustrate this spreading effect the same data 
shown in figures 2 and 3 have been plotted against 
sin }.. in figure 4, together with the polynomial of 
degree 10 in x= sin A. 

A second explanation of the improved behavior of 
the polynomials in x= sin A can be given in terms of 
the correspondil~g orthonormal f~nctions. Choosing 
powers of the mdependent vanable as coordinate 
functions , we generate (sees. 2.3 and 2.4) one ortho
normal system FL1) (A) corresponding to the station 
latitudes At and a different system FL2) (sin A) cor
responding to the shifted set of points Xi= sin Ai. 
The resulting least squares representations take the 
forms 

(34) 
ko 

Yk~ (sin A) = ~ dk2) F f) (sin A), 
k= O 

respectively. A comparison of the different ortho
normal functions (for degrees S to 10) is shown in 
figure 5. To simplify the comparison, an additional 
normalization was made so that all of the graphs 
have a common value at the right end point. It can 
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b e seen that at high degree (8;£ k ~ 10) the poly
nomials in t-. have very large values n ear the right 
end poin t compared with their values near the 
center . Thus to r epresent the strong geograph ic 
variation near the eq uator the poly nom iftls Fi l ) (t-. ) 
of high degree have to be multiplied by large coef
ficients dil ) , which r esults in the blowing up effect 
ncar the poles (figs. 2 and 3). In con tra t, Jor the 
polynomials Fi2 ) (sin t-. ) the maximum amplitude 
of oscillation is more uniform throughout the in tel'Vfl.l, 
h ence the greater stability of Yi~ (sin t-. ) ncar the 
poles. In addition we see that n ear the center of 
the interval the distances b etween suecessive maxima 
and minima are less for the Fi2 ) (s in t-. ) than for the 
PJ/) (t-. ). Thus we can understand the b etter rep
resentation of equatorial variation by Yi~ (sin t-. ). 

To conclude this discussion we note that the 
behavior of the polynomials Fk1) (t-. ) r esembles thftt 
of the classieal Legendre polynomials [Byerly, 1893, 
pp. 184- 185]. On the other hfl.nd, the fl.mplit ude 
distribution of the Fi2 ) (sin t-. ) more nearly approx
imates the exactly uniform distribu tion of the 
classical Chebychev polynomiaL [Jones, Miller, Conn, 
and Pankhurst, 1946, pp. 194- 195]. It is well known 
that orthogonal series of Legendre polynomials tend 
Lo blow up n ear the end points [Lan czo , 1938, pp. 
144- 145], wherefl.s series of Chebycbev polynomials 
minimize the maximum error, a nd therefore nrc as 
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stable at the end points as t hey ar e at the cen ter. 
Thus by analogy on e would expect the b eh avior 
demonstra ted in figures 2 and 3. 

A similar s tud~T was also made with polynomials in 
tIl e variable sin [90 0 sin A], which is t he natural 
extension of the spreading process described above. 
In this case, the r epresentation was improved even 
IHore around the equator, bu t significan t geogr aphic 
var iation in the temperate latitudes was squ eezed 
into the poles and so lost. Therofore polynomi als in 
sin A were chosen for representing the main latitudi
nal trend . Th e determin ation of the "best degree" 
for these polynomials is discussed in chapters 4 and 5. 

3.3. Mixed Latitudinal and Longitudinal Variations 

The existence of systematic longitudinal varia
tion 11 is illustrated by the graph in figure 6 of Fourier 
(time series) coefficients ai- firs t harmonic, cosine 
par t- for f oF 2 monthly median, plo tted against 
latitude A. Also shown in the figure is the rep
resentation of the main latitudinal trend by 
means of a poly nomial of degree 10 in sin A. By 
means of special plotting symbols used to signify 
approximate station longitud es (see legend), we see 
that the coeffi cients are no t randomly dispersed 
about the m ain latitudinal trend, bu t- in certain 
regions, par ticularly around the equator- are sys
tematically arranged accordin g to longitude O. Vve 

11 'l"'hat tbe longitudinal variation, ill ustra ted in fi gure 6, is consistent for differ
ent seasons and for periods of high and low solar ac tivi ty is demonstrated by t he 
a tlas of graphs of Fourier coetlicien ts for foP, monthly median referred to at th e 
begilming of section 3.2. 
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discuss her e the choice of functions for represen ting 
these second order mixed latitudinal and longitudin al 
variations. 

The usual method of representing global variations 
of geophysical phenomena is by spherical h armonic 
analysis [Byerly, 1893, pp. 144- 218]. However, the 
classical surface spherical harmonics- satisfying La
Place's equation- are no t or thogonal wi th respect 
to the positions (Ai,Oi) of the ionospheric stations. 
Therefore for convenienee, anel with no loss of 
generali ty, we choose as our coordinate fun ctions the 
simplest set Gk(A,O) (see table 1) of which tbe surface 
spherical harmonics are linear combinations. A 
par ticular set of the functions Gk e,LI1 be speeified 
by assigning the values qo, ql , and q., which are, re
spectively, the highest powers of sin A for terms 
involving: (1) no longitudinal variation, (2) first 
order longitudinal variation , and (3) second order 
longitudinal variation. Equivalently, we could also 
specify the values ko, k" and k 2 = ]{ taken by the 
index k at the end of eaeh o[ the three groups of the 
Gk(A,O). These values are related to the q-values 
by the equations 

From table 1 we see that the first group of fun ctions 
(powers of sin A) is the same set chosen (sec. 3.2) 
for the main latitudinal trend. "Ve note that the 
zonal harmonics are linear combin ations of these 
functions , and the first and second order sectori al 
and tesseral harmonics are linear combinations of 
the first and second order terms in longit ud e (see 
table 1) used Jor the mixed latitudin'Ll an d lon gi
tudin al variation. As a consequence, a least squares 
representation in the form of a linear com binrLtion 
of the G k(\fJ) has many properties of a spherical 
harmonic analysis. For example, i t is periodic in 
longitude and constant at the poles, and the first 
and second order terms in longitude are weighted 
aceording to latitud e by the functions cos A and 
cos2 A, respectively. In fact, a series in the Gk(A.O) 
is identical- but expressed in a differen t form- to 
that which would be obtained from spherical har
monic analysis. 

TABLE 1. Geographic func tions G k (A,II ) 

Mixed latitudinal and longitudinal variation 
Mai~!~I!Wo~inal I------------------,------------~----

o 1 
1 sin A 
2 sin 2 A 

ko 

First order in longi tude 

cos X. cos 0 
cos A sin 0 

s in i\ COS A cos 8 
s in A cos A sin 0 

sinQ] A COS ArosO 
sin QI )., cos A sin 0 

Second ordc r in lon gitude 

[(- 1 
J( 

cos2 }.. cos 28 
cos2 A sin 28 

si n }.. cos2 A COS 20 
s in A cos2 A sin 20 

I sinqz }.. cos2 A COS 20 
I sinQ2 A cos2 A sin 20 

The geographic variation of a Fourier (time series) 
coeffi cient is therefore represented by a function or 
the form 
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/( J( 

Y,,(A,e) ="'8 dJ'k ('11. ,&) = "8 DkGk(A,e) (36) 
k-O k-O 

where t he Fk(A,e) are ortilonorm ftl fun cLions de
fined wi th r espect Lo th e pos iLions of tbe ionospberic 
stations (takin g as coordinate fun ctions the Gk( }.. ,e) 
i n table 1), and th e coeffi cien ts elk and Dk are ob
tained by the method of least squares (ch. 2). The 
determination of the "b es t" r epresentation wi th th ese 
fun ctions is discussed in chap ters 4 and 5. 

4. Optimum Separation of Noise From Real 
Physical Variation 

It was previously m en t ion ed that ionospheric 
data ar e affected by noise (random fluctuation ) 
produced from ft number of sources. The noise 
is due in par t to limi tations of equip men t a t various 
stations and to errors of scaling and roundin g. 
A large par t of th e noise is the resul t of statistical 
flu ctuations in the sample m edii\,l1 s, t be sf),mpl e size 
b ein g at mos t 31 a nd fr equcntly muclt lcss. These 
fluc tua Liolls ar e, to so me degree, causcd by in trinsic 
variation of th e physical phenomena, bcing measured. 

The noisc is cvidcnced by such occurrences as 
unusual roughness or unrealistic fl aLtelling of Lh e 
diurnal plo ts during cer tain hours. The presence 
of noise is also suggested by r an dom inconsistcncics 
of d ata a t groups or n eighboring stations tlS observed 
from data-comparisons on a world wid c bas is. In 
th e present chap ter , however , we give 11101'e obj ective 
evidence of th e noise by m eans of statistical ft nd 
m ath ematical data-an alyses. In cluded arc m ethods 
for quantitative estimation of the noise and for i ts 
optimum separation from r eal physical vari ation . 

vVe shall th erefore consid er ionospheric data as 
sampled values Yt from a [unctionj(x) which is t he s LI m 
of t wo components: (1 ) th e r cal physical character 
istic jl (x), a nd (2) a rand om noise compon ent 
f2 (x). Thus we consider each value Yi as a sum 

wher e 
(37) 

(38) 

The values of th e noise yi2 ) are assUIl1ed to be, 
independen tly, norm ally dis tributed with m ean 
zero and standard devia tion rY , a quantity t aken 
t o b e the measure oj the noise. 

Generally th e noise is small compared to th e m ain 
physical variation, but i ts effect must b e carefully 
studied since we wish to r epresent the physical 
ch ar acteristic with as much detail as possible. 
The noise would produce a very rough and physically 
un acceptable representation if the original dat a 
wer e fit ted exactly without t ime and space smooth
ing. Thus a certain amount of smoothing is n eces
sary, but too much smoothing would produce a 
r epresenta tion which does not r espect w ell enough 
the tru e physical variation of th e data. Our prob
lem is therefore to r epresen t ftS accurfl,tely as 
possible th e component j1 (x) , given only t he sftmpled 
values Yi of f(x) . W e tr eat firs t th e separation of 
noise from th e diurnal varilt tion. 

4.l. Separation of Noise From the Diurnal Variation 

W e employ ft type of matiJ eml1,Licfll filler 12 whicll 
rcjec ts tha t par t of the "sigwtl" (ion ospheric daLfl, ) 
produced m ainly by noise f2(X ) and accep ts the pn,rt 
rcpresen ting mostly true ph ysical variation .fl(X) . 
Our m ain tool is the F ourier analysis o r t he sampled 
valu es Yi (sec. 3.1) which decomposcs thc diurnal 
variR. tion in to eleven harmonics 

l1.nd thereby gives a discrete power spectrum Cj . It is 
shown that some of th ese harmonics r epresen t mostly 
.iI(x) , whereas the others ar e produced m ainly by j2(X), 
Th e proper separa tion of these h armonics and 
resul ting trunca tion of th e Fourier series give the 
op timum smoo thing (or filtering) as well as th e 
desired diurnltl representation . For determining 
Lhe propcr separation or harmonics 13 we m ake usc of 
ccr tain properties of th c Fourier spectrum which 
chanl.CLerize th e two componen L functions of I (x) . 
As a by-product wc fl.lso obtltin ft quanLi Lfl,tive es ti
mate or the noise rY, which can be co mpared wi th 
r esul ts from fl.n independ ent m cLhod . 

a. Spectrum for a Real Ionospheric Characteristic f j(x) 

It is well known that a. smooth , con tinuous runction 
/1 (x) 0 f period 27r can bc expanded in a F ourier 
'series- of Junctions 1, cos jx and sin .jx (j = 1, 2 , 
3, ... )- and thfl,t th e coefficien ts, given by in tegral 
fonn ulfl,s fl,n l1.10gous to (28), approll.C h zero as j 
increascs, lt L l1. r atc depending upon Lh e smoo thness 
or II (x) . IL can be shown ,I4 [or example, th at ir 
I l' )(x) is piecewise con tinuous in (- 7r,7r) then Lb c 
'eoefficien ts a pproach z;ero at lel1.sL as fast as j - l, 
w heren,s i f pU lex) is piecewise con tinuous th e ra tc is 
j -2. I n general the sizc or a in the .i -a law increases 
or decreases with tlte smoothncss 01' flex ), so that in 
a sense the smootlmess of a function 'is characterized 
by tbe value of a . 

These same laws fl.pply (approximfl,tcly ) to the 
coefficien ts aj and bj ob taincd from Fourier an alysis 
of a sfl.mple, y;I), y£l), ... , yJ~ ) , of hourly valu cs 
of jl(X). Thus th e squared ampli tude c;=a~+ b~ 
decreases fl,t least as fast fl.S j -2" . '!\Th en c~ is ploLted 
fl.gainst .j in a log .. log scale, th e curve defined by 
smoothing tb e points on th e graph will h fl, ve a slope 
less than or equal to - 2a. vVe r efer to this valu e 
as the slope oj the F ouTieT spectrum . It is safe to 
assum e tha t th e r eal diurnal varia tion of an iono
spheric ch aracteristic has fl,t least a piecewise con
tinuous first derivative. Thus th c slope of its spec
trum should be - 2 or less. 

b . Spectrum for a Random Noise Component j,(x) 

Let y;2), yJ2) , .. . , yJ;) deno te a sample of valucs of 
th e r a ndom noise cOl11ponen t j~ (x)-each value hav-

12 T his type of filter is analogo us to " " low-paRS electrical filter- i. e., a fi lter 
designed to pass only low freQnencies while eliminating all frequencies above a 
certain poin t [H oll oway, 1958]. Such a filtering process is freq uently referred to 
as "smoothing." 

13 The central idea employed is sugges ted by Lanczos [1956, pp.331- 344] . 
" See [Jackson, 1957, pp . 1- 22] . 
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(40) 
ing an independent normal distribution with mean 
zero and variance cr2- and consider a Fourier analysis 
of these values. The statistical distributions of the 
Fourier components Ca j, b j, Cj, and "/; j) are obtained 
as a result of the asymptotic solution jor the random 
walk [Chapman and Bartels, 1940, pp. 572- 582]. 
Thus it follows from a theorem of Markoff that the 
coefficients a j and bj have independent normal dis
tributions with mean zero and variance cr2/ 12 . From 
this it is shown that the phase "/; j is unijormly dis· 
tributed in - 18002"/; j21800 and that the amplitude 

Since these results are independent of the harmonic 
j, it follows that c; oscillates about a constant value 
cr2/6, the noise level, and that the Fourier spectrum 
for random noise has a slope oj zero. 

c . Spectrum for Ionospheric Data 

Cj has a Rayleigh distribution with mean cr·,/lr/24, so 
that the squared amplitude c; has tho expected value 

Since the noise is small compared to th e main 
amplitude of the diurnal variation, we would expect
from the theory outlined above- that the spectrum 
for actual data would decay rapidly for the first 
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harmonics and w'ould t hen level off aroll Ild a cons tan t 
value u2/6. Th e poin t at which the leveling off tn,kes 
place separates the harmonics represen ting mos tly 
true physical variation from. those produced mainly 
by noise. Thus we determine the op timUln cutoff I"or 
the Fourier series. It is inevi table that a few har
monics will be in a "twiligh t zone" where the ampli . 
tude of the real ph ysical variation is the same as that 
of the noise. However , i t is no t of vital importance 
where the cu toff is made in this region , excep t th at 
the series should no t b e extended too far . 

To illustra te tb e method we consider th e monthly 
medians of JOF2 from three typical stations (fig. 7 ). 
These examples illustra te the rela tion between 
smoothness of data and slope of the spectrum. For 
Victoria, with the smoo thest data, th e slope of the 
spectrum (for the lower order harmonics) appears to 
be -4; for Yellowknife it is around - 3; and for 
Dil\:son Island it is approxinmtely - 2, in beautiful 
agreem ent wi th t he theory. In each case the spectra 
show a tendency to levcl off around harmonic 7, 
indicating the effect of noise on th e higher harmonics 
and the position of tbe twiligh t zone for th e optimu m 
cu toff. 

The theory has also been applied to determine the 
average optimum cutoff, using th e mean spectrum for 
all stations for the given mon th (fig. 8). As was 
expected the mean spectrum is much smoo ther th an 
th e spectra for the ind ividual stations, so that the 
slope and op timum cu toff are more clearly defined. 
There is a defini te cha,nge in the char acter of the 
spectrum at harm onic 8. It is clear that harmonic 7 
is above the noise level and so should be retained, 
bu t harmonic 8- b eing in th e twiligh t zon could 
either be retained or n ot. We have terminated tllO 
series af ter tbe 8th harmonic. Th e effcct of this 
smoot hing process is illustrated for the three stations 
in figure 7 by the solid lines represen ting the diurnal 
variation. It has been found that for oth er mon ths 
and other characteristics t he m ean spectrum is 
generally as smooth as the one shown in fLgure 8, 
but the twiligh t zone is sometimes more extended . 

A number of other studies have been made to 
determine the average optimum cu toff , in addi t ion 
to the work on Fourier spectra. From the tbeory 
of analysis of random noise, the phase ofj for noise 
harmonics is uniformly distributed ; thus all values 
of the phase are equ ally likely to occur. By com
paring tbe phase angles from all sta tions for a given 
harmonic (by m eans of polar plots of amplitude 
and phase), we have found systematic varia tions 
with geographic position for the lower harmonics 
and apparently random (uniform) distributions 
for higher harmonics, in good agreement with 
the previolLs resul ts . Similar inves tigations have 
been made to determin e the distributions of the 
other componen ts, a}, b}, and Cj. Although reason
ably good agreem ent with th e previous s tudies was 
found , the results for these cases were no t so well 
defined. Tbis was to be expected, however , since 
th e parameters defining the normal ftnd Rayleigh 
distribu tions or th ese com poJ1Cn ts are subj ect to 
geographic variation. 
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d . Estimation of the Noise (]" 

The theory also provides a m eans for com pu ting 
the noise u. T aking the mean squ ared ampli tude 
Jor the noise harmonics 

1 11 

-3 L:: c; 
j= 9 

as an estimate of E(cJ) , we use (40) to ob tftin u. 
Values of the noise are given in table 2 for the three 
sets of da ta illustrated in figure 7. In a similar 
manner we compute the average noise infoF2 medians 
for D ecember 1957 

[
1 11 _] 1/ 2 

(j= {6 "3 ~ c; = 0.25 M c/s, (41) 

wh ere "0 deno tes the mean squared amplitude of 
the jth harmonic from 113 stations. Calcula tions 



of the average noise in f oF2 medians made over a 
period of several years have been found to be closely 
correlated with solar activity. The details of these 
studies, however, will be given in a subsequent 
paper. 

T ABLE 2. Noise in [oF, medians for December 1957 

Station 

Victoria, B.C _______________ _ 
Ye llowknife .. _______ ________ _ 
Dikson IslnncL __ ___________ _ 

N oise q 

Mels 
0.18 
. 28 
.58 

The same estimates of noise have been made by 
an entirely independent method. Making use of 
the distributions of daily measurements, we have 
computed the standard deviations or the sample 
medians. The good agreement of these independent 
resul ts gives added strength not only to the esti
mates of noise, but also to the determination of the 
optimum smoothing. 

Each of the Fourier coefficients is equally affected 
by noise , but we have shown that for the lower 
harmonics (j ~ 8) the physical variation is the 
dominant part, whereas for higher harmonics mostly 
noise is present. By truncating the Fourier series 
we have eliminated about 30 percent of the noise
the part contained in the truncated terms- at no 
loss oJ real physicHl variation. A large part of the 
remaining 70 percent of the noise is filtered in a 
similar manner by analysis of the geographic varia
tion of the Fourier coefficients. This problem is 
treated in the following section. 

4.2. Separation of Noise From Geographic 
Variation 

The noise is separated from the real geographic 
variation of Fourier coefficients by a filtering process15 

s imilar to that used in the preceding section. Havino· 

e_-panded the geograph ic variation in a series (3 6) of 
orthonormal functions F k( X,(} ) as in section 3.3 we 
obtain tIle smoothing (or filtering) by truncatino: the 
series. In this case, however, we do not hav~ th e 
elegant theory associated with Fourier analysis for 
determining the optimum cutoff . 

The method employed is based on the residuals 
between t he original Fourier coefficients being fitted 
and the corresponding values of the representation 
function YK(f\ ,(} ) given by (36). Since orthonormal 
functions were used in the development of YK (>\ (}) 
we can inspect th e residuals remaining after e~ch 
term dkF k(X,(} ) is added to the series. The residuals 
approach zero as the number K + 1 o[ terms in the 
series is increased, and th ey would actually attain 
this limit (except for rounding error) when K+ 1 is 
equal to the number of stations. However we 
kn~:rw that the Fou~·ier coefficients are affected by 
n01se; hence zero reslduals are not desired. 

The criterion adopted for determining the optimum 
cutoff is to minimize the s tandard deviation of the 

l~ See the di scuss ion on "smoothing of observational data by the method of 
least squares" [U.S. D ept. of Co mmerce, N B S, AMS 9, 1952, PP. 16- 18J. 

residuals. IV e take as an unbiased estimate of the 
variance of the residuals 

N - k- l 
(4 2) 

where E k is the sum of sq uares of residuals (2 0), N 
is the number of stations, and (N- k- l ) is the 
number of degrees of freedom remaining after sub
traction of one degree for eacll term in tllC series 
Y k (>-- ,(}) [Kendall, 1951 , pp . 59- 61 ). From (42) it is 
possible for the estimate of the variance ei (or of the 
s tandard deviation ek) of the residuals to increase as 
k increases, since the diminishing of E k may become 
very slow after a certain degree. For simplicity we 
shall refer to ek as the standard deviation of the 
residuals. In the analyses under present considera
tion , the values ek 11sua.lly decrease quite rapidly aL 
first, then taper off and cease to diminish appreciably 
after a eertfl,in point. This point defines the desired 
optimum cutoff. 

In order to determine this cutoff objectively we 
make use of a sta tistical test for the significn,nce of 
efl,ch coefficient elk (in (36)) ba.sed on the "Student's" 
t distribution [Fisher, 1922). Under the usual 
assumption that the observed values Yi have inele·· 
pendent norm al dis tributions abou t a mean regression 
surface with common variance (]"2, it follow s that 
the quantity 

wh ere Ok is the expected value of elk, has a "Student's" 
t distribution with (N- k - l) degrees of freedom. 
Therefore we test LIl e null hypothesis Ho (i.e., Ok= O) 
using a 5 percent rejection criterion 

Irbl >t ek 0 .05 . 

In most of our applications the value of (N-k - l) 
has been hl,l·ge enough so that to.05 is approximately 2. 

Although t he test described above is probably the 
best possible for the present problem , we note here 
the following limitation. It was assullled that the 
distributions of all the observed values Yi have a 
common variance (]"2. It is known, however, that (]"2 

varies significantly with geographic location , so that 
the theory applies only approximately to our problem. 
As a result the representations are somewhat over
smoothed in certain regions and undersmoothed in 
others. Since we prefer a sligh tly undersmoothed 
representation (in oreler to represent the physical 
details as well as possible) we have chosen a 5 percent 
rej ection as opposed to a 1 percent. 

As an illustmtion we consider the determination 
of the optimum cutoff of the main latitudinal term s 
(table 1) for representing the Fourier coefficient 
shown in figure 6. The last term found to be signifi
cant was clIO and we have therefore terminated the 
series at this point. A graph of ek through degree 15 
is shown in figure 9 and some of the values ek and d" 
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lue given in table 3. In a similar manner we deLer·· 
mine th e optimum cutoffs for the first and second 
order term s in longitude (table 1). In figure ] 0 i 
shown the graph of Ck corresponding Lo Lhe se t of 
coordinate functions Gk(X, e) specifi ed by qo= lO, 
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ql = 12, and q~= 6 (sec. 3.3). From our test we find 
tbc optimum cutoffs specified by (j1= 7 and qo= 5. 

In addition to statisLicfll tests we have also been 
guided by certain physical properties known Lo exist 
in the ionosphere and by some knowledge of Lhe 
morphology of our mathematicall'unction s. For ex
ample, for [l, polynomial of degree Ie in sin X Lhr dis
Lance beLween two adjacent muxima will have Lo be 
ttt least (3 60 /k ) degrees. Th erefor0 , in ordrr to 
l'epresent the sharp dip in critical frequencies known 
to exist near the magnetic equator (figs. 2 and 3), 
we know a priori that very high degree polynomials 
are needed . 

T ABLE 3. L east Sq1W1 es fitting of spherical harmonic func tions 
Gk (>-., 0) to Fourier (time series) coefficients al for foF 2 m onthly 
m edians 
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S1l\NDARD DEVIATIO' ORTHONORMAL COEFFICIE NTS FOR 

OF RESIDUALS COE FFICIENT S FUNCTIONS Gk i'.8) 

k 'k dk Dk 
0 O.11912555E 01 0.28253230E 02 0.728,.9.,E 00 
1 0 .14818".1 2E 01 O.10660o\S3E 02 O.Z6530059E 01 

z 2 0.1429652-'1.E 01 -O.4510322 7E 01 O.21789511E 02 
3 a .1 2992993E 01 - 0.636891 14 E 01 -o.18330225E 0 2 0 

i= 4 O. 94 112991E 00 -0.93996341 E 01 -0.10238298E 0 3 

:'! • a .16460836E 00 - 0 . 51535541E 01 O.75444271E 0 2 
C<: • 0 . 73723422E 00 -0. 222316~1E 01 0.243"'3033E 03 

" 7 0 .13989519£ 00 - 0.36166392E-00 -0.9a8280~8£ 0 2 > 8 0 .74338301£ 00 -0. 910 18918£-01 -0.26629260E 0 3 

• 0 .74437083£ 00 0 . 63343991 £ 00 0.39049190 E 0 2 
10 O.1116098t1E 00 0.23219645E 01 0.10210473E 03 

11 0. 11333002[ 00 0.50814919E 00 0.80027716E 00 
12 o .11428508 E 00 -0.6103 2332E 00 -0.68859721£ 00 
13 0 .11188 294E 00 0.89986758E-02 0.34158501 E-OO 

C<: 1_ o .11130649E 00 0 .71229120£ 00 -0.15318519[-00 
w 15 0 . 72056954£ 00 0 . 24375891E-00 -0.11218609 E 02 
0 ,. 0 . 57861921E 00 0 . 42689060£ 01 -0.42419381E 01 a: 
0 17 0. 58156129£ 00 0 . 99371523£-0 1 -0.42151712E 01 
.... 1 8 0 .58294996E 00 - 0 .43228252 E-OO 0.98514758E-Ol 

'" 1. 0 .510961 88E 00 - 0 .1 2150213£ 01 0.30209412E 02 a: 20 0 .51315111 £ 00 0 .31 006010E-OO 0.21029311E 02 Ii: 2 1 0 .56632543£ 00 0 .1 0180058£ 01 0.53866997£ 01 
22 0 .56914243E 00 -0.1812"'516E-00 0.29883151£-00 
23 0 .56555211E 00 -0.82855~05E 00 -0.22921705[ 0 2 
24 O. 54~2164 5£ 00 - 0 .154 84624£ 01 -0 .16010904E 0 2 

a: w 
w 0 2. 0 .5464 009 1£ 00 0 . 30164920E-00 -0.8787 5202E 00 
0:::> 2. 0 .51088715[ 00 0 .18182187[ 01 0.53212.19E 00 i5 ':: 27 0 .4813lt145£-00 0.1502 7802E 01 0.90155041E 00 
0'" 28 0 .48894281E-OO - 0 . 32661115E-00 -0.15395824E 00 
1) 5 2. 0.46814}04£-00 0 . 13582557£ 01 0.18835551£ 01 u ...J 

30 0 .46133326[-00 0.88582236E 0 0 0.19063634tE 01 lX z 

5. Stability of the Geographic 
Represen ta hon 

To obtain a "best" representation of the geographic 
variation, one must consider more than the optimum 
separation of noise (filtering)-i.r. , more than just 
the residuals at the sttttions where data are given. 
The h eavy grouping of stations in some regions such 
as Europe (fig . 1) and the absence of stlttions in other 
regions, particularly in the oceans and near the poles, 
tends to produce a sort of "mathematical instability" 
in th e representation function- that is , unrealisLic 
behavior in tbe areas where no data are available. 
This beh avior is somewhat analogous to th e large 
f-J.uctuations which arise in Lagrange (polynomial) 
interpolation of clustered values with small variation 
[Lanczos, 1956, pp. 346- 358] . 

As we pointed out in chapter 2, the usual approach 
in the global analysis of geophysical data has b een to 
first draw contour maps by band (using tbe actual 
data, empirical knowledge and experience) and then 
to analyze in spherical halmonics the values read 



from the maps at the intersections of a regular grid. 
Thus the (synthetic) values used in the analysis are 
uniformly spaced and the mesh of the grid can be 
made sufficiently small to prevent instabilities in the 
representation function. This method has the dis
advantage of introducing errol' (noise) both in draw
ing and in reading the maps. Moreover, the hand 
work involved is relatively slow and cumbersome. 
We have eliminated these two difficulties by first 
1tn1tlyzing the data directly as they are obtained at 
the ionospheric stations. However, as a result we 
have had to face still another problem, that of 
mathematical instability described above. 

For a region where there are no available stations, 
the representation function gives a two-dimensional 
interpolation determined by the data from all 
stations, both near the region and far away. Thus 
the best representation that could be expected is a 
smooth continuation of the variations from surround
ing stations. Strong departures from such smooth 
continu1ttions are probably artificial and physically 
meaningless. 

Examples 16 of instability can be seen in the contour 
map (fig. 11a) computed from an analysis using the 
coordinate functions Gk(A, 8) (table 1) specified by 
qn= 10, ql = 7, Q2 = 5- these were the optimum 
cutoffs (sec. 4.2) from the viewpoint of separation of 
noise. Included in the map are the residuals 
between the original Fourier coefficients and the 
corresponding values of Y3S(I\, 8). Although the 
fluctuations in this map are not large, there is a 
definite 1tppeamnce of instability in the southern 
hemisphere, particularly ne1tr the pole. By further 
trunca ting the orthonormal series Y3S (A, 8) so as to 
correspond to the set of Gk(A, 8) specified by qc= 10, 
ql = 6 and Q2= 2, very little damage is caused in terms 
of increased residuals. However, as can be verified 
from the map in figure 11b, considerable advantage 
is gained in terms of increased stability near the 
south pole. Table 3 gives the values of ek and the 
coefficients dk and Dk corresponding to these functions. 

Thus it is sometimes necessary to make the cutoff 
slightly above the optimum level (determined by 
noise) in order to preserve the stability and physical 
soundness of the representation function. The 
amount of increase required in the r esiduals depends 
upon the world wide coverage of ionospheric stations. 

6. ReorthogonalIzation and the Accumula
tion of Error 

6.1 . Accumulation of Error in the Gram-Schmidt 
Orthogonalization Process 

As was pointed out in chapter 2, the normal 
equations 

m = O, 1, .. . ,K (43) 

16 Other examples in one dimension are illustrated in the bebavior near tbe 
poles of the polynomials in A (fi gs. 2 and 3.) 

(analogous to (4)) are uncoupled by the condition of 
orthogonality (6) imposed on the A k(X) , Thus all 
terms on the left side of (43) vanish except those of 
the form am(A m,Am), so that the coefficients ak are 
given by (11) . Although (11) is algebraically exact, 
it will be shown that the coefficients thus obtained 
could be strongly affected by accumulative errors of 
rounding. We let a~ denote the theoretically exact 
solution to (43) and write for the error in ak (as 
computed from (11)) 

where 

J( 

oak=a~-ak=-L: a:nA mk 
m = O 
mr'k 

As an approximation to Oak we compute 

J( 

/::"ak= - L: am Amk. 
m= O 
mr'k 

(44) 

(45) 

(46) 

Thus if some of the numbers A mk, m~k, differ sig
nificantly from zero (i.e., have nonzero digits among 
those retained by the computer), it is likely that large 
values of /::"ak will occur. When we look closely at 
the orthogonalization process (sec. 2.2) , it is not too 
surprising to find that some of the A mk are signifi
cantly different from zero, particularly if the coordi
nate functions Gk(x) are not approximately ortho
gonal. This can be seen as follows. 

The functions A k(x) are constructed successively 
according to (8) and (9) . In fact , multiplying (8) by 
A m (X) , m< le, and summing over the Xi gives 

Then imposing the orthogonality condition (6) on the 
left member above, we have 

k- J 
L: akpApm, 
p= O 
pr'm 

(48) 

and (9) follows by neglecting the terms - akpA pm , 
(p~m) which are (theoretically) zero. From (48) 
we obtain as an estimate of the relative error in akm 

making use of (9) , (21) , (23) , and (45) . At this point 
it is convenient to consider the functions Gk(X) , 
A k(x), and F k(x) as N dimensional vectors whose 
components are the functional values at the points 
XI, X2, • • . , XN. Then a number such as (Gk,Fp) 
can be interpreted as the component of the vector 
Gk in the direction of Fp. For the present we shall 
consider a typical term on the far right side of (49) ; 
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FIGU RE 11. Maps of Fow-ier (time series) coefficient a, (Mc/s) and residuals jTom analyses made with geogTaphic f unctions 
Gk (A, 0) J OT foF 2 medians. 

D ecember 1957 113 stations. 

433 



thus we can aSSUl11.e, without loss of generali ty, tha t 
the Gk are normalized in the sense of (17) . Suppose 
now that Gle h as a large componen t in the direc tion of 
F p (say (G/c ,F p)=X) but a very small componen t in 
the direction of Fm , so t hat (Gk,Frn) is of the same 
ordcr 0 f m agnitude as (F p,F p) . Then the resulting 
error in akrn could be as large as 50 percen t . 

It is clear from t he preceding discussion how 
significant errors can be in troduced, th e most import
ant factor being the direction of each Gk r elative to 
t he preceding F p , p< k. Although such an error 
may be small , i ts effect accumulates rapidly since 
each subsequent A k(X) is construct ed in terms of all 
preceding A m(x) , m< k. Thus a small initial error 
in one A k(X) can have disastrous effects on the later 
s teps of the process. 

As an illustration we consider the geographic 
represen tation of the Fourier coefficient, used in 
section 4.2, expanded in terms of th e coordinate 
functions Gk (~ , IJ) specified by qo= 10, ql = 6, q2= 2 
(see table 1) . The least squares coefficien ts a le 
computed from (11) and th e estimates of the relative 
error (t::,a /c /ak) from (46) are given in table 4. As 
can be seen the precision of the ak for k > 7 is very 
doub t ful. It is shown in the followin g section that 
as is off by 5 percent , and other coeffi cients by 
consid erably more, thus illustrating the usefuln ess 
of error es timates. 

6.2 . Gram-Schmidt Reorthogonalization 

In section 6.1 we arrived at the followin g three 
important results : (1) large errors can be produced 
by th e process of Gram-Schmidt or thogonalization , 
(2) eq (46) gives an effective method for estima ting 
such errors, and (3) once s tar ted , an error has a 
strong a.ccumula tive effect, bu t its m ain source 
ini tially is closely related to the "directions" of the 
coordinate functions Gk(x) . If' the Gk(x) are nearly 
linearly dependent, the error would develop quickly , 
whereas if they are appro .xiln ately orthogonal, the 
source of error would be greatly reduced . Upon 
this fact we jus tify a Gram-Sc hmidt 1'eorthogonali za
tion 17 process, followin g t he same lines as section 
2. 2, but taking as coordinate functions the A k(X) 
inst ead of the G/c (x ) . For, although the A k(X) m ay 
not be sufficien tly or thogonal for our purpose, they 
would in general b e considerably more so than the 
origin al coordin ate functions. Thus . the initial 
source of the error would be reduced . The reOl,tho
gonalization process can, of course, be repeated as 
many times as necessary to keep the error under 
control. Before giving a numerical example, we 
ou tline briefly the steps involved in the process. 

Following the proccdure of scction 2.2, we form a 
ncw sct of or thogonal functions 

11 'rile not ion of reorthogonalization was s.uggested by the ::\Tum erical An alysis 
Section (11.01) of the Nat ional B ureau of Standards. 

T A BLE 4. Elimination of accumulative rounding en'or by reorthogonali zation process 1lsed to 
fit spherical ha1'1nonic functions of latitude and longitude to Fourier (time series) coe.fficients 
al f or foF2 monthly medians 

December 1957 113 stations. 

ORTHOGONAL COEFFICIENTS DEVI ATION OF ESTIMATES OF ACCUMULATIVE 

Ok IN PERCENT ROUNDING ERROR FROM : 

FIRST SECONO FIRST SECOND 
ORTHOGONAlIZAnON ORTHOGONALIZAnON ORTHOGONAUZATION ORTHOGONALIZATION 

Ok Ok 60k 6bk 

k Ok bk -b-k-
Ok t>;-

O 2 . 6578404E 00 2.6578404E 00 O. 2.9041629E-06 O. 
1 1.5929625E 00 1.5929624E 00 -0 . 0000063 2.60051-50E-06 O. 
2 -1. 42313 48E 00 -1.42 31393E 00 0.00032 1. 9663900E-0 5 5.2353136E-08 
3 -3.8013159E 00 -3.8013174E 00 0 . 000040 - .4.8294410E-06 3 . 9199992E-08 
4 - 1 .1098262E 01 -1. 1098265E 01 0 . 000027 7.0032999E-05 O. 
5 -1.4189972E 01 -1.4190128E 01 0 . 0011 -1.1172427E-04 8.4008608E-09 
6 -1.0993559E 0 1 -1.0990924E 01 - 0 . 024 5.3348242E-03 1.0B46157E-08 
7 - 3.5136985E 00 -3.5109766E 00 -0.07B - 2.8899443E-02 -2.5464985E-07 
8 -1.7760643E 00 -1.8776263E 00 5 . 4 1.13B6564E 0 0 6 . 2b95 740E- 07 
9 2 . 3313985E 01 2.3232524E 01 -0 . 35 1.200231BE-0 2 4.1049105E-OB 

10 1.797B380E 02 1.8443359E 02 2 . 5 1.6151702E-02 O. 
11 1.0436464E-01 1.1301300E-Ol 7.7 3 . 0752875E-02 O. 
12 -1.29641C1E-01 -1.2419979E-Ol -4.4 -3.1891573E-02 7 .4985841E- 09 
1 3 3 . 1378034E-03 3 .41492 44E-03 8.1 3.2888361E-01 7. 6702861 E- 07 
14 3.5222762E-Ol 3 . 32b7845E-01 -5.9 -3. 2077405E- 02 1.1197871E-07 
15 2 .7970650E - Ol 2.44b7795E-0 1 -14 . - 3 . 0703257E-02 -2.05 54128E-07 
16 3 . 6830783E 00 3 .b748188E 00 -0.22 - 5.6580728E- 03 O. 
17 2 . 3149930E - Ol 1.7777535E-Ol -30. -1. 3896600E-0 1 3 . 9814584E-07 
18 - 7 . 6929165E- Ol -7.4671454E-Ol - 3 . 0 -5.5304769E-02 -1.49 66725E-0 7 
19 -l • • 875 3538E 00 -4. 78bl179E 00 -1. 9 - 3 .4774151 E-02 3.7360954E-0t! 
20 1.1794396E 00 1. 0 771025E 00 -9.5 -1. 6933961E- 0 1 -1. 383448 7E-0 7 
21 7 . 3562072E 00 7.2621238E 00 -1. 3 -3. 2170044E-03 -3.2830421E-08 
22 -1.5848168E 00 -1. 338 7020E 00 -18 . -9 .483 4993E-0 2 - 7 .7917363E-08 
23 -1. 2521099E 01 - 1 .21 75401E 01 -2.8 4.4063769E-03 4.8954975E-OB 
24 -2. 3682257E 01 -2. 33 b9001E 01 -1. 3 -3 . 2909461E- 02 -1. 0202309E- OB 
25 8.9367033E-02 9 .1 82105BE - 02 2 . 7 - b . 0492957E- 03 -6.0856796E-OB 
26 5 . 96 81830E-01 5 . 9769819E - 01 0015 1. 3B58429E- 03 O. 
27 1.0B 97222E 00 1.1 006036E 00 0 . 99 l01943727E-02 O. 
28 -2.75 59001E - 01 - 2 .7433266E - 01 - 0 .46 6.7750021E-03 -2.7158927 -OB 
29 2.2791040E 00 2 . 294651 6E 00 0 .68 6.1B24901E-0 3 2.5975466 -OB 
30 1. 9 115768E 00 1.90b3b35E 00 -0.27 1.0157171 E-0 4 4.b899223 -OB 
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wh ere 

k- j 
B k(x) = :6 bk1J B p (X) + Ak(x), 

1>=0 

(50) 

(51) 

Then the leas t squares solution can be written in 
the form 

where 
(y ,B k ) 

(B k, B k ) 

(52) 

(53) 

To ob tain Y K(X) in tllC simpler form (1), we compute 
first the coefficienLs a~ for expressing (52) in terms of 
the A k(X), This is done by means of (13) and (14) 
with ak, a kl" and Dk replaced by bk, bk1J , n,nd a:, 
respectively. Tl lCn Lhe desired coe fficienLs D k arc 
obtained using (13) and (14) wiLh ak replaced by a~ . 
The normalizH,tion of th e solution is m ade by m eans 
of a similar modification of section 2.3. 

For illustra tion we conLinue wi th tbe same example 
given at the end of sec Lion 6.1. The coefficien Ls bk 

and estimn, tes of the relative elTor (!J.b k/bk ) from one 
reorthogonnlizaLion ar e given in table 4. From 
these resul ts it is seen tha,t Lhe la,rgesL vitlue of th e 
relative error is of th e order of 10- 7• Thus a great 
improvement h as b een gained . Using Lhe coeffi
cients bk we h ave compuLed Lhe r eLttive deviation of 
the ak in percent, [rom which i t can b e seen Lhltt 
a 17 differs by as much as 30 percent. 1Ioreovel', 
the breakdown of Lhe first orthogonalization at k= 8 
is elearly shown. 

7. Summary of AnalysisTand'Numerical 
Maps ' 

We-summarize her e th e s teps used in the analysis 
described in the precedin g sections (see table 5) . 

Th(' a,llalysis begins with the actual observations as 
they axe tabulated at th e staLions, each in its own 
zone t im e. Th e diurnalreprese nLI1,Lion is obtained 
from Fourier analysis of tbe 24 houd,\' valu es (for 
each sta tion), the corrections to 1.,MT b ein g pro
du ced by an appropriate shift of the phase, deLer
mined by the station locations. The opti mUIll 

separation of the noise from the r eal physical Val'i ,l 
tion of the data is made by truncating the hig h 
fr equency harmonics (low-pass filtering). Thus for 
the ch aracteris tic foF2' only 8 harmonics are n eeded. 
The geographic variation of each of the 17 Fourier 
coefficien ts 

(54) 

IS represented by an ortllonormal series, analogous 
to sph er ical harmonic analysis. Since tIt e functions 
in these series must be orLhogonal r elative to the 
coordinates (Ai, OJ of the stations, th ey canno t be 
known a prinri; h ence tllCY must be constructed . 
Gra m-Schmidt ortbogon alizfttion and r eol'tJlogonuli 
ZIL lion are used for Lhis purpose, The s illoothin g 
(fil te rin g) in th e geographic dimensions is then per
JOl'Ined by t rull ccL ting Lhe orthonormal series for 
each of the 17 Fourier coefficients. 

The end produ ct of the analysis is a tabl e of numcr
ical coeffi cienLs DSk defining a fun ction r (A,O,l) 0 (' 
Lh e ['orm 

TT 

r (A,0,t) = ao(A,8)+ :6 [a/A,O) cos jt + b/ A,O) sin ,it] (55) 
j= l 

wiJ ere eac iJ r th e functions a j(A,O) and bj(A,O)- rep
resenlin g the geographic variaLions of lhe F01ll'icr 
coe fFicienls- is a series of th e form 

(56) 

(sec Lable 1) , The ind ex: s den otes which F ourier 
coefficient is represented in thc ord e)' shown in (54) . 

T ABLE 5. Summary diagram of the analysis 

Statio n observations 

Fourier 
analysis 1 Mostly 1 

rea l ao 1<-1 1 phYSical a, b, Corrections to LJ\t['I' 
variati on 

. . 
a, b, 

1<-1 Optimum separation .1 ---
of noise ag bg 

Mos tl y 
noise 

a" b" --------.1 Estimation of noise q \ 

a'2 

Di urnall'epl'csentation 
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Station locations 

Orthonormal constructi on 

n k- Choi ce of coordi na te functio ns 
/ 1 k- Fil'st ol'thogonaiiza tion 
Pk-Sccond orthogonaiization 
Fk-~ormalization 

G cograp"ni c analysis of Fou rier ( time series) 
coefficie nts 

1:.d F (Ort.ho normal scri.cs tnln c~LC'd rol') 
Ie k opttlTIum separatIon of nOise 

2:b . R.=:l;a:A. (Tntermediate results) 
y' J) G ( Repr('se ntation in tr rms of Origi-) 
.... Ie Ie nal coordinate functions 

Geograp hic representation 
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T ABLE 6. CoeJJicients D ,k defining the Junction r (A, IJ, t) Jar monthly median foF, (lVIc/s), December 1957 
I - main latitudinal variation . Mixed lati tudinal variation: II- first order in longi tude, Ill-second order in longitude. Notation: For each en try the IlUmber given by the first eight digits a nd sign is mul· 

ti plied by the power of 10 defined by the last two digits and sign. 

Harmonic 

~ 
0 
I 
2 
3 
4 

I 5 
6 

z 7 
Q e 
I- 9 
~ 

ii: 
10 

;; 11 
12 

...J 
~ 
U 

:r 
11. 
~ 
a:: 
<.? 
0 
W 

11 
14 
15 
16 

II 
17 
18 
19 
20 

C) ~I 

22 I 23 24 

25 
26 

III 
21 
28 
29 
30 

0 

0 

1.0914267E 01 
-7.8953766E-OI 

2.9886163E 00 
1.5785872E 01 

-7.3 081383£ 01 
-4.6525828£ 01 

1.9878676£ 02 
•• 9107151E 01 

-2.1057517E oz. 
-1 .7550868E 01 
1.664009 1£ 01 

-5.2 96 4947E-OI 
2.6902534£-01 
2.13'09603£-02 
3.1711371E 00 
1.6633779£ O~ 

-5.3166566£ 00 
-1.91916J3E-Ol 
-2. ?335084E 00 

2.!297312E-OI 
4.1316244E 00 

z 
Q 
I
~ 
ii: 
;; 
..J 
~ 
U 
:z: 
11. 
~ 
a:: 
<.? o 
W 
<.? 

Harmonic 

~ 
0 
I 
2 
3 
4 

I 5 
6 
7 
8 
9 

10 

II 
12 

II 13 
14 
15 
16 

I 

I 2 

7.7372089[-01 7.283~9"'2E-Ol 

•• 8827410E-Ol 2.6530059E 00 
1.6714562E 01 2.1789511E 01 
1.7292880E 00 -1.8 330226E 01 

-1.0531759E 02 -1.0238298£ 02 
-4.1977129£ 00 7.5444276E 01 

2.5449798E 02 2.4343033E 02 
8.4645829( 00 -9 .8 828049E 01 

-2.6631189E 02 -2.6629260E 02 
- 6.6170028E 00 3.9049190£ 01 

1.0001173E 02 1 . 0210474£ 02 

2.4364168E-03 8 . 0027715E-OI 
9.4159300£-02 - 6.885972IE-OI 

-3.95 384811' 00 3.4158507E-Ol 
1.7516087 E 00 -1. 53 18519E - OI 

-3.5908690£ 00 -1.1218609£ 01 
-5.611 5813£ 00 -4.2419382£ 00 

1.6253567E 01 - 4.2751713£ 00 
-6. 0404139£ 00 9.8574158£-02 

8. 3 1331 65E 00 3.0209412E 01 
2 . 0 85 81 87E 01 2 .102 9316£ 01 

-1.346 0 412E 0 1 5 . 3866998£ 00 
3.7958689E 00 2 .988 3151£-01 

-6.2871868 £ 00 - 2.2921706£ 01 
- 1 .6428649 E 01 - 1 .6010904£ 01 

4.6818604£-01 -8.181 5202£-01 
-1.4529204£-01 5.3212419£-01 
-9.6026849E-02 9.0 155041 £-01 
-2.7047523£-01 -7.5395824£-01 
-1.439094 IE 00 1.8835552£ 00 

1.3630296£ 00 1.9063635£ 00 

5 

9 10 

1.5531158£-01 2.3192567E-OI 
3.7190015£ -0 1 -4.9630663£-01 
1.0122732£-01 -6.4481278 £-0 1 

-2.7126487E-OI 1 .98422 6 2£ 00 
-2.0014091E 00 -9.5 196921£-01 

3.0534070£-01 -3.152013IE 01 
6.2490299E 00 1.6007400E-OI 

- Z.5598377 E 00 4.3334295E 01 
- 8.5661732E 00 4.1626390£ 00 

2.1110776E 00 -1.9401572E 01 
4.0164945 E 00 -3.6110235£ 00 

5.2536049E-03 4.5441154E-03 
-5.37755 38£-02 -3.1418646£-02 

7.1804160£-02 5.2 992250£-0 2 
6.163594 2E -02 -3.0900826E-0 2 

-1.1925527£-0 2 -5.1157125£-0 2 
1.0552388£-01 4.9768381£-02 

TIME VAR IATION 

2 3 4 

3 4 5 6 7 8 

-9.2623643E-Ol 8.7422963E-Ol -1.7848102E-Ol -3.7885388E-Ol 2.9685747E - OI -2.5333249E-OI 
-1.524726 3E 00 8.0915360E-Ol -9.4284316E-OI -1. 7684497E 00 -4. 3241333E-0 1 -5.7663186E-Ol 

6.5370734E-Ol -3.354687 2E 00 -2.3955230E-OI -1.4676821E 00 -1.425 0 625E 00 -4.163 0 597E-Ol 
3 .4795284E 00 -4.3119316E ~o 6.4229818E 00 1.0586009E 01 9.2466606E 00 2 .8930649E-02 
2.1601855E 00 8.6228765E CO -6.8914741E-OI 1.0163215E 01 1 . 0430091 £ 01 6.1317524E 00 
2.0150497E 00 1.6324815E 01 -3.4641695£ 01 -2.66784)2E 01 -3.7404618E 01 -5.6494755£-01 

-4.33522 16E 00 -5.4578 /,3 8E 00 -7.5223076£ 00 -2.2052303E 01 -3. 9342693E 01 - 2 .0193537E 01 
- 2 .62 54 765E 00 -1.77522 90E 01 6.0494795E 01 3.1563795£ 01 5.0754311E 01 4.2224289£ 00 

1.1159760E 01 -1.891 2893E-Ol 2.3693942E 01 2 . 5115734E 01 5.3091 6 02E 01 2 .7815168E 01 
-1.4319514£ 00 5.0474002E 00 -3.1529647£ ·01 -1.3718612E 01 - 2 .2160749E 01 - 3 .1592644E 00 
-8.8129838E 00 -5.931183IE-Ol -1.5101959E 01 -1. 1473124E 01 -2.30544IIE 01 -1.3278131£ 01 

6.0121534E - OI -1.2101191E-OI -1.04038 2 IE-OI 1.6251809£-01 -1. 0643796E-OI 6.2557100£-02 
1.3459486E-OI 1.7502589E-OI -5.0371081E-02 3.125752IE-OI - 1.8402439£-02 6.3306112£-02 
3 .0601999E 00 -1.2871614E-Ol -4.8?54588E-02 9.1777242E-01 - .... 1842801£-01 -1.8609319E-02 
1.2964863E 00 7.3990802E-OI -8.4662998E-OI 2.2158654E -O I -2.2977208E-02 -1.025809IE-OI 

-5 . 7828038E 00 -5.0241930E-OI 1.0223299E- OI -1.4589699E 00 1.1074558E 00 -5.0288115E-OI 
-1.8961277£ 00 7.7927373E-02 2.7583131E 00 -1.7414663E 0 0 1.5675662E-OI -8.2908363£-01 
-1.0306968E 01 4.1552535£-01 1.0501295£-01 -4.5479041£ 00 8.5013202£-01 -2.4932280E-OI 
-6.3966695£ 00 -1.4409493E 00 3.3823205£ 00 -1.9706686£ 00 1.9711550E-02 -6.9614328E-03 

1.2916815E 01 2.0Qb419QE 00 -1.415Q3Q7E 00 1.b666640E 00 -1.5010523£ 00 8.8937262E-Ol 
1.8395100£ 01 -4.3110338£ 00 -1.2203444£ 01 2.3400389E 00 -1.0840088E 00 1.2606628E 00 
1.17011 01£ 00 -8.9934726£-02 -1.3007687E 00 4.4833956E 00 
6.3109791E 00 9.0028155£-01 -3.2101 806E 00 1.9325332E 00 

-8.3322061£ 00 -2.3156345£-01 1.1989445£ 00 6.0219800E-OI 
-1.1403061£ 01 4.9586104E 00 1.1153906£ 01 - 6.5103689E-OI 

-1.8921348£-02 2.8565115£-01 8.5442873£-02 -3.1833852E-02 
1.5694889E-OI -1.0888240£-01 1.1114614E-03 1.44135 5 1£ -0 2 
2.4230455E-OI -5.1621379£-02 
4.0790479£-01 8.3811255E-02 

._. - --_ .-

6 7 8 

II 12 13 14 15 16 

-6.4560618E-02 6.1802934E - 02 7.2905440£-02 -6.1891 910E-02 1. 4823441 £-02 -1.3109944£-03 
3.7675107E-OI 3.1683339E-01 -1.4461850£- 01 2.432315IE-OI I. 0825114E -01 -1 .0503997£-01 
1.4638798E 00 -5.7818543E-OI 3.7733911E-OI - 3.0163109£-01 5.3819264£-01 -9.2140743E-03 

-1.8491821£ 00 1.1859941E-Ol 1.4013915E 00 ~2.1925556E 00 7.0639~61E-Ol -3.1251254E-01 
-1.0122159£ 01 6.0368895£ 00 3.5854293E 00 4.5612136E 00 1.4057245E 00 -1.6983739E 00 

3.9806334£ 00 -2.1641163E 00 7.4862415£ 00 7.7719395E 00 2.5793256£ 00 1.9127105£ 00 
2.9222164E 01 -1. 9459016E 01 -8.4682503E 00 - 1.1667597 E 01 3.4862643£ 00 7.511133 .. £ 90 

-3.4t-801114E 00 3.3851913£ 00 -1.0514823£ 01 -1.0894292£ 01 3.9185429£ 00 -2.6382915£ 00 
-3.4945636£ 01 2.3111368E 01 7.8519029£ 00 1.1465121E 01 5.0508122£ 00 -1.0165159£ 01 
9.0533099£-01 -1.0657850£ 00 4.6361167£ 00 5.1017995£ 00 1.9346316£ 00 1.1517841E 00 
1.4435610£ 01 - 901508738E 00 -2.4935791£ 00 -4.0193859E 00 2.4991334E 00 4.3116649E 00 

2.1549960£-02 4.8208015£-02 9.6875999£-04 -8.5190815E-03 5 .1576599£-03 -8.1442986£-04 
6.6945602£-02 2.2478048£-02 -2.8802517£-02 1.0904388£-02 2 .639 3688£-02 1.2151885E-02 
2.2264430E-02 2.1159531E-02 1.1879111E-0 3 3.3803418£-0 3 4.6019688£-03 - 2 .2194990£-02 

-8.3197396E-02 5 . 4742761E-02 3.2164980£-02 -1.8425275£-03 4.8023952£-02 1.0659245£-03 
-5.0750350£-02 -7.1205906E-02 
-1.1115917£-01 -6.3109289£-02 



The function r (i\ ,O,t) thel'efore represents the con
tin UOLIS time variations of an ionospheric charac
teris tic on a worldwide basis and can be used to com
pute its valu e at any desired location and instant of 
time. Such a function is rcfelTccl to as a numel'ical 
map. The coeffi cients defining the numOl·ical map of 
JOF2 median for D ecember 1957 are given in table 6. 

Many useful applica tions are made from num erical 
maps. For example, a varicty of worldwid e contolU" 
maps and other gTaphical r cprcscn ta tions of iono
sphcric characteris tics can be computed and plotted 
automatically by machine. As an illustration, 
figures 12 and 13 show the variation of JOF2 median 
for fixed instants of uni versal time (UT ) and LMT, 
respectively. In addition, a great deal can be and 
has been learn ed about the regulariti es of the iono
s phere from numerical reprcscntations. The most 
important immediate application , however, is the 
prediction of long-term changes in ionospheric con
ditions . Such pl'cdictions ha ve already been pro
duced using the Illethods dcscl'ibed hc1'c. A furthcr 
discussion of t lIese result s and 0 t hcl' appl ications of 
nUlllerical mappin g will bc given in later papers. 

TIl e a uthors give special acknowledgmen t to the 
valu able assistance of }./lrS. G. Anne H essing and 
Miss Martha Hinds in the development and large
scale application of computet programs and to 
NIrs. J. K aye Myers [01' her contributions- particu
larly in the preparation of ionospheric data on 
ptillched cards- cssential for Lhe success of th e proj
ect. The auLhors also acknowledge the helpful 
assistance given to them by th e operator s in the 
Computing Laboratories of Lb e National BUl'eau of 
Stand ards (in Boulder, Colo., and in ' Vas /lin g ton , 
D. C.), Mr. Walter 13 . Chadwick (Preelieti n Services) 
and the Ionosphere World Data Cen tc]" for supplyin g 
the raw ionospheric data employed, and th e m any 
other persons at the Centml R ael io Propagation 
Laboratory- Loo numerous Lo ll1en ti on- wh llave 
rendered use ful contributions to this " "or k. Finally , 
the authors express their sincere appreciation to Dr. 
Ralph J. Slut z who, as Chicf of til e Radio Propaga
tion Pllysics Division and later as consult ant f )" the 
Uppcr ALmosphcrc and Spacc Physies Di \'joion, gaw 
strong suppor t and ll1wcasing ('1l("o1l1'agCJllent durin g," 
the en Lirc comse of thc work. 
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