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A solution is given to the problem of representing the complex properties of ionospheric
characteristics on a worldwide scale, including their diurnal variation, by numerical analysis
of ionospheric data as they are obtained from a network of sounding stations, without prior
hand operations. The problem is complicated by two basic difficulties: (1) the data are
affected by noise (random fluctuation) and (2) the stations are irregularly positioned in the
two space dimensions. The second difficulty is overcome by a general method for construct-
ing functions orthogonal relative to the distribution of the stations. Special filtering proc-
esses are employed for the optimum separation of noise from real physical variations. The
end product of the analysis is a table of numerical coefficients defining a function ' (X, 0, ¢)
of three variables, latitude (\), longitude () and time (£), which can be used to compute the
ionospheric characteristic at any desired location or instant of time. The method applies
to any ionospheric characteristic; however, as a means of illustration we use in the present
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paper only the characteristic, monthly median of the F2-layer critical frequency (fof').

1. Introduction

[t is well known that the ionosphere experi-
ences diurnal and geographic variations, as well as
long term variations connected with seasons and the
11 year solar cycle.  Although many of these varia-
tions are systematic and predictable with a consid-
erable degree of accuracy, for the F-layer theoretical
models do not yet give good representation of many
of the details. Therefore, worldwide representations
of I-layer characteristics are best made using meas-
urements obtained from a network of sounding
stations.

lonospheric maps have been made and still are
being produced by persons having considerable
knowledge of ionospheric data and experience in
drawing maps. Many graphic techniques are em-
ployed for smoothing raw data and for eliminating
mconsistencies. However, such procedures are rela-
tively slow and tedious and, to some extent, are not
repeatable. The accuracy, as well as repeatability,
are dependent upon the skill, knowledge, and expe
rience of the people carrying out the subjective steps
of the process. Moreover, as a means ol simplifying
hand operations, unrealistic assumptions have been
made, such as the “longitude zone system,” in which
no longitudinal variation is taken into account or
represented within the defined longitude zones.

Several years ago, the authors attacked the prob-
lem of representing the complex properties of iono-
spheric characteristics on a worldwide scale, including
their diurnal variation, by numerical analysis of iono-
spheric data as they are measured at the stations,
without prior hand operations.! The problem is
i A sequel paper on “Methods for applying numerical maps of ionospheric
characteristics’ will appear in an early issue of this journal,

1 The need for mapping methods based on numerical methods and the use of
high-speed computers has been felt for several years [CCIR, 1959].

complicated by two basic difficulties: (1) the data
are affected by noise—random fluctuations produced
from a number of sources (ch. 4)—and (2) the 1ono-
spheric stations (fig. 1) are irregularly positioned on
the earth. The noise would produce a very rough
and physically unacceptable map if the original data
were represented exactly without time and space
smoothing. Thus a certain amount of smoothing is
necessary, but too much smoothing would give a map
which does not respect the true physical variation as
well as possible.  The irreqular distribution of stations
presents problems both in data-fitting (ch. 2) and in
preserving the stability and physical soundness of
the representation in areas where few if any stations
are available (ch. 5). Also the fact that the set of
available stations varies from month to month com-
plicates the data-fitting processes and the comparison
of numerical representations for different months.
In the past, people experienced in drawing maps have
overcome these difficulties more or less intuitively
using empirical knowledge of the ionosphere and good
sense. [t is not easy to give these qualities to a com-
puting machine.

The solution? to the problem consists of well-
defined mathematical operations—deseribed and
lustrated in the present paper—which have been
programed for use on several large-scale digital com-
puters.’ Input to the computer program consists
of the measurements of an ionospheric characteristic
from all available stations for a given month. The
diurnal variation is represented by Fourier analysis of
the 24 hourly measurements from each available

2 For a brief summary the reader can refer to [Jones and Gallet, 1960].
3 The computer program has been developed completely fer both the IBM 704
and 7090 computers and in part for the CDC 1604.
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Ficure 1. Map of ionospheric stations for December 1957.
station (sec. 3.1). Then the worldwide geographic | its variations are the most difficult to represent. In

variation of each Fourier coefficient is expanded in a
series of functions analogous to surface spherical
harmonics (sec. 3.3). The optimum separation of
noise is obtained by truncation of orthonormal series
(ch. 4). At the end of the analysis the diurnal and
geographic variations of the characteristic are repre-
sented by a relatively small table of coefficients
defining a function of three variables: latitude, longi-
tude, and time of day. Such a function is referred
to as a “‘numerical map” (ch. 7).

The methods used here are general enough to be
applied to any ionospheric characteristic. In fact,
they have already been successfully used to represent
such characteristics as: the critical frequency (f,F%),
the 3,000 km maximum usable frequency factor
(F2-M3000), the maximum electron density (N-
max), the height of N-max, and the quarter thickness
of a layer. With only slicht modification the
methods can also include variations with height
above the surface of the earth. For the sake of
illustration, we restrict ourselves here to the charac-
teristic f,/>: monthly median, since this characteristic
is the most important one for radio propagation, and

chs. 2 and 6, we outline briefly the mathematical
methods employed in this analysis.

2. General Data Fitting Method

As was mentioned in the introduction, the geo-
graphic variation of each Fourier coeflicient (obtained
from the diurnal analysis) is represented by series of
functions analogous to surface spherical harmonies.
The approach generally used in global analyses of
geophysical data has been to first draw contour maps
by hand and then to analyze in spherical harmonics
the values read from the maps at the intersections of a
regular grid. However, such methods incorporate
many of the undesirable features of the handopera-
tions used currently to produce ionospheric maps
(ch. 1).

We have attacked this problem from the opposite
direction by first analyzing the data directly as they
are obtained from the stations. Then contour
maps are computed from the analyses when desired.*

¢ Examples of such contour maps are shown in figures 11a, 11b, 12, and 13.
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The method used is mathematically well defined,
entirely repeatable, well adapted to automatic com-
puting and, in a sense, more objective than the
hand methods previously mentioned. As a result of
this new approach, we have had to face some addi-
tional complications (ch. 5). In the expansion of
the geographic wvariation it is natural to wuse
orthogonal ° functions, since an optimum cutoff of
the series has to be made (ch. 4). The classical
spherical harmonic functions [Byerly, 1893, pp.
144-218] could not be used, however, since they are
not orthogonal relative to the positions of stations.
Thus we have had to construct functions—analogous
to sphericalharmonics (sec. 3.3)—which are orthogonal
with respect to the irregularly spaced coordinates of
the stations. The problem is even more complicated
by the fact that the set of available stations varies
from month to month, making it necessary to con-
struct new orthogonal functions for the analysis of
each month’s data.

For this purpose we have employed the very
general data-fitting method described briefly in this
chapter. Of course, the method also applies to the
Fourier analysis of the equally spaced measurements
of the diurnal variation. In the following discussion,
the points z; (where the measurements are made)
can be any set

xi:(xﬂ, Li2y . I“[) 7:1, 2, o . ey N
irregularly positioned in an M dimensional space.
The coordinate functions Gy(z), which are fitted to
the data by the method of least squares, can be any
linearly independent functions of M variables (e.g.,
elementary transcendental functions, Chebychev
polynomials, or spherical harmonics).

2.1. Least Squares Method

Let v, 9, . . ., yy denote measurements of an
ionospheric characteristic taken at the points z,
Loy o v ., Suppose that a class of functions
Y.(x) is given and a criterion for evaluating how
well each of these functions fits the values ;. (We
will take Y, (z) as linear sums of coordinate functions
Gi(x).) Then the problem of data-fitting is to
determine that function Y(z) from the given class
which “best” fits the y; relative to the given criterion.
We have chosen the least squares criterion since it is
well-adapted to the analysis of data affected by
noise and it is far easier to compute than other
methods such as the minimax [Stiefel, 1959]. The
question of choosing the proper classes of [unctions
Y. (z) is discussed in chapter 3.

We assume given a set of linearly independent
coordinate functions, Gy(x), G\ (z), . . ., Gx(z), with
K<N, and it is required by the least squares
criterion to find that function

TN

K
Vi (x) :/Z DG\ (x) (1)
k=0
for which the sum of squares of residuals
5 The term “orthogonal” is used here in the sense of a discrete distribution
[Szegd, 1959, pp. 33-37).

N
EK=§ [yt—I7K(Ii)]2 2

has a minimum value with respect to all real coeffi-
cients 1,5 It is easily shown that necessary and
sufficient conditions for Kx to be minimized are

OFx_,
oD,

k=0,1,. .. K. 3)

These give the well known normal equations

K

g Dk(Gm;Gk):(y:Gm)7 m=0,1,..., K (4)
where we adopt the notation

@A,,q) =§ G, (2)G.(x)),

and

AT
(?/,G,,,) :gi\l ?/i(;m ('ri) 5 (5>

and we will later use

N

Wy =22 vi.

i=1

For solving the normal equations (and for a number
of other reasons to be discussed) we have made
extensive use of orthogonal functions.

2.2. Gram-Schmidt Orthogonalization

A set of functions Ay(z), A (x), . Ag(x) is
said to be orthogonal with respect to the points
X1, X, . <y LN, 1f

(A;,4,,)=0 when k#m. (6)
Thus we see that if the coordinate functions G, (z)
were orthogonal, the system of normal eq (4) would
be uncoupled and its solution would be simply

(,G))

Dk: (Gk;Glj’

k=0,1,... K. )

On the other hand, we can apply the Gram-
Schmidt orthogonalization process [Davis and
Rabinowitz, 1954]7 to form the system of functions

Ay (0) =Gy (x) ®)

k=1
Ab ()= ank,,Ap () +Gy (x), =il 2 o e I,
p=

6 For simplicity we have written Dk with only one subscript k. However, we
must remember that the terms in (1) are generally not independent and therefore
all of the coefficients depend on the value of K.

7 Our procedure differs from that of Davis and Rabinowitz [1954] in that we
have reversed the order of orthogonalization and normalization in order to reduce
the accumulative rounding error. (See sec. 2.3 and also ch. 6.)
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satisfying (6), where the coefficients a;, are given by

((&, Z?)
@,y ©)

Ay D=

Then the least squares solution Y, (x) can be written
in the form

K
IACRS STWNE) (10)
where
WA o1 K. QD

B4, 4,

The orthogonal series (10) is, of course, sufficient
for many purposes, but in our applications it is

useful to have Yx(z) in the simpler form (1). For
this purpose we compute the triangular matrix
ZOO lOl l02 ZO,K—Z ZO,KAI ZO‘K
llO lll ll? ZI,K——?. lI,K—l
(12)

lK—I,O ZK—I,I
)
where the elements /,; are obtained by
lo=ay, 0=sk=sK
lplc:lp—l,k+lp—I,K—(ﬂ*l)a/K*(p‘U'k 1§])§K (13)

VSh=IK=p

starting with the top row and going from lelt to
right. Then we have for the desired coefficients
Dk:ll\’—k,k- (14)
A number of advantages are gained from the use of
orthogonal functions. As was previously shown the
Ap(x) uncouple the system of normal equations so
that terms in the series (10) are independent. As a
consequence we obtain automatically the least
squares solution Yy (x) for all degrees from zero
through K, and therefore can test the physical
significance of each term to determine where the
series should be truncated (ch. 4). Moreover, the
computation of Hx is greatly facilitated since by
substituting (10) into (2) and applying (6) and (11),
we obtain

K
Bx= ()~ 2 at (A 4. (15)

Hence £} is computed recursively for each degree by
E(): (?/;?/) —0’% (A01A0) (1 6)
Ek:E;c_l_a;%(Ak’Ak) lékéK

for

It should also be mentioned that in the construction
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of the orthogonal functions 4,(z) we use only the set
of points z; and the functions Gy(x). Consequently
when several different sets of values y; are measured
at the same set of points z; and are to be fitted by
sums of the same functions Gy (x), only one orthogonal
system is required to uncouple all of the resulting
wtems of normal equations. Thus in the repre-
sentation of geographic variations of Fourier coeffi-
cients, the same set of orthogonal functions can be
used for all Fourier coefficients for a given month.
This is an important factor in the economization of
computer time, since—as will be shown in chapter
4—there are 17 Fourier coefficients to be represented
in the analysis of f,F,.

2.3. Normalization

A set of functions Fi(z), Fao(z), . . ., Fr(x) is said
to be orthonormal with respect to the points
Ty, . . ., xy 1f, in addition to the orthogonality
conditions (6), they also satisfy |

(Fy, Fr)=1 for k=0, 1, ... K. (17)
When Yx(x) is expressed in the form
K
YK(QJ) :]gdka(f); (18)

the orthonormal coefficients d; have the simplified
formula

dr=(y, %)
Ek:Ek_l—d}i,

k=0,1,.. K

1=k=K.

(19)
(20)

and

One main advantage of this normalization is that the
significance of each term d,.F, (x) in (18)—determined
by the reduction it makes on the sum of squares of
residuals (20)—1s seen in the relative size of d2.
Another advantage is obtained from the simplified
interpretation of these functions as unit (orthogonal)
vectors in an N dimensional vector space (ch. 6).
Using the relation

A ()
(Ah k)

and (8), the generation of the orthonormal functions
F.(x) becomes

Fi@)=———= (21)

k=1
1 G)= Z()(lkap () +dp.G () (22)
=
where
A, A
dry="0zp \/((A%% 0=p=k—1
and
! 23)

*V@L,A)

Then from (19), (22), and (11), the coefficients in
the solution (18) become



di=a (A1, Ay). (24)

The application of the Gram-Schmidt orthogonal-
ization process to least squares problems has been
treated 1 a paper by Davis and Rabinowitz [1954].
For completeness we included here an outline of
their development with one modification—the order
of orthogonalization and normalization is reversed.
The advantage of this modification is that accumula-
tive rounding error can be considerably reduced.
Whereas we compute (A,,A4;) as a sum of squares,
the procedure in the reference cited above is to com-
pute it as a difference of positive numbers

=

(Ak;Ak) =(Gr,Gr)—

il

(G Fp)?
p=0
which can be so small as to result in total loss of
significant digits. As can be seen {rom (23), errors
in (A;,A,) have a strong accumulative effect on the
construction of the functions F(x).

We have also found, however, that a very serious
additional rounding error ® accumulates in the Gram-
Schmidt orthogonalization process when the coordi-
nate functions Gi(z) are far from being orthogonal.
That such rounding errors can have a significant
effect on the least squares solution is shown in chapter
6 by a numerical example with errors occurring by
as much as 30 percent. [t is well known that similar
types of errors occur when solving the normal eq (4)
by other methods.” Thus the danger of accumulative
rounding error is not so much a characteristic of the
particular method we have used, but is an inherent
difficulty in all large-scale least squares problems.
Also included in chapter 6 are an explanation of the
process of accumulation of the error, a quantitative
method for estimating its effect, and a reorthogonal-
1zation process which keeps the rounding error under
control no matter how large the system.

For the diurnal representation of the data, we
use Fourier series which are particular orthonormal
series for equally-spaced data points. For the geo-
graphic variation we employ an orthonormal series
constructed from the procedures described above.

3. Choice of Functions
3.1. Diurnal Variation

The most natural method for representing the
diurnal variation is Fourier analysis, since iono-
spheric characteristics are periodic functions of time.
Moreover, the trigonometric functions associated
with Fourier analysis are automatically orthogonal
with respect to the equally-spaced points of measure-
ment; hence the computational problems of least
squares fitting are greatly simplified. Since the
observations are made at each hour in the zone
time (ZT) of each station, they cannot be intercom-
pared for different stations until time corrections

8 The process of accumulation of rounding error is similar to that deseribed by
Laneczos [1956, pp. 123-130].

9 See for example [Lanczos, 1956, pp. 118-122; Kunz, 1957; Forsythe, 1957, p. ;77
Forsythe and Rosenbloom, 1958, pp. 20-21, and references contained therein].

are made. As will be shown, Fourier analysis pro-
vides a simple means for such corrections. The
most important use of Fourier analysis, however,
is in the separation of “noise” (random error) from
the “real” diurnal variation of the data (ch. 4).

We give here the essential formulas employed;
for more (:01'np1'(‘11(‘nsivo treatment, the reader can
refer to numerous texts on Fourier analysis. Let
x denote the zone time hour angle (degrees) defined by

(25)
where ZT is given in hours. Thus, for example

r=0° at noon (ZT). We let i, 1., ., Yau denote
the hourly measurements corresponding to the hours

2=15° (ZT)—180°,

o,=15°  i=1,2,... 24, (26)
respectively, and we choose 1, cos jz and sin jz
(7=1, 2, . . ., H, and 2H-+1=<24) as coordinate
functions G(x). Ttiswell known that these functions
are orthogonal with respect to the points (26).
Therefore from (7) the least squares solution has
the form

I
Voran (@) :al,—{—zl la; cos jz+B;sin jx],  (27)
=

where
1 24
Q=577 Yi
24 73 "
1 A .
=15 >3 Yi €OS ji;, (28)
0) %=
1<j<H.
24
Bj:i:; 2 Yi SIN )y
< j=1

Equation (27) can also be written in the convenient
form

H
Yomia(x) :a(»+zl c;cos (jr—a;) (29)
=

where the amplitude ¢; and phase ¢; are given by

¢, =+ai+b? and ¢, —arctan g’ (30)

j
Corrections to Local Mean Time

In order to intercompare data from different
stations it is necessary to correct for the small
difference between the actual local mean time (LMT)
at each station and the time at the reference longi-
tude 0z of the zone. Such corrections can be made
very simply in (29) by a shift of the phase where

(31)
0 is the longitude (degrees east of Greenwich) of the

station. Therefore the representation of the diurnal
variation takes the form

¢J:¢J+l (0_ 012))
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JAr
Usg+1(t) =ao—|—zl‘, [a; cos jt+b;sin jt] (32)
=

where the Fourier coefficients corrected to LMT are
given by

a0:a0
(33)

;==C; COS Y b;=cy sin ¢,

and ¢ denotes the local mean hour angle,
=15°(LMT)—180°.
3.2. Main Latitudinal Trend

The Fourier coefficients are corrected to LMT
(sec. 3.1) so that their main geographic variation
becomes latitudinal and is therefore greatly simpli-
fied.'® Among the first problems to be solved for
representing this variation was that of selecting a
suttable set of coordinate functions G(z) for the least
squares fit. Polynomials seemed to be the most nat-
ural type of function, but the question arose as to
what would be the best independent variable for the
polynomials. The simplest variable tried was the
geographic latitude \. However, when a sufficiently
high degree was taken, the polynomials in A became
unstable (i.e., wildly fluctuating) in regions such as
near the poles where little or no data were available
(figs. 2 and 3). Much more stable representations
were obtained by using polynomials in sin \. More-
over, it was found that the equatorial variation
could be represented in more detail by these functions
than by the polynomials in X of the same degrees
(figs. 2 and 3).

10 An atlas of graphs of the geographic variations of the Fourier coefficients for
foF; median for four seasonal months has been prepared and will soon appear as

an NBS Technical Note [Jones, 1962]. This atlas illustrates the very system-
atic a1d well-defined variations of these coefficients.
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Freure 2. Representation of main latitudinal variation of

Fourier (time series) coeflicients ay for {,¥y monthly median
by least squares polynomials of degree 10.

December 1957 96 stations.
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One explanation of the superiority of the variable
sin \ is the following. The fitting of polynomials in
sin \ to data located at a set of latitudes \; is equiva-
lent to fitting polynomials in a variable z to the same
data located at the correspondingly shifted set of
points z;=sin N,. The shifting of the data resulting
from this transformation has the effect of pulling the
data symmetrically away from the equator toward
the poles. Thus the data become more uniformly
distributed in the interval —1=<2=<1, and the
sharpness of the variation near the equator is reduced.
To illustrate this spreading effect the same data
shown in figures 2 and 3 have been plotted against
sin N\ in figure 4, together with the polynomial of
degree 10 in z=sin \.

A second explanation of the improved behavior of
the polynomials in z=sin X\ can be given in terms of
the corresponding orthonormal functions. Choosing
powers of the independent variable as coordinate
functions, we generate (secs. 2.3 and 2.4) one ortho-
normal system F{” (N\) corresponding to the station
latitudes A; and a different system /2 (sin \) cor-
responding to the shifted set of points x;=sin \;.
The resulting least squares representations take the
forms

ko
Y ) =30 dREP (1),

=0
(34)

ko

Y2 (sin =23 d;? F{® (sin )),

k=0
respectively. A comparison of the different ortho-
normal functions (for degrees 8 to 10) is shown in
figure 5. To simplify the comparison, an additional

normalization was made so that all of the graphs
have a common value at the right end point. It can

4 |
—~POLYNOMIAL IN X\ — POLYNOMIAL

FOURIER COEFFICIENT a, (Mc/s)

|
|
N SINA |
|
|

O S | S I L

[
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90° 60° 30° 0° 30° 60° 90°
SOUTH

- i L L

A=LATITUDE
Ficure 3. Representation of main latitudinal variation of
Fourter (time series) coefficients ay for f0F> monthly median
by least squares polynomuals of degree 13.

December 1957 96 stations.



18 : - 1 1 T I T I be seen that at high degree (S<k=10) the poly-
nomials in X\ have very large values near the right
6 4 | end point compared with their values near the
center. Thus to represent the strong geographic
rariation near the equator the polynomials /" (\)
of high degree have to be multiplied by large coef-
ficients df”, which results in the blowing up effect
near the poles (figs. 2 and 3). In contrast, for the
polynomials /£ (sin X\) the maximum amplitude
of oscillation is more uniform throughout the interval,
hence the greater stability of Y3 (sin \) near the
poles. In addition we see that near the center of
the interval the distances between successive maxima
and minima are less for the £ (sin \) than for the
F (N\). Thus we can understand the better rep-

resentation of equatorial variation by Yi¥ (sin N).
To conclude this discussion we note that the
behavior of the polynomials /" (N\) resembles that
2+ - | of the classical Legendre polynomials [Byerly, 1893,
pp. 184-185]. On the other hand, the amplitude
0 s ! ! ) ! s | ! distribution of the /* (sin \) more nearly approx-
-l -08 -06 -04 -02 0 02 o4 0§ os 1 |imates the exactly uniform distribution of the
SOUTH SING. nokt | classical Chebychev polynomials [Jones, Miller, Conn,
and Pankhurst, 1946, pp. 194-195]. It is well known

A=LATITUDE . 3 .
( ) that orthogonal series of Legendre polynomials tend

Frecure 4. Representation of main latitudinal variation of ) — 2 GF.
Fourier (time series) coefficrents ag for foF: monthly median to blow up near the end points [Lanczos, 1938, pp.

FOURIER COEFFICIENT aq (Mc/s)

by least squares polynomual (degree 10) in sin . 144-145], whereas series of Chebychev polynomials
December 1957 96 stations. minimize the maximum error, and therefore are as
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Frcure 5.  Orthogonal polynomials defined by tonospheric station latitudes.

December, 1957 96 stations.
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stable at the end points as they are at the center.
Thus by analogy one would expect the behavior
demonstrated in figures 2 and 3.

A similar study was also made with polynomials in
the variable sin [90° sin \], which 1s the natural
extension of the spreading process described above.
In this case, the representation was improved even
more around the equator, but significant geographic
rariation in the temperate latitudes was squeezed
into the poles and so lost. Therefore polynomials in
sin X were chosen for representing the main latitudi-
nal trend. The determination of the “‘best degree”
for these polynomials is discussed in chapters 4 and 5.

3.3. Mixed Latitudinal and Longitudinal Variations

The existence of systematic longitudinal varia-
tion " is illustrated by the graph in figure 6 of Fourier
(time series) coefficients a;—first harmonie, cosine
part—for f,F, monthly median, plotted against
latitude X\. Also shown in the figure is the rep-

resentation of the main latitudinal trend by
means of a polynomial of degree 10 in sin X\. By

means of special plotting symbols used to signify
approximate station longitudes (see legend), we see
that the coefficients are not randomly dispersed
about the main latitudinal trend, but—in certain
regions, particularly around the equator—are sys-
tematically arranged according to longitude 0. We

11 That the longitudinal variation, illustrated in figure 6, is consistent for differ-
ent seasons and for periods of high and low solar activity is demonstrated by the

atlas of graphs of Fourier coeflicients for fo/; monthly median referred to at the
beginning of section 3.2.
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discuss here the choice of functions for representing
these second order mixed latitudinal and longitudinal
variations.

The usual method of representing global variations
ol geophysical phenomena is by spherical harmonic
analysis [Byerly, 1893, pp. 144-218]. However, the
classical surface spherical harmonics—satisfying La-
Place’s equation—are not orthogonal with respect
to the positions (A\;,6,) of the ionospheric stations.
Therefore for convenience, and with no loss of
eenerality, we choose as our coordinate functions the
simplest set G.(\,0) (see table 1) of which the surface
spherical harmonics are linear combinations. A
particular set of the functions G, can be specified
by assigning the values ¢y, ¢;, and ¢ which are, re-
spectively, the highest powers of sin X\ for terms
mvolving: (1) no longitudinal variation, (2) first
order longitudinal variation, and (3) second order
longitudinal variation. Equivalently, we could also
specify the values ko, k,, and k,=K taken by the
index £ at the end of each of the three groups of the
G.(\0). These values are related to the g¢-values
by the equations

kOZQO k,:k7_1+2(q,+]) for 7':l, A (35)

From table 1 we see that the first group of functions
(powers of sin \) is the same set chosen (sec. 3.2)
for the main latitudinal trend. We note that the
zonal harmonics are linear combinations of these
functions, and the first and second order sectorial
and tesseral harmonics are linear combinations of
the first and second order terms in longitude (see
table 1) used for the mixed latitudinal and longi-
tudinal variation. As a consequence, a least squares
representation in the form of a linear combination
ol the Gx(\6) has many properties of a spherical
harmonic analysis. For example, it is periodic in
longitude and constant at the poles, and the first
and second order terms in longitude are weighted
according to latitude by the functions cos N and
cos® \, respectively. In fact, a series in the Gp(\.60)
is identical-—but expressed in a different form—to
that which would be obtained from spherical har-
monic analysis.

TaBLE 1.  Geographic functions Gi(\,0)

] Mixed latitudinal and longitudinal variation

Main latitudinal R
variation
First order in longitude Second order in longitude
~ ‘ SN S —

k Gr(N,0) k r(N,0) | k 71 (N\,0)
e e S e S I S

0 1 ko+1 | cos \ cos 0 ki1 ; cos2 \ cos 20

1 sin A ko+2 | cos A sin 6 k42 cos? \ sin 26

2 sin2 A ‘ ko+3 | sin A cos X\ cos 6 ki+3 sin A cos? \ cos 20
- . ki+4

ko+4 | sin X cos A\ sin 6

sin X cos? X sin 260

|sing; N cos? N cos 20
‘ sine2 \ cos? X sin 20

The geographic variation of a Fourier (time series)
coefficient is therefore represented by a function of
the form
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K K
Y(\0)=>. d,\.l«;(x,e):fj D,G.(\0) (36)
k=0 k=0
where the F,(\.0) are orthonormal functions de-
fined with respect to the positions of the ionospheric
stations (taking as coordinate functions the G(\,0)
in table 1), and the coefficients d; and ), are ob-
tained by the method of least squares (ch. 2). The
determination of the ‘“best” representation with these
funections is discussed in chapters 4 and 5.

4. Optimum Separation of Noise From Real
Physical Variation

It was previously mentioned that ionospheric
data are affected by noise (random fluctuation)
produced from a number of sources. The noise
is due in part to limitations ol' equipment at various
stations and to errors of scaling and rounding.
A large part of the noise is 1ho result of statistical
fluctuations in the sample medians, the sample size
being at most 31 and frequently much less. These
fluctuations are, to some degree, caused by intrinsic
rariation of the physical ])lwnomona being measured.

The noise 1s evidenced by such occurrences as
unusual roughness or unrealistic flattening of the
diurnal plots during certain hours. The presence
of moise 1s also suggested by random inconsistencies
of data at groups of neighboring stations as observed
from data-comparisons on a worldwide basis. In
the present chapter, however, we give more objective
evidence of the noise by means of statistical and
mathematical data-analyses. Included are methods
for quantitative estimation of the noise and for its
optimum separation from real physical variation.

We shall therefore consider ionospheric data as
sampled values y, from a function f(x) whichis the sum
of two components: (1) the real physical character-

istic fi(x), and (2) a random mnoise component
f,(z). " Thus we consider each value 7, as a sum
=y’ +yi® (37)
where
yi =fi(x:) and yi? =1, (). (38)
The values of the noise y® are assumed to be,
independently, mnormally distributed with mean

zero and standard deviation o,
to be the measure of the noise.

Geenerally the noise is small compared to the main
physical variation, but its effect must be carefully
studied since we wish to represent the physical
characteristic with as much detail as possible.
The noise would produce a very rough and physically
unacceptable representation if the original data
were fitted exactly without time and space smooth-
ing. Thus a certain amount of smoothing is neces-
sary, but too much smoothing would produce a
representation which does not respect well enough
the true physical variation of the data. Our prob-
lem 1is therefore to represent as accurately as
possible the component f;(z), given only the sampled
values v, of f(z). We treat first the separation of
noise from the diurnal variation.

a quantity taken

4.1. Separation of Noise From the Diurnal Variation

We employ a type of mathematical filter * which
rejects that part of the “signal” (ionospheric data)
produced mainly by noise f;(z) and accepts the part
representing mostly true physical variation f(z).
Our main tool is the Fourier analysis of the sampled
ralues 7, (sec. 3.1) which decomposes the diurnal
rariation into eleven harmonics

¢, cos (je—y;)=a; cos jr+b; sin jz (39)
and thereby gives a discrete power spectrum c;. 1t is

shown that some of these harmonics represent mostly

f1(x), whereas the others are produced mainly by Fo(z).

The proper separation of these harmonics and
resulting truncation of the Fourier series give the
optimum smoothing (or filtering) as W(’H as the
desired diurnal representation. F01 determining
the proper separation of harmonics ¥ we make use of
certain properties of the Fourier spectrum which
characterize the two component functions of f(x).
As a by-product we also obtain a quantitative esti-
mate of the noise o, which can be compared with
results from an independent method.

a. Spectrum for a Real Ionospheric Characteristic £(x)

[t is well known that a smooth, continuous function

Sitx) of period 2r can be o\pan(lml in a KFourier

series—of functions 1, cos jr and sin jz =1, 2,

3, ... )—and that the coeffic ients, given by 1111(‘;:1;11
formulas analogous to (28), approach zero as j

increases, at a rate depending upon the smoothness
of fi(x). It can be shown,'™ for example, that if

F0(x) is piecewise continuous in (—m,m) then the

coefficients approach zero at least as fast as ;7%

whereas if [V (x) is piecewise continuous the rate 1s
772 In general the size of « in the j~« law increases
or (h‘cu'ls('s with the smoothness 0( / (z), so that in
a sense the smoothness of a function is characterized
by the value of a.

These same laws apply (approximately) to the
coefficients a; and b, obtained from Fourier analysis
of a sample, 2V, z/“) . , ysy, of hourly values
of fi(x). Thus 111(\ squared amplitude ('J:(quLb?
decreases at least as fast as 77**. When ¢; is plotted
against j in a log-log scale, the curve defined by
smoothing the points on the graph will have a slope
less than or equal to —2a. "We refer to this value
as the slope of the Fourier spectrum. It is safe to
assume that the real diuwrnal variation of an iono-
spheric characteristic has at least a piecewise con-
tinuous first derivative. Thus the slope of its spec-
trum should be —2 or less.

b. Spectrum for a Random Noise Component f;(x)

Let y®, 2, ..., 42 denote a sample of values of

the random noise (,0111])011<>nt‘ fo(x)—each value hav-

12 This type of filter is analogous to a “low-pass electrical filter—i.e., a filter
designed to pass only low frequencies while eliminating all frequencies above a
enrtqm point [Holloway, 1958]. Such a filtering process is frequently referred to
as “smoothing.”

13 The central idea (\mplovod is suggested by Lanczos [1956, pp. 331-344].

14 See [Jackson, 1957, pp. 1-22].
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ing an independent normal distribution with mean
zero and variance ¢>—and consider a Fourier analysis
of these values. 'The statistical distributions of the
Fourier components (a;, b;, ¢;, and ¢,) are obtained
as a result of the asymptotic solution for the random
walk [Chapman and Bartels, 1940, pp. 572-582].
Thus it follows from a theorem of Markofl that the
coefficients a; and b; have independent normal dis-
tributions with mean zero and variance ¢?/12. From
this it is shown that the phase ¢, is uniformly dis-
tributed in —180°=y,=<180° and that the amplitude

¢; has a Rayleigh distribution with mean ov/24, so
that the squared amplitude ¢ has the expected value

VICTORIA
(50.8° N, 2635°E)

YELLOWKNIFE
(62.4°N, 2456°E)

o>
E (C?>=g° (40)
Since these results are independent of the harmonic
7, it follows that ¢ oscillates about a constant value
a’/6, the noise level, and that the Fourier spectrum
for random noise has a slope of zero.

c. Spectrum for Ionospheric Data

Since the noise is small compared to the main
amplitude of the diurnal variation, we would expect—
from the theory outlined above—that the spectrum
for actual data would decay rapidly for the first

DIKSCN ISLAND
(735° N, 80.4°E)
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and would then level off around a constant
value ¢%/6. The point at which the leveling off takes
place separates the harmonies representing mostly
true physical variation from those produced mainly
by noise. Thus we determine the optimum cutoff for
the Fourier series. It is inevitable that a few har-
monics will be in a “twilight zone” where the ampli-
tude of the real physical variation is the same as that
of the noise. However, it is not of vital importance
where the cutoff is made in this region, except that
the series should not be extended too far.

To illustrate the method we consider the monthly
medians of fFy from three typical stations (fig. 7).
These examples illustrate the relation between
smoothness of data and slope of the spectrum. For
Victoria, with the smoothest data, the slope of the
spectrum (for the lower order harmonics) appears to
be —4; for Yellowknife it is around —3; and for
Dikson Island it is approximately —2, in ‘beautiful
agreement with the theory. ln each case the spectra
show a tendency to level off around harmonic 7,
indicating the effect of noise on the higher harmonics
and the position of the twilicht zone for the optimum
cutoff.

The theory has also been applied to determine the
average optimum cutoff, using the mean spectrum for
all stations for the given month (fiz. 8). As was
expected the mean spectrum is much smoother than
the spectra for the individual stations, so that the
slope and optimum cutoff are more (’l(-ulv defined.
There is a definite change in the character of the
spectrum at harmonic 8. It is clear that harmonic 7
is above the noise level and so should be retained,
but harmonic 8—being in the twilight zone—could
either be retained or not. We have terminated the
series after the Sth harmonic. The effect of this
smoothing process is llustrated for the three stations
in figure 7 by the solid lines representing the diurnal
variation. It has been found that for other months
and other characteristics the mean spectrum is
generally as smooth as the one shown in figure 8,
but the twilight zone is sometimes more extended.

A number of other studies have been made to
determine the average optimum cutoff, in addition
to the work on Fourier spectra. From the theory
of analysis of random noise, the phase y; for noise
harmonics is uniformly distributed; thus all values
of the phase are equally likely to occur. By com-
paring the phase angles from all stations for a given
harmonic (by means of polar plots of amplitude
and phase), we have found systematic variations
with geographic position for the lower harmonics

harmonics

and apparently random (uniform) distributions
for higher harmonics, in good agreement with

the previous results. "Similar investigations have

been made to determine the distributions of the
other components, a;, b;, and ¢;.  Although reason-

ably good agreement with the previous studies was
found, the results for these cases were not so well
defined. This was to be expected, however, since
the parameters defining the normal and Rayleigh

distributions of these components are subject to
geographic variation.
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d. Estimation of the Noise o

The theory also provides a means for computing
the noise ¢. Taking the mean squared amplitude
for the noise harmonics

as an estimate of F(c3), we use (40) to obtain o.
Values of the noise are given in table 2 for the three
sets of data illustrated in figure 7. In a similar
manner we compute the average noise in foF; medians
for December 1957
R o IS Vi RV
=6]=>)c| =0.25 Mc/s, (41)
3 7=9
where (] denotes the mean squared amplitude of
the jth harmonic from 113 stations. Calculations



of the average noise in f, /s medians made over a
period of several years have been found to be closely
correlated with solar activity. The details of these
studies, however, will be given in a subsequent
paper.

TaBLE 2. Noise in )y medians for December 1957

Station

The same estimates of noise have been made by
an entirely independent method. Making use of
the distributions of daily measurements, we have
computed the standard deviations of the sample
medians.  The good agreement of these independent
results gives added strength not only to the esti-
mates ol noise, but also to the determination of the
optimum smoothing.

Kach of the Fourier coefficients is equally affected
by noise, but we have shown that for the lower
harmonies (7=8) the physical variation is the
dominant part, whereas for higher harmonics mostly
noise 1s present. By truncating the Fourier series
we have eliminated about 30 percent of the noise—
the part contained in the truncated terms—at no
loss of real physical variation. A large part of the
remaining 70 percent of the noise is filtered in a
similar manner by analysis of the geographic varia-
tion of the Fourier coefficients. This problem is
treated in the following section.

4.2. Separation of Noise From Geographic
Variation

The noise is separated from the real geographic
rariation of Fourier coefficients by a filtering process®
similar to that used in the preceding section. Having
expanded the geographic variation in a series (36) of
orthonormal functions F;(\,0) as in section 3.3, we
obtain the smoothing (or filtering) by truncating the
series. In this case, however, we do not have the
elegant theory associated with Fourier analysis for
determining the optimum cutoft.

The method employed is based on the residuals
between the original Fourier coefficients being fitted
and the corresponding values of the representation
function Yx(\,0) given by (36). Since orthonormal
functions were used in the development of Yx(\.6),
we can inspect the residuals remaining after each
term d; I (\,0) 1s added to the series. The residuals
approach zero as the number K41 of terms in the
series is increased, and they would actually attain
this limit (except for rounding error) when K1 is
equal to the number of stations. However, we
know that the Fourier coefficients are affected by
noise; hence zero residuals are not desired.

The eriterion adopted for determining the optimum
cutoff is to minimize the standard deviation of the

15 See the discussion on ‘“‘smoothing of observational data by the method of
least squares™ [U.S. Dept. of Commerce, NBS, AMS 9, 1952, pp. 16-18].

residuals.  We take as an wunbiased estimate of the
variance of the residuals

,
E,

N—k—1 (42)

=

where F; is the sum of squares of residuals (20), N
is the number of stations, and (N—k—1) is the
number of degrees of freedom remaining after sub-
traction of one degree for each term in the series
Y, (\0) [Kendall, 1951, pp. 59-61]. From (42) it is
possible for the estimate of the variance ¢} (or of the
standard deviation ¢;) of the residuals to increase as
k increases, since the diminishing of £, may become
very slow after a certain degree. For simplicity we
shall refer to e, as the standard deviation of the
residuals.  In the analyses under present considera-
tion, the values ¢, usually decrease quite rapidly at
first, then taper off and cease to diminish appreciably
alter a certain point. This point defines the desired
optimum cutoff.

In order to determine this cutoff objectively we
make use of a statistical test for the significance of
each coefficient d; (in (36)) based on the “Student’s”
t distribution [Fisher, 1922]. Under the usual
assumption that the observed values ¥, have inde-
pendent normal distributions about a mean regression
surface with common variance ¢, it follows that
the quantity

(lk_ak
— 7
7

where 6, 1s the expected value of d;, has a “Student’s”
t distribution with (N—#k—1) degrees of freedom.
Therefore we test the null hypothesis H, (i.e., §,=0)
using a 5 percent rejection criterion

(]k

1€k

>t0.05.

In most of our applications the value of (N—k—1)
has been large enough so that #; ¢; 1s approximately 2.

Although the test described above is probably the
best possible for the present problem, we note here
the following limitation. It was assumed that the
distributions of all the observed values ¥, have a
common variance ¢ [t is known, however, that ¢*
raries significantly with geographic location, so that
the theory applies only approximately to our problem.
As a result the representations are somewhat over-
smoothed in certain regions and undersmoothed in
others. Since we prefer a slichtly undersmoothed
representation (in order to represent the physical
details as well as possible) we have chosen a 5 percent
rejection as opposed to a 1 percent.

As an illustration we consider the determination
of the optimum cutoff of the main latitudinal terms
(table 1) for representing the Fourier coefficient
shown in figure 6. The last term found to be signifi-
cant was dj, and we have therefore terminated the
series at this point. A graph of ¢; through degree 15
is shown in figure 9 and some of the values ¢, and d,.
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are given in table 3. In a similar manner we deter-
mine the optimum cutoffs for the first and second
order terms in longitude (table 1). In figure 10 is
shown the graph of ¢, corresponding to the set of
coordinate functions G(\, 8) specified by ¢,=10,
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=12, and ¢,=6 (sec. 3.3). From our test we find
the optimum cutoffs specified by ¢,=7 and ¢.=5.
In addition to statistical tests we have also been
guided by certain physical properties known to exist
i the 1onosphere and by some knowledge of the
morphology of our mathematical functions.  For ex-
ample, for a polynomial of degree £ in sin \ the dis-
tance between two adjacent maxima will have to be
at least (360/k) degrees. Therefore, in order to
represent the sharp dip in eritical frequencies known
to exist near the magnetic equator (figs. 2 and 3),
we know a priori that very high degree polynomials
are needed.
TABLE 3. Least squares fitting of spherical harmonic functions

G (N,0) to Fourter (time series) coefficients ay for £)¥y monthly
medians

December 1957

113 stations.

ISTANDARD DEVIATIONf ORTHONORMAL COEFFICIENTS FOR
OF RESIDUALS COEFFICIENTS |FUNCTIONS Gy (),6)

k ey dy Dy
0 [0417912555€ 01 | 0,28253230E 02 | 0+72834942E 00
1 [0414878412E 01 | 0.10660453E 02 | 0426530059E 01
2 2 | 0414296524E 01 [-0,45703227E 01 | 0+21789511E 02
= 3 | 0412992993E 01 |=-0.63889114E 01 | -0+18330225E 02
> & & 4 | 0494112997E 00 [~0.93996341E 01 | -0410238298E 03
Z94 5 | 0476460836E 00 [-0.57535547E 0L | 0s75444277E 02
sEt& 6 | 0473723422E 00 [~0.22231647E 01 | 0424343033E 03
== 7 | 0473989519E 00 [=0436166392E-00 | ~0+98828048E 02
3 8 [0474338301E 00 [-0.97018918E-01 | 0426629260 03
9 | 0474437083E 00 | 0.63343991E 00 | 0439049190E 02
10 | 0471160986E 00 | 0423279645E 01 | 0410270473E 03
11 |0471333002E 00 | 0450874979E 00 | 0480027716E 00
12 | 0+71428508E 00 |=0+61032332E 00 | ~0468859721E 00
13 [0471788294E 00 | 0.89986758E-02 | 0434758507E~00
o w |14 | 0471730649E 00 | 0477229120E 00 | ~0+15318519E-00
2 Z| W 9 |15 |0472056954E 00 | 0.24375897E-00 | 0411218609 02
Z 2| @ 2|16 [0.57861927E 00 | 0.42689060E OL | -0+42479381E 01
, < | O B |17 [0458156729E 00 | 0.99377523E-01 | -0+42751712E 01
T @ | Z |18 [0.58294996E 00 (-0,43228252E-00 | 0498574758E-01
Zz | © S [19 |0457096788E 00 (-0.12750213E 01 | 0430209412E 02
= E 2 |20 [0457315171E 00 | 0.31006010E-00 | 0421029317E 02
2 2 = |21 | 0456632543E 00 | 0,10180058E 01 | 0+53866997E 01
== 22 [0456914243E 00 |=0.18124516E-00 | 0+29883151E-00
<5 23 | 0456555211E 00 |~0.82855405E 00 | ~0+22921705E 02
;‘ 2 24 | 0454427645E 00 |=0.15484624E 01 | ~0416010904E 02
W 2| & 2|25 0454640091 00 | 0.30764920E-00 | -0.87875202€ 00
s 9 g 2 |26 | 04510887156 00 | 0418782187E 01 | 0453212479E 00
S |27 | 0448734745600 | 0415027802E 01 | 0490155041E 00
S Z |28 | 0.48894281E-00 |~-0.32661115E-00 | ~0+75395824E 00
§ S |29 | 0446874104E-00 | 0413582557E 01 | 0.18835551E 01
|30 | 0446133326E-00 | 0.88582236E 00 | 0419063634 01

Stability of the Geographic
Representation

5.

To obtain a “best” representation of the geographic
variation, one must consider more than the optimum
separation of noise (filtering)—i.e., more than just
the residuals at the stations where data are given.
The heavy grouping of stations in some regions such
as Europe (fig. 1) and the absence of stations in other
regions, particularly in the oceans and near the poles,
tends to produce a sort of “mathematical instability”
in the representation function—that is, unrealistic
behavior in the areas where no data are available.
This behavior is somewhat analogous to the large
fluctuations which arise in Lagrange (polynomial)
interpolation of clustered values with small variation
[Lanczos, 1956, pp. 346-358].

As we pointed out in chapter 2, the usual approach
in the global analysis of geophysical data has been to
first draw contour maps by hand (using the actual
data, empirical knowledge and experience) and then
to analyze in spherical harmonics the values read



from the maps at the intersections of a regular grid.
Thus the (synthetic) values used in the analysis are
uniformly spaced and the mesh of the grid can be
made sufficiently small to prevent instabilities in the
representation function. This method has the dis-
advantage of introducing error (noise) both in draw-
ing and in reading the maps. Moreover, the hand
work involved is relatively slow and cumbersome.
We have eliminated these two difficulties by first
analyzing the data directly as they are obtained at
the 1onospheric stations. However, as a result we
have had to face still another problem, that of
mathematical instability described above.

For a region where there are no available stations,
the representation function gives a two-dimensional
interpolation determined by the data from all
stations, both near the region and far away. Thus
the best representation that could be expected is a
smooth continuation of the variations from surround-
ing stations. Strong departures from such smooth
continuations are probably artificial and physically
meaningless.

Examples * of instability can be seen in the contour
map (fig. 11a) computed from an analysis using the
coordinate functions G.(X\, ) (table 1) specified by
¢=10, =7, @=>5—these were the optimum
cutoffs (sec. 4.2) from the viewpoint of separation of
noise. Included in the map are the residuals
between the original Fourier coefficients and the
corresponding values of Yi(N, 6). Although the
fluctuations in this map are not large, there is a
definite appearance of instability in the southern
hemisphere, particularly near the pole. By further
truncating the orthonormal series Yy (N, 0) so as to
correspond to the set of Gi(\, 0) specified by ¢,=10,
¢:=06 and ¢,=2, very little damage is caused in terms
of increased residuals. However, as can be verified
from the map in figure 11b, considerable advantage
is gained in terms of increased stability near the
south pole. Table 3 gives the values of ¢, and the
coefficients d; and D, corresponding to these functions.

Thus 1t is sometimes necessary to make the cutoff
slightly above the optimum level (determined by
noise) in order to preserve the stability and physical
soundness of the representation function. The
amount of increase required in the residuals depends
upon the world wide coverage of ionospheric stations.

6. Reorthogonalization and the Accumula-
tion of Error

6.1. Accumulation of Error in the Gram-Schmidt
Orthogonalization Process

As was pointed out in chapter 2, the normal
equations

K
kz_‘_(;) ak(AkyAm) —= (yfAm) m= 0: 1; ey K (43)

16 Other examples in one dimension are illustrated in the behavior near the
poles of the polynomials in A (figs. 2 and 3.)

(analogous to (4)) are uncoupled by the condition of
orthogonality (6) imposed on the Ay(x). Thus all
terms on the left side of (43) vanish except those of
the form a,(A4,,4,), so that the coefficients a; are
eiven by (11). Although (11) is algebraically exact,
it will be shown that the coefficients thus obtained
could be strongly affected by accumulative errors of
rounding. We let a; denote the theoretically exact
solution to (43) and write for the error in a; (as
computed from (11))

K
!
Q== Z 6melmk

da=a,— (44)
mh
where
A, Ar).
Am» ( my<-k 45
(A 2
As an approximation to da; we compute
K
Aak=_2 a/mAmk- (46)
=0

m#=k

Thus if some of the numbers A,,;, m=k, differ sig-
nificantly from zero (i.e., have nonzero digits among
those retained by the computer), it is likely that large
values of Aa; will occur. When we look closely at
the orthogonalization process (sec. 2.2), it is not too
surprising to find that some of the A,; are signifi-
cantly different from zero, particularly if the coordi-
nate functions G,(z) are not approximately ortho-
gonal. This can be seen as follows.

The functions Ay(x) are constructed successively
according to (8) and (9). In fact, multiplying (8) by
An(x), m<k and summing over the x; glves

<Ak,Am>=§ (A ) (@ody).  (47)

Then imposing the orthogonality condition (6) on the
left member above, we have

— (Glu m) =
Q=== (Am,Am) pzo akp pmy (48)
pF=

and (9) follows by neglecting the terms —a;,A,,,
(p#m) which are (theoretically) zero. From (48)
we obtain as an estimate of the relative error in ay,

Ay, = Al oy (FpoFm)
S S gy = = 49
=S e =8 G GRS @)
pFm p;ém
making use of (9), (21), (23), and (45). At this point

it is convenient to consider the functions G(z),
Ai(z), and Fi(z) as N dimensional vectors whose
components are the functional values at the points
Xy, Toy . . ., Ty. Then a number such as (G, F),)
can be interpreted as the component of the vector
Gy in the direction of F,. For the present we shall
consider a typical term on the far right side of (49);
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thus we can assume, without loss of generality, that
the G, are normalized in the sense of (17). Suppose
now that G; has a large component in the direction of
F, (say (G, F,)=%) but a very small component in
the direction of £, so that (G, F,) is ol the same
order of magnitude as (F,,F,). Then the resulting
error in a,, could be as large as 50 percent.

[t is clear from the preceding discussion how
significant errors can be introduced, the most import-
ant flactor being the direction of each G relative to
the preceding F,, p<_k. Although such an error
may be small, its effect accumulates rapidly since
each subsequent A(x) is constructed in terms of all
preceding A,,(x), m< k. Thus a small initial error
n one A.(z) can have disastrous effects on the later
steps of the process.

As an illustration we consider the geographic
representation of the Fourier coefficient, used in
section 4.2, expanded in terms of the coordinate
functions G (N\,0) specified by ¢=10, ¢=6, ¢.=2
(see table 1). The least squares coefficients ay
computed [rom (11) and the estimates of the relative
error (Aa,/a;) from (46) are given in table 4. As
can be seen the precision of the a; for k>7 is very
doubtful. It is shown in the following section that
as is off by 5 percent, and other coeflicients by
considerably more, thus illustrating the usefulness

6.2. Gram-Schmidt Reorthogonalization

In section 6.1 we arrived at the following three
important results: (1) large errors can be produced
by the process of Gram-Schmidt orthogonalization,
(2) eq (46) gives an effective method for estimating
such errors, and (3) once started, an error has a
strong accumulative effect, but its main source
mitially is closely related to the “directions” of the
coordinate functions G,(z). If the Gy(r) are nearly
linearly dependent, the error would develop quickly,
whereas if they are approximately orthogonal, the
source of error would be greatly reduced. Upon
this fact we justify a Gram-Schmidt reorthogonaliza-
tion'" process, following the same lines as section
2.2, but taking as coordinate functions the A, (x)
instead of the Gy(x). For, although the A;(x) may
not be sufficiently orthogonal for our purpose, they
would in general be considerably more so than the
original coordinate functions. Thus the initial
source of the error would be reduced. The reortho-
conalization process can, of course, be repeated as
many times as necessary to keep the error under
control. Before giving a numerical example, we
outline briefly the steps involved in the process.

Following the procedure of section 2.2, we form a
new set of orthogonal functions

17 The notion of reorthogonalization was suggested by the Numerical Analysis

of error estimates.

TaBLE 4.

Section (11.01) of the National Bureau of Standards.

Elimination of accumulative rounding error by reorthogonalization process used to

fit spherical harmonic functions of latitude and longitude to Fourier (time series) coefficients
ay for £o¥y monthly medians

December 1957 113 stations.
ORTHOGONAL COEFFICIENTS DEVIATION OF ESTIMATES OF ACCUMULATIVE
a, IN PERCENT ROUNDING ERROR FROM:
FIRST SECOND FIRST SECOND
ORTHOGONALIZATION |ORTHOGONALIZATION ORTHOGONALIZATION | ORTHOGONALIZATION
B 9% Aay Aby
k Ok by bk ay by
(0] 2.6578404E 00 2.6578404E 00 Oe 209041629E-06 Oe
ik 1.5929625E 00 145929624E 00 ~0+0000063 246005150E-06 Oe
2 | —144231348E 00 | -1.4231393E 00 000032 1.9663900E-05 542353136E-08
3 | -3.8013159E 00 |[-3.8013174E 00 04000040 -4,8294410E-06 3.9199992E-08
4 | —1e¢1098262E 01 |-1,1098265E 01 0000027 760032999E-05 O
5 | ~1e4189972E 01 |-1.4190128E 01 00011 -1.1172427E-04 8+4008608E-09
6 | —1e0993559E 01 | -1.0990924E 01 -0e024 5.3348242E-03 1.0846157E-08
7 | =35136985E 00 |-345109766E 00 -0e078 —208899443E-02 | —2+5464985E-07
8 | —1e7760643E 00 | ~148776263E 00 S5elt 1.1386564E 00 642695740E-07
9 2.3313985E 01 243232524E 01 =0e13'5 1.2002318E-02 441049105E-08
10 17978380E 02 1.8443359E 02 265 146151702E-02 O
11 1.0436464E-01 1.1301300E-01 Tel 3.,0752875E-02 O
12 | ~1e29641C1E-01 [-1.2419979E-01 ~beb =3.1891573€E=02 7.4985841E-09
11:2) 3¢1378034E-03 3e4149244E-03 Bel 3.2888361E-01 7.6702861E-07
14 345222762E-01 3.3267845E-01 =5/e9 -342077405E-02 Yol 98T IE=0T
15 247970650E-01 2e446T7795E-01 | ~14. -340703257E-02 | —2.0554128E-07
16 3.6830783E 00 3.6748188E 00 -0e22 -5.6580728E-03 O
17 2¢3149930E-01 NN 535E=COINIR=3 0l -1+3896600E-01 3.9814584E-07
18 [ —7¢6929165E-01 | =7.4671454E-01 =340 -505304769E-02 | —1.4966725E-07
19 [ ~48753538E 00 |-4.7861179E 00 =%9 -3.4774151E-02 3.7360954E-08
20 141794396E 00 1.0771025E 00 =et5 —166933961E-01 | ~1+3834487E-07
21 743562072E 00 7.2621238E 00 =13 ~342170044E-03 | —3.2830421E-08
22 | ~1.5848168E 00 |-1.3387020E 00 | ~18e ~9¢4834993E-02 | -7+7917363E-08
23 | =1+2521099E 01 |-142175401E 01 —2e8 404063769E-03 4.8954975E-08
24 | —243682257E 01 |=-2.3369081E 01 =1¥e'3 -342909461E-02 | -1.0202309E-08
25 849367033E-02 9.1821058E-02 247 -6e0492957E-03 | -6.0856796E-08
26 509681830E-01 549769819E-01 0«15 143858429E-03 O
27 1.0897222E 00 1.1006036E 00 0699 141943727E-02 O.
28 | —247559001E-01 |=-2.7433266E-01 ~0e46 6+47750021E-03 | -2.7158927 -08
29 242791040E 00 2+2946516E 00 0«68 601824901E-03 2.5975466 -08
30 19115768E 00 1.9063635E 00 —0e27 140157171E-04 446899223 -08
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By(2) =A,(x) (50)

k—1
]jk('l;) :Zobkpo(‘T) Jri'lk(f) )
p=
where
. (‘4767 Bp)

(B,.B,) (51)

By =

Then the least squares solution can be written in
the form

K
7k (2) :lgokak('x) (52)
where
(y,B)
b =2k 53
“=(B,,B) )

To obtain Yx(x) in the simpler form (1), we compute
first the coefficients a; for expressing (52) in terms of
the A.(xz). This is done by means of (13) and (14)
with a;, az,, and D; replaced by by, b, and ay,
respectively. Then the desired coefficients D, are
obtained using (13) and (14) with @, replaced by a;.
The normalization of the solution is made by means
of a similar modification of section 2.3.

For illustration we continue with the same example
given at the end of section 6.1. The coefficients b,
and estimates of the relative error (Ab,/b;) from one
reorthogonalization are given in table 4. From
these results it is seen that the largest value of the
relative error is of the order of 1077, Thus a great
improvement has been gained. Using the coeffi-
cients b, we have computed the relative deviation of
the a; in percent, from which it can be seen that
a7 differs by as much as 30 percent. Moreover,
the breakdown of the first orthogonalization at k=S
is clearly shown.

7. Summary of Analysis’and Numerical
Maps

We summarize here the steps used in the analysis

described in the preceding sections (see table 5).

TABLE 5.

Station observations

The analysis begins with the actual observations as
they are tabulated at the stations, each in its own
zone time. The diurnal representation is obtained
from Fourier analysis of the 24 hourly values (for
each station), the corrections to LMT being pro-
duced by an appropriate shift of the phase, deter-
mined by the station locations. The optimum
separation of the noise from the real physical varia-
tion of the data is made by truncating the high
frequency harmonics (low-pass filtering). Thus for
the characteristic f,/, only 8 harmonics are needed.
The geographic variation of each of the 17 Fourier
coefficients

aroblalbgag 5 . bgag (54)

is represented by an orthonormal series, analogous
to spherical harmonic analysis. Since the functions
in these series must be orthogonal relative to the
coordinates (\;, 6;) of the stations, they cannot be
known a priori; hence they must be constructed.
Gram-Schmidt orthogonalization and reorthogonali-
zation are used for this purpose. The smoothing
(filtering) in the geographic dimensions is then per-
formed by truncating the orthonormal series for
each of the 17 Fourier coefficients.

The end product of the analysisis a table of numer-
ical coefficients Iy, defining a function T'(\60,t) of
the form

i
I'(\0,8) =a,(\6)+ > a,(N,0) cos jt+b,(\0)sin jt]  (55)
=

where each of the functions @;(\,0) and b;(\,0)—rep-
resenting the geographic variations of the Fourier
coeflicients—is a series of the form

K
205G (M0) (56)
k=0

(see table 1). The index s denotes which Fourier
coefficient is represented in the order shown in (54).

Summary diagram of the analysis

Station locations

l

Fourier |—————
analysis l
Mostly [— =
real @y
physical [ by «——‘ Corrections to LMT
variation . .

’ by ) ) i
£ o 2 ‘ Optimum separation
of noise
@y by
Mostly . .
noise
5 . —
an bu ——ri Estimation of noise ¢
ap

l

Orthonormal construction

(#—Choice of coordinate functions
Ar—TFirst orthogonalization
Pr—Second orthogonalization
Fr—Normalization

J

reograpnic analysis of Fourier (time series) \
coefficients

|

7 . (Orthonormal series truncated for I
ZdrFx i : ot e
optimum separation of noise

| Zbkl?k=“a;/1k (Intermediate results)

SDiGr Represcn},zltion in terms of ox'igi-)
= nal coordinate functions

Diurnal representation
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Coeflicients Dy, defining the function T' (X, 8, t) for monthly median f¥, (Mc/s), December 1957

Notation: For each entry the number given by the first eight digits and sign is mul-

TABLE 6.

I—main latitudinal variation. Mixed latitudinal variation: II—first order in longitude, IIT—second order in longitude.
tiplied by the power of 10 defined by the last two digits and sign.

TIME VARIATION

9e¥

Harmonic 0 2 - 4
N o 1 2 3 4 5 6 7 8
0 140914267E 01 | 7.7372089E-01  74283.:942E-01 |-9.2623643E-01  B47422963E-01 |-147848102E-01 =347885388E-01 | 2¢9685747E-01 =245333249E-01
1 [ -748953766E-01 | 4.8827410E-01  246530059E 00 [-145247263E 00 8s0915360E-01 [-94284316E~01 =-1e¢7684497E 00 |-%+3241333E-01 =-5.7663186E-01
2 249886163E 00 | 146714562E 01  2,1789511E 01 | 6+45370734E-01 =-3,3546872E 00 |-243955230E-01 =~1+4676821E 00 [~1e4250625E 00 =-441630597E-01
3 145785872E 01 147292880E 00 =-148330226E 01 | 3.4795284E 00 -443719376E 20 | 644229818E 00 1.0586009E 01 9¢2466606E 00  248930649E-02
4 | =7.3081383E 01 [~1.0531759E 02 =1,0238298E 02 | 2+1601855E 00 8e6228765E CO [-68914741E-01  1¢0163215E 01 | 1+0430091E 01  641317524E 00
1 5 -4.6525828E 01 |=4.1977129E 00 Te5444276E 01 2.0150497E 00 106324815E 01 |-344641695E 01 =246678432E 01 |~37404618E 01 =5.6494755E-01
6 149878676E 02 | 2.5449798E 02  244343033E 02 [-4+3352216E 00 =-5e4578438E 00 |-7¢5223076E 00 =-22052303E 01 |-3+9342693E 01 =-2,0193537E 01
z 7 4¢9107151E Ol | B8+4645829E 00 -948828049E 01 [-2.6254765E 00 -167752290E 01 | 6.0494795E 01 341563795E 01 5.0754311E 01  442224289E 00
o 8 | =241057577E 02 [-2.6631189E 02 -246629260E 02 | 141159760 01 ~-148912893E~-01 | 243693942E 01  245115734E 01 | 5¢3091602E 01  2.7875168E 01
= 9 | =147550868E 01 [~6.6770028E 00  3,9049190E 01 [-1.4319514E 00 5e0474002E 00 [=341529647E 01 =1¢3718612E 01 |=242160749E 01 =3,1592644E 00
2 10 746640091E 01 | 1.0001173E 02  140270474E 02 |-8.8129838E 00 =59311831E-01 [-1e5101959E Ol ~1e1473124E Ol |-2.3054411E 01 =-1,3278131E 01
< 11 | =542964947E=01 | 244364768E-03  8,0027715E-01 | 640721534E~01 =-1,2101191E-01 |-1+0403821E=01 146257809E=01 [~140643796E=01  642557100E-02
12 246902534E=-01 | 944759300E-02 =648859721E-01 | 743459486E-01  147502589E-01 |-5¢0371087E=02  341257521E-01 [=7.8402439E-02 6,3306112E-02
:t’ 13 201349603E=02 [=349538481E 00  3,4758507E-01 | 340601999E 00 ~-1¢2871614E-01 [-4¢8954588E-02 9e1777242E~01 |-4.7842801E-01 ~-1.8609319E-02
S 14 341711371E 00 | 157516087E 00 =-1,45318519E-01 | 1.2964863E 00  743990802E~01 [-Be4662998E=01  202758654E~01 [-2,2977208E-02 =-1,0258091E-01
= 15 1e6633779E 09 | =3.5908690E 00 =-1,1218609E 01 [-5.7828038E 00 =5.0241930E~01 | 740223299E~01 =1¢4589699E 00 | 1.1074558E 00 =-5,0288115E-01
a 16 | -5¢3166566E 00 [~-5.6115813E 00 =-442479382E 00 [-7.8961277E 00 7¢7927373E~02 | 247583131E 00 -1e7414663E 00 | 7.5675662E-01 -842908363E-01
=4 I 17 [ -1¢9191673E-01 | 146253567E 01 =442751713E 00 [-1.0306968E Ol  441552535E=01 | 700501295E=01 =4e5479047E 00 | 845073202E-01 =2¢4932280E-01
@ 18 | =242335084E 00 |~6+0404139E 00  9¢857475BE=02 [-643966695E 00 =1+4409493E 00 | 3¢3823205E 00 =149706686E 00 | 1.9771550E=02 =-6+9674328E-03
8 19 201297312E-01 | 843133165E 00  3,0209412E 01 | 1.42918815E Ol  2+0064190E 00 [-1s4150307E 00 1+6666640E 00 |-1.5010523E 00 8.8937262E-01
w 20 4e1376244E 00 [ 2.0858187E 01  241029316E 01 | 148395100E 01 =4¢3110338E 00 |-162203444E 01  2.3400389E 00 |=1,0840088E 00 1.2606628E 00
o] 21 ~143660412E 01  5,3866998E 00 | 7.1701701E 00 -8¢9934726E~02 |-143007687E 00  4+4833956E 00
22 3.7958689E 00  2,9883151E-01 | 643709797E 00 9+0028155E-01 [-342107806E 00  149325332E 00
23 ~6.2877868E 00 =-2,2921706E 01 [-843322061E 00 =263156345E-01 | 141989445E 00 640279800E-01
24 ~1.6428649E 01 ~146010904E 01 |-141403061E 01  4¢9586704E 00 | 1e1153906E 01 =-6¢5103689E-01
25 4e6818604E-01 =-B47875202E=01 |-1.8927348E~02 248565115E~-01 | 845442873E-02 =-3,1833852E-02
26 =144529204E-01  543212479E-01 | 1.5694889E~-01 ~-1,0888240E-01 | 1¢7714674E=03  144413557E-02
27 =9.6026849E-02  940155041E-01 | 2,4230455E-01 =5,1621379E-02
III | 28 -2.7047523E-01 ~-7.5395824E-01 | 4.,07904T9E-01  Be3877255E-02
29 =144390941E 00  148835552E 00
30 143630296E 00  1.9063635E 00

Harmonic 6 7
> NS 9 10 11 12 13 14 15 16
8 0 | 145531158E-01  243792567E-01 |-6e4560618E-02  6¢1802934E=~02 |-7.2905640E-02 -601891910E-02 | 7.4823447E-02 -103109944E-03
= 1 3.7190015E-01 =449630663E-01 | 347675107E-01  3¢1683339E-01 |-1.4461850E-01 244323151E-01 |1.0825114E-01 ~-1+0503997E-01
= 2 | 1.0722732E-01 =-6+4481278E-01 | 104638798E 00 =5s7878543E-01 |-3,7733971E-01 ~-3,0163709E-01 |-5.3879264E-01 -9+2140743E-03
x 3 [-247126487E-01  7.9842262E 00 |-1s8491821E 00  1¢1859947E~01 |-1.4023915E 00 =2+1925556E 00 | 7.0639567E-01 -341251254E-01
S 4 |-240074097E 00 =945196921E-01 [-1s0122759E 01  600368895E 00 | 345854293E 00  4¢5672736E 00 | 1.4057245E 00 -1s6983739E 00
0 1 5 | 340534070E-01 =-341520131E Ol | 3¢9806334E 00 =-247641763E 00 | 7.4862415E 00 7To7719395E 00 |2.5793256E 00 1e9127105E 00
= 6 | 642490299E 00  146007400E-01 | 209222164E 01 =149459016E 01 [-B+4682503E 00 -1.1667597E 01 |3.4862643E 00 7.5111334E 00
o 7 |-245598377E 00  443334295E 01 [-3.4801114E 00  3.3851973E 00 |-1.0514823E 01 -1,0894292E 01 | 3.9185429E 00 -2+6382915E 00
I 8 |[-8.5661732E 00 4¢7626390E 00 |-3s4945636E 01  243111368E 01 | 7.8529029E 00 1,1465121E 01 | 5.0508122E 00 -100165159E 01
a 9 | 241710776E 00 =-1,9401572E 01 | 9+0533099E~01 ~-1s0657850E 00 | 4e6367167E 00 5.1017995E 00 |1.9346376E 00 1e1577847E 00
z 10 | 4.0764945E 00 =-3¢6110235E 00 | 1+4435670E 01 =-9¢1508738E 00 [-2.4935791E 00 =440293859E 00 [-204991334E 00 4¢3718649E 00
S 11 502536049E-03  445441154E-03 | 247549960E-02  4eB208075E~02 | 9.6875999E-04 -845190815E-03 |5.1576599E-03 ~8.1442986E-0k
5 12 [-53775538E-02 -341418646E-02 | 646945602E~02  2.2478048E-02 [-2.8802577E-02  1.0904388E-02 [-2.6393688E~02 1+2157885E-02
o 13 741804160E-02  542992250E-02 | 242264430E-02  27159531E-02 | 1e7879777E=03  343803478E-03 |-4.6019688E-03 ~-242794990E~02
14 | 641635942E-02 =-340900826E~02 |~843197396E~02 5¢4742761E-02 | 3.2164980E-02 -1.8425275E-03 | 4.8023952E~02  1.0659245E-03
15 [-1419255276-02 =-541757125E-02 |-5.0750350E-02 ~-7+1205906E-02
16 1.0552388E-01 449768387E-02 |-141215977E-01 -643709289E-02




The function T'(\,0,t) therefore represents the con-
tinuous time variations of an ionospheric charac-
teristic on a worldwide basis and can be used to com-
pute its value at any desired location and instant of
time. Such a function is referred to as a numerical
map. The coeflicients defining the numerical map of
Jol's median for December 1957 are given in table 6.
Many useful applications are made from numerical
maps. For example, a variety of worldwide contour
maps and other graphical representations of iono-
spheric characteristics can be computed and plotted
automatically by machine. As an illustration,
figures 12 and 13 show the variation of f,F, median
for fixed instants of universal time (UT) and LMT,
respectively. In addition, a great deal can be and
has been learned about the regularities of the iono-
sphere from numerical representations. The most
important immediate application, however, is the
prediction of long-term changes in ionospheric con-
ditions. Such predictions have already been pro-
duced using the methods deseribed here. A further
discussion of these results and other applications of
numerical mapping will be given in later papers.

The authors give special acknowledgment to the
valuable assistance of Mrs. G. Anne Hessing and
Miss Martha Hinds in the development and large-
scale application of computer programs and to
Mrs. J. Kaye Myers for her contributions—particu-
larly in the preparation of ionospheric data on
punched cards —essential for the success of the proj-
ect. The authors also acknowledge the helpful
assistance given to them by the operators in the
Computing Laboratories of the National Bureau of
Standards (in Boulder, Colo., and in Washington,
D.C.), Mr. Walter B. Chadwick (Prediction Services)
and the Tonosphere World Data Center for supplying
the raw ionospheric data employed, and the many
other persons at the Central Radio Propagation
Laboratory—too numerous to mention—who have
rendered useful contributions to this work. Finally,
the authors express their sincere appreciation to Dr.
Ralph J. Slutz who, as Chief of the Radio Propaga-
tion Physics Division and later as consultant for the
Upper Atmosphere and Space Physies Division, gave
strong support and unceasing encouragement during
the entire course of the work.
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