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This paper is a part ial study of currents induced on circula r, conducting cylinders by 
narrow radiating slots. First, a brief and general formulation of the radiation fields of 
slots on cylinders is made. Then, the problem of an infini te axial slot is examined t horoughly 
for a ll cylinder sizes. An expansion for the fields, very close to t he slot, on la rge radius 
cylinders, is a lso obtained . Sample computations are made, fo r various ranges of cy linder 
radius, and t he ordpr of t he errors is discussed . 

The problem of a circumferent ial slot, of constant excitation, is a lso co nsidered. An 
asy mptotic expansion obtained for this case yields t he surface current distribution for values 
of axial dist ances t hat are sma ller t han t he sq uare of t he circumference of the cylinder . 

Since one of t he objectives of t his st udy is to determine mutual coupli ng between t wo 
slots on a cylinder, t he last section presents a formula tion of t he equi va lent nctworl in 
term of t he surface and feed line currents. 

1. Introduction 

The problem of determining the in terac tion of sources with each olh er or with other 
discontinui ties, on curved conducting surfaces, is basically a problem of th e fields of the sources 
on the conducting surface. In a previous repor t H eld and H asserji an [1958] discussed t he 
resul ts of an experimen tal study showing the effect of the tip of a cone with a slo t. The con
clusions of that study led us to consider the problem of the fields of a slot on a circular cylinder . 

There wer e several reasons thaL led us to this approach . Our study of the cone indicated 
tha t Lhe cone problem was basically a sLuely of fields on curve d condu cting surfaces wi th the 
cone tip as a singularity. In addition , the m athematical analysis of surface fLClel s on th e cone 
was though t to be a formidable problem . Therefore, a simpler geome trical model was sough t 
which could be studied bo th theoretically and experimen tally and then the results exLended 
to no t only the cone bu t other geometries as well. Therefore, it is believed tha t a complete 
study of a circular cylinder will p lovide fund amental answers to various problems of curved 
conducting surfaces. 

The formal solution of the fields due to sources on cylindrical structures has been treated 
in the literature [Silver and Saunders, 1950 ; Sensiper, 1953 and 1957 ; Wai t, 1959]. However , 
expressions for numerical computations have been limited to the determination of the fields 
a t large distances from the cylinder surface. Several authors have treated the problem of cur
ren ts on the surface of cylinders [Papas and King, 1949 ; Lucke, 1953 ; Kishicla, 1960] for infinite 
axial slo ts . However, their results do not indicate the magnitude of th e errors involved in 
the approximations that they employ. 

In this report we provide expressions, for the surface currents due to infinite axial slots, 
for all ranges of cylinder radius. The expressions that are used are all asymptotic which pro
viele estimates for the errors. Comparisons are made between the harmonic series and residue 
series evalua tions. 

1 The research reported in this document has been sponsored by the Electron ics Research Di rectorate of the Ai r Force Cambridge Research 
Laboratories, Ollce of Aerospace Research ( USAF), Bedford , Mass. Contract No. AF 19(604)-4098. 

2 P resent address of Dr. Gerard H asserjian : PhysiCS Technology Department , Boeing Compan y, Sea tt le, \\"ash . 
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The problem of the currents excited by a narrow circumferenti al slot of constant excitation, 
running entirely around the cylinder, is also treated. The results are again asymptotic expan
sions and in this case are limited to axial distances small compared to the circumference of 
the cylinder. 

2. Formulation of the Cylinder Problem 

In this section we shull formulate the expressions for the fields due to slots located on 
conducting circular cylinders of infinite length. Such a formulation has been performed by 
various authors [Silver and Saunders, 1950; vVait , 1959] and is outlined briefly here. 

The general solution, for the field components, may be derived from two scalar functions 
which individually satisfy the wave equation . We shall identify these f unctions bY>/;J (1',<p,Z) 
and >/;2 (1', <p,Z) . The coordinate system and the cylinder orientation is shown in figure 2.l. 
The formal solution for the two functions mfty be written 

(1 ) 

where an appropriate path should be chosen for the Fourier inversion. The coefficients or 
the series, A ni and Ar.2, ma.y be determined j( the field distribution on a closed surface is known . 
In this problem, the tangential components of th e electric field on the surface of the conductin g 
cylinder will be zero everywh ere except across the slo t. If the field across the slot is known, 
then t he field distribution on the entire surface of the cylind er is defined, which makes it pos
sible to determinc the unknown coefficients of the general solution . 

Considering two slot orientations, longitudinal and transverse, and assuming the tangen
tial electric fields to have only components transverse to the slo t, we have the following bound
ary condi tions on the surface of the cylinder (1'= a). For a longitudinal slo t 

Ez= O, for all Z and <p 

(2) 

E",= 0, everywhere else. 
For a transverse slo t 

Ez= O, everywhere else (3) 

These provide sufficient information to determin e the coefficients of the general solution and 
the field components derivable from them. 

For a longitudinal slot , the coefficients of the series of >/;2 are zero because E7,= O. The 
field components as a function of >/;J are: 

(4) 

H -~ oVI ,E _~ o>/;J . 
T- W/U O1'OZ T- ~ 1' o<p 

Matching (1) and (2) by the r elation E",=-~ "Ofl, we find t ltftt 
~ ur 
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FIG L'HE 2.1. Coordillate~ anri orientation oj the 
c)jlindC1". 

where 

Therefore, for Lh e longitudinal slot 

B nl (.I) 

f 

(5) 

(6) 

(7) 

Once (7) is evaluated, we can th en evaluate tbe otber field componenLs from the r ela· 
tionships in (4). 

For a transverse slot , both scalar functions ifil and ifi2 have non-zero coefficients. 
The field components fl, S a function or ifi l and ifi2 are: 

E =~ oifil ,+_ ]_ 02ifi2. 
T f r ocp iw}u oroZ 

Using eq (8) and the boundary conditions (3) we obtain from the Ez component 

A (iw }u) B n 2 (.I) 
n 2 (P - f2)H ~2) (a·Jp- f 2) 

where 

Also, from E<{> we bave 
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or 

(12) 

Therefore, for th e scalar fun ction >/lIt of the transverse slot, we have 

(13) 

and 
>/I (r Z) = iWJ.Ltf '" ei,Z .t Bn2 (S) e-in'PH~2)(r olk2=-r) dt. 

2t ,'1', 27r _'" n~-'" (k2-t2)H~2) (a -JP-- r ) 
(14) 

Substitution of (13) and (1 4) in (8) will yield the desired field components at:o any point 
around the cylindero 

In the expressions of (7), (13), and (14) we have integrals of th e form 

(15) 

where the pa th of integration should be specified around th e singulari ties of tb e integrand . 
These singularities are two branch points located a t !;= ± k. 

For the H ankel function of the second kind, it is necessary to require that over the pa th of 
integration of (15) 

- (7r + t) < arg , lk2- t2<t. (16) 

Furthermore, in order to have outward r adial propagation and to keep th e fields bounded at 
infini ty, it is necessary to require that for k complex 

(17) 

For k real, (17) reduces to 
arg -Jk2- r = O, for 1!;I<k 

(18) 

I 
d.. 

1 

Therefore, in discussions of tbe integral in (15), we shall denote th e path of in tegration by i 
0 1, as shown in figure 2.2. The branch cuts and the pa th of integr ation conform with the con-
straints specified by (16), (1 7), and (18 ). 'Vhen k is real , the path of in tegra tion should avoid 
the singularity as shown by the do tted curve in tb e figm e. I 

This completes the formulation of the fields of slots on condu cting cylinders. In the I 
sections that follow, we shall evalua te the magnetic field on the surface of th e cylinder for a 
uniformly excited longit udinal slot of infinite length and a circumferen tial slot runnin g entirely ~ 
aroun d t,he cylinder. I 
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FIGURE 2.2. Path of integration in the r-plane. 
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'" 3 . Infinite Axial Slot With Constant Excitation 

A longitudinal slot, of narrow width, can be said to have a constant electric field across the 
slot. Therefore, on the surface of the cylinder 

(1) 

where Vo is the voltage across the slo t at some reference point, 2'fo is the angular wid Lh , a is Lhe 
radius of the cylinder, j(Z) is the axial variation of the voltage along the sloL and Lhe funcLions 

., inside the brackets are the usual Heaviside, step functions. Since the integral implies thc 
summation of infinitesimal slo ts, for the purpose of formulating the problem, we shallfil'st 
assume 

j (Z) = 8(Z - Z' ). (2) 

Therefore, considering (1 ) and (2) and evaluating the coefficients Bnl (n defined in (2- 6), 
we have 

B () - V o sin n'fo -iW 
n l S - 2 ./. e . 7ra n 'l'O 

Substituting (3) in (2-7 ), we have 

- 1 V OE 00 sin n'fo -in J 00 eil(Z -Z')H~21 (r, llc2 S2) ds 
'f1l(r,c,o,Z )=Z2a :6 - n' /' e '" ,fk2 s2 H (21 ' ( ~) . 

7r 7r n=-a> '1'0 -00 - n a, C -

(3) 

(4) 

In order to evaluate the fields due Lo any sloL with an excitation j (Z ) alon g its flxis, we 
need to integrate the product of j(Z' ) and (4) with respect to Z'. 

To obtain the appropriate expression for the longi tudin al slot of infinite extent, of 2aif;0 
I width and of constant exciLaLion alon g the Z-axis, we integrate eq (4 ) wi th respect to Z' from 
:> - co to + co • Sin ce 

(5) 

then (4) becomes 
./. ( )_+ V OE ~ sin n'fo -in", H~21(kr) . 
'I'l l r,c,o - 2 1 L..J ./. e }'T (21' (k ) 7rlCa n =-oo n 'l'o ~ n a 

(6) 

From this result expressions for any of the field components can be obtaincd. Howevcr, 
we shall concern ourselves only with the numerical evalu ation of the magnetic field on the 
surface of the cylinder . 

In order to obtain expressions which are amenable to computations, it is necessary to con
sider approximaLions valid in different ranges of cylinder radius. We will obtain approxima
tions valid in th e ranges ka < < 1, ka ~ 25 and ka?:. 10. 

3 .1. Small Ra dius Cylinders 

The scalar function (6) evaluated on t he surface of th e cylinder is 

_ - VOE [ H J21 (ka) 00 sin n'fo cos nc,o H~21 (lea) ] 
'fl (a,c,o)- 7r 2kaHf21 (ka) ~ n'fo ka H~21 ' (ka) (7) 

for n?:. l and lea< < 1 

(8) 

Therefore, 

if; ( ) I"J _ V OE[ H J21(ka) +i:, sinn'focosnc,o] + O[(k )2] 
1 a,c,o = 7r 2kaH{21 (ka) n=l if;on2 a . (9) 
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The sum of the infinite series in (9) 

(10) 

is a symmetric function of 'P and is evaluated in appendix 1. Therefore, 

(11) 

using (2 to 7) and (ll ), the magnetic field on the surface oJ the eylinder becomes 

(12) 

8 ( ) ( ta,n ('P/2) 1) I ( . ( ( , 
1 'P = l-f- % -2 n 2 S ll1 'P/2) - % cos 'P/2» 

( tan ('P/2) 1) . 
- % +2 In (2 S1l1 ('P/2) + % cos ('P/2» . (13) 

Appendix I a,lso includes the evaluation of 8 1 for - %'50 'P'5o >/10 , making it possible to evaluate th e 
magnetic field across the slot . Figure 3. 1A shows the plot of sample computations for the 
magnetic field distribution on the surface of cylinders of ka< < 1 and 0/0= 1/40, and figure 
3. 1B is an expanded plot of the m agnetic field in the region of the slot for various values of 
slot widths 20/0. Both figures represent the plot of the bracketed term in (12), 
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F I GURE 3, l B . The expanded pial of "'; (</i) al'onnd sial 
f or ka= Q,l. 

3 .2. Intermedia te Range Cylinders 

For cylinders having r adii 0 '50 ka '5025 (this also includes the fil'sL range ), the numeri cal 
evaluation is obtained by approximating the H ankel fun ctions J01' large orders and usin g the 
approximation for the higher indexed terms of the series. A paper by O. H . P apas and R. King 
[1949] shows this evaluation without indicating th e order of the errors involved . In this 
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section we attempt to bridge thi s gap . Furthermore, the results obtained in this analysis 
can be employed to determin e the magnetic field across the slot of widths up to 30° with great 
ease, making it possible to evalua te the slo t impedance. The examples, considered in th e 
a nalysis, arc assum ed to have a constan t electri c field across th e slot. However , the analys is 
can be applied to other field distributions, provided th e axial distribution is conslan t . 

Takin g the expression in (7) and let ting ka= p, we write 

± sin n% cos n'PH~2) (p)] 
n= l ~ -p-H~2) (p) . 

[ ( p)2]1 /2 n For n 1- n > > 1 and p= cosh IX, we have (see [Wa tson , 1952] page 243) 

FI CZ) (p) ~i ! : ePCa cosh a-si nh a) [1 + 0 ( .1 )] 
n 'V 7rp smh IX p sInh IX 

FI;t'( p)~-i !2sinh IXepcacosha-SIDha) [1 + 0( .1 )]. 'V 7rp p s1l1h IX 

Tlwl'efol'c, the ra Li o of the Lwo fun cLions above becomes 

(14) 

(15) 

This leads to an approxima te expression for th e series in (14), which can now be expressed 
as 

where, [or sufficien tly large AI 

R' < -.0 cos n'P+ 4 -.0 cos n'P 
M_ L...J --2 - P L...J --5 - ' 

n= lIJ n n=M n 

Considering, now, Lhe seri es 

s= ± sin n% cos 3n'P 
n=}\!f n fo n 

appearing in (17), we wri te 

_~ -.0 sin n% cos n'P+R " 
8- ~ ,r L...J ,I, 2 . AI 

l V.L n=}\!f n 'l'O n 

where, for sufficiently large ]0.;[ 

R " ..;:-, (1 1) M'50 L...J 3- "r 2 cos ncp. 
n=}\!f+l n l V.L n 

(17) 

(18) 

(19) 

(20) 

In order to evaluate the upper bounds of (18) and (20), we emplo~- the Euler-M aclaurin 
sum formula. The member s 01' the series in (18) and (20) ha,ve th e form 

j ( ) _ cos 'pn 
kn -~. (21) 

Ther efore, with Bp and 'Pp(t ) as th e Bernoulli constan ts and polynomials respectively, we have 
from V{hittalcer and Watson [1952, p . 128], 
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(22) 

where 

1 J'I [ a> ] R m=-(2 ) ' epzm(t ) ~j~m(M+p+ t) dt. 
m. 0 p= o 

Considering (21 ) in (22), it is immediately apparent that the dominant term of (22 ) will he 

I =l a> cos ep.:: d 
1 k X. 

]If x 

Integrating this by parts, we have 

1 = - sin Mep+~ l a> sin Xep l . 
1 M k k+ ! ex ep epMX ' 

Furthermore, 
1 J' a> sin xep 1 
~ ]If xk+ ! dx-::;'~A1 k- ! for Mep small 

1 
-::;'epl\;fk for Mep large. 

Therefore , for a sufficiently large M, we can write 

I = 0 [ < sin Nlep> ] 
I epJl1k 

where by the symbol, < >, we mean the bounds described flbove. 
This leads to the conclusion that, [or a sufficiently large 1\1{ 

(23) 

We can now use (23 ) to estimate the upper bounds of (18) and (20 ). Therefore, the 
expression in (17 ) becomes 

(24) 

where 

8 2= £ sin nl/lo cos ?nep 
n= l 111/;0 n-

... 

< 

The infinite series 8 1 and 82 can be expressed in a closed form and are evaluated in appendix 1. ~ 
The dominant term in the expression for RM depends on the values of M , ep, and p. 

Therefore, the magnetic field on the surface of the cylinder is 

_ iP ,..., iwVo ( H ti2) (ka) 
Hz - w}J.€ l/Il(P,ep )= 7r 2kaHf2) (ka) (25) 
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where 

for fo~ cp~7r , and 

The order of the enol' of (25 ) can be estimated from (24 ). Figures 3.2, 3 .3, 3.4, and 3.5 
are sample computations of the bracketed term in (25 ), which are iden tifi ed by fl . These 
computat ions were performed by a digital computer and the following conditions were 
imposed. 

and 

M = 3[lea] for 3 <ka ~25. 

By [lea] we mean the integer following lea. 
The res ults in t his section show d early t he orders of t he approximation s used in computing 

the magnetic field on the s urffl,ce of the cylinder by using finite i,erm s of t he bn,rmoni c series . 
Even though one example of the slot fl ngular width (2fo= 1/20 ) w~tS consid ered, th e ex-pressions 
are vfl,lid for widths up to f o= 1/2. In addition, for values of ka large, fairly accurate values 
for the surface fields neal' and across the slot can be obtained. 

These r es ults can also be compared w·ith t he reSidue series evaluations siu ce cO lllput~ttion 

are not restricted to small vfl, lues of lea . Such a companson is made in section 3.4 . 
In computing the examples in the figures, the Hankel function s for 8 1 (see eq (25» were 

computed by using t lte recursion formulfls. For t lte r eal pm·t of the Hankel fun ction , I n( p), 
t he itemtive steps wer e started at inclex 1\;£ and 1\11- 1, and for the illlaginal',IT part of t he 
Hn,nkcl function , Y ,,(p), the iteration W~LS begun from n = O, 1. This approflch red uces possible 
cumulat ive enol'S due to the iterat ion process. 

-4 -0.8 0~---:20:----:'-40:---:':60--8:'::-0--10.L0--12LO--'14-0 -...J.160---'-180--' 

CP. ANGULAR DISTANCE FROM SLOT 

FIC U RE: 3.2. h naginw·y pw·t of the magnetic field on 
the cylinder surface, for ka = 0.5, 1.0, 5 .0, 10, 
>fo = 1/40. 
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3 .3 . Large Radius Cylinders ~ 

For cylinders having radii in the range ka?:. 10, the standard Watson Transformation 
[Bremmer, 1949; Sensiper, 1957; Wait, 1959] can be used quite adequately. The expression 

. f , ( ) = _ VO E ~ sin n!{lo -in" H~2) (ka) 
1" 1 a,1{) 2 k ~ ,/, e H (2)' (k ) 

7r a n=- '" n l"O n a 
(26) 

is a l'esidue series of the contour integral 

VOE [1 f. sin V1/;o e -iv ( ,, - ?r\ H~2) (ka) ] 
ifi l (a,I{))=+27rka 2i c; ~ sin V7r H i2)I(ka) dv (27) 

where 0; is specified in the v-plane as in figure 3,6, The series in (26) represents the sum of the 
residues of the poles of the integrand in (27) that occur on the real axis . However, the contour "\ 
0; can be deformed into a new contour C~ , which encloses the zeroes of H~2) ' (ka) providing 
another residue series. F igure 3.6 also shows the deformed contour C; which encloses the 
poles, V7n ' The poles Vm are the set of roots of 

H J2) I (ka) = 0 
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> 
c; 

FIGURE 3.6. The contou.rs oj C; and C~ in the v-plane. --------- -+----------

c; 

identified by the index m = l, 2, . . . . This new series converges rapidly for cp and ka large. 
However, it will be necessary to evaluate the integral (27), by another method, for small 
values of cpo 

We first take the residue series about the poles Vw Since 

H~2) 1 (ka) = e -iv.:H'!~ ' (ka) , 

and if the zeroes of H !2)I (ka) are Vm in the lower half plane, then the poles in the upper half 
plane are v~= -Vm . Therefore, the integral in (27) expressed as a residue series is 

(2 ) 

Note the sign change due to the clockwise rotation of the contour 0;. Equation (28) expresses 
the fields on the cylinder surface as attenuated standing waves in the cp-di).'ection. It is also 
possible to express the fields in terms of traveling waves. We take 

_._1_= =r= 2·i L::: e±iV(2P+l ) .. 
SIn V7r p=O 

(29) 

as a function of the complex variable v. The first sign represents the value on the upper 
half plane and the second sign represents the value on the lower half plane. Considering 
the two parts of (28) and identifying 1/1; and 1/1: as the two sums representing the residues in 
the upper and lower half planes respectively, we have 

(30a) 

.1,+_ iVoE...!0...!0 R sin Vm1fto -Iv [2p ,,+ 1 
1"1 - - --~ ~ - 1 em'!' 

ka p = O m = l v",1/Io 
(30b) 

where Rl represents the ratio containing the Hankel functions. 
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The vm's, which are roots of H~2)' (ka) = O, fall in the fourth quadrant of the v-plane. 
Therefore, one could say that (30b) represents the waves traveling in the positive cp direction 
and that the integers, p, represent 1,he waves of mode m that have encircled the cylinder p
times. For large cylinders the p = O term would be sufficient to represent the field since waves 
that have completely gone around the cylinder will be highly attenuated. 

To evaluate R1, the ratio containing the Hankel functions , we use the approximation for 
the Hankel function discussed in appendix II. 

We need to evaluate 

where the vm's are the roots of H p)'(ka)=O. 
From (11 ) and (12) of appendix II we have 

and 

where 

1 (9)1/3 Ht~2) (Z) ~ - --:r=- :z w (t) 
2yrr 

H~2) ' (Z) ~ .1, (~)2/3 w' (t ) 
~, ' 7r Z 

(Z)I/3 
v=Z+"2 t. 

If we let Z = ka and substitute the above approximations into (31 ), we have 

R I=_(~)- 1/3 wet ) av _ (Z)2/3 wCtm) 
- z :t w' (t ) at v=vm -- "2 w" (t ,n) 

where the tm' s are the roots of w' (t )=O corresponding to the vm' s by the above relationships. 

(31) 

(32) 

From the differential equation of the function wet), discussed in appendix II, we have 

w" (t) = tw(t). 

Substitution of (33) in (32) leads to 

Rl~ _(~)2/3 l. 
2 tm 

Substituting this result in (30), Vm for -v~ and taking the p = O term we have 

where 

if/l=+i _V_'o _ ~ . m'i"O ___ _ (
T T f) (ka)2/3 ro sin v ./, e- ivm(2.--", ) 
ka 2 m=1 vmif/o tm 

3X2/3 _~ 
t",=~e 3 

2 

( ka) I/3 
vm= lca+ 2 t", 

and Xm represents th e mth root of 
J 2/3(X) - J - 2/3CX) = 0. 
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It is apparent that the expres ion in (35a) represents the waves traveling in t he negative cp 

direction and in (35b) , those traveling in the positive cp direction . 
Therefore, for large cylinder , the total magnetic field is 

(36) 

For sufficiently large values of cp the sen es is rapidly convergent. For instance, with lea = 25, 
the m= 4 term. is less than 1 percent of t he m = 3 term fol' cp = 20 o. 

To evaluate the integral ill (27) Jor cp small , we again consid or the travelinO" waves Lo be 
highly attenuated at the end of fI 360 degr ee path. Therefore, we can again substituLe 

2 · . f 1 ~e-'V1r or - .--
SIn V7r 

in eq (27) and consider the integral along the lower l1 alI of Lhe contolll ·. Thi s gives Lhe expres-
" slon ["or the traveling wave alon g the positive cp direction. The exprcssion now become 

. I , +_+~ SIn V 'I"O -iv'P L V a l v: J' -'i. +a> ' .1, E:T (2)(k ) 
'1" 1 - 2 Ie .1, e E:T (2 ' ( I ) GU. 

'If" a - i' -a> V '1"0 L V lea 
(37) 

We evaluaLe LIlC ratio of th o Hankel funcLion s above by usin g aga,in the fil'st Lerm of Lhe 
asymptotic expansion discu ssed in nppendix n. We have from ( 11 - 11 ) and (JT- 12) 

( lea)1 /3 
which gives for u= ka+ 2 t 

1 (2 )1/3 El,~2 ) (ka)~ --:--;= - w(t ) 
~ '\ 'If" lea 

H~2) '(ka)~ .1 _ (~)2/3 w' (t) 
~ '\ 'If" lea 

II?) (lea ) '" _ (lea)1 /3 w(l ) . 
JI~2 ) '(lea) 2 w' (t ) (3 ) 

This ;lpproximation is based on the assumption thaL t remains fLnile as (lea ) increases. The 
integral in (37 ) implies an in tegration for o<ltl< co and the approximation in (3 ) is valid for 
fini te values of t. This apparen L con tradicLion is compatible due to tlw exponenLially decaying 
nature or the in tegrand in (37) a nd Vf atso n's Lemma. Therefore, the major contribution to the 
integral is du e to th e finite values of t. Tbus, tal;:ing the approximation of (38) and th e first 
term of the expansion 

sin VIn"fo 
vmt/;o 

sin lea1/; [ 1 ( 2 ) 2/3 
lca1/;o 0 1- 2 ka t (l - lca1/;o cot ka1/;o) 

1 ( 2 ) 4/3 2 ( . (lca"fo)2) ] +4 lea t l - ka1/;o cot ka1/;o+ - 2- + ... 

The in tegral in (37) with the new variable of integration, t, becomes 

V ~ sin ka-I, (lea)2/3 . f -iE' + a> -i ('£'!.) 1/3 t w(t) 
1/;"(= - - 0- '1"0 _ e,ka'P e 2 'P - ,- dt . 

2'1f"ka IeMo 2 _ if' _ a> w (t) 

'-IV 0 now make the following change of variables: 

x= lcacp= 27r times the distance in wavelength from the center of the slot 

2.T.o= 2Ica1/;o= 2'1f" times the slot width in wavelength 
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(39) 

(40) 



c=2 (~a) 2/3= a curvature term 

s=-it= change of variable of integration. 

The expression in (40) now becomes 

where 

~ 1 S-"+l", :E. wCis) 1= - - . eO - ,- .- ds. 
c 27r~ - " -i", W C~s) 

(41 ) 

(42) 

The singularities of the integrand above lie on the left hand side of the line of integration 
in the s-plane . Since the origin is not a singularity we can express (42) as a Bromwhich integral 
with r=x/c 

- r= _1 5, 78 wCis) 
IH - -yr 2' e ' C' ) ds. 

7r~ BTl W ~s 
(43) 

Therefore , with !/ representing the Laplace operator 

1( )--f; 2!- 1 w(is) . 
r - r w' (is) (44) 

We next attempt to find an expansion of 

F ( )= w(is) 
s w' (is) (45) 

in inverse powers of s to obtain an expansion of l (r) for r small. We h ave 

(46) 

Therefore 

(47) 

In order to develop th e Hankel functions in their asymptotic expansions, we need to assure 
that the phase of the argument lies in the range - 27r to 7r. Wc note that in (43 ) s will range 
in value from + iro to -iro . Therefore , we use the identity 

in (47) and obtain 

H f%(Z' ) iT H {%(Z' e- i3 ,,) 

H J%(Z' ) e H i%(Z' e-·3,,) 

F (s) 

i" [ r: 2 ] e- T2 1-1(2) - _ I ~ -. 83/ 2 
1/ 3 V 3 

Using the asymptotic expansions of the Hankel function we obtain for their ratio 
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£ -i7</6 1+ '/, . + L[\(2/)3 (Z) [ . 7 7 ] 
Hi7Hz) e 6Z-72Z2-'/, 72Z3 •• •• 

(50) 

- 2 
If we now let Z=-~i"3 8 3/ 2 and ubstitute (50) in (44) we obtain 

-i2!: - _ \ [ 1 ,I"{ 7i 21 ] 
I (r)=e 4~ r!f ---4 2+ 32 7!2+~+ . .. . 

8 8 8 -y '/, 6485 
(51) 

Then employing the basic relation 

(52) 

it follows that 

I ( ) _£-if ( _~ /---; ~ /2+~ /~ 9/2 _ ) 
T -,;; 1 4 -Y7r'/, 'r 512" i T • •• 

(53) 

where 
x karp 

r c 2 (k;r 3' 

Substituting (53) in (41 ) and letting Y= (ka;:J, 3/2 , we finally have 

./.+=+ . VOE sin xo (2 -1(X-"/4)[(1 _ ,I; + 7,1; 3+ ) _ . (---.!!. _.2.. 2+ 7,1; .,3+ 
'1" 1 '/, 2 xo " ;X e 8 y 2048 Y • . , ~ 8 Y 120 Y 2048 11 ,)1 

(54) 

The curvature term, th e series appearing in (54 ), is r apidly convergent for small y , It 
approaches unity as (ka) approaches infinity. Therefore, the expres ion 

"'+=[ +i VOE sin xoJ /2' e- ilx - .. /4) (55) 
'1" 10 2 Xo " 7rX 

which appears in (54) as a multiplying factor to the curvature term, should represent Lh e 
field due to the slot on a fla t sheet. However, taking the arne limit of the original expression , 
eq (37), yields the following r esults: 

I , ./.+ l ' +'/, OE d ' -i.( - ,) L . a d ( 'V) 1 J Xo 1 J -i.+oo T[(2)(k ) 
lm'l" - 1m -- -- x - e ~ '" V 

ka--,>oo 1 - ka--'>oo 2 2xo -Xo 7ri -i"- oo kaFI~2)'(ka) 
(56) 

where xo=kafo and '.1 ' = karp'. 
We have from Sensiper [1957] or Nishida [1960], with x= karp 

1 f -i.+oo H (2) (ka) 
lim ~ e-i' (~-"") '(2)' dv= H JZ) (x-x' ). 

ka--'>oo 7r '/, -iE- oo kaH. (ka) 

Therefore (56 ) becomes 

.,.+=+iVOEJ:.... f XO L~ (2)( _ ') l ' 
'1" 10 2 ') L OX X C. x . 

J ...... Xo -Xo 
(57) 

The expression in (57 ) is the exact scaler function for the fields of a slot on a fl at sheet with a 
COil tant electric field V ok j2xo across a width of (2xolk ). For a sufficiently small xo, (57) 
becomes 

./.+ '" + iVOE TT (Z) ( ) 
'1" 10 = 2 LI. O X 
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and for a sufficiently large x 

./,+ +iVo€ si n Xo ~ -i(x- 7r /4l 
'l' 10~ --- -- - e . 

2 Xo 7rX 
(59) 

Since (59) is the first term of the asymptotic expansion of (57) and (59) is also equal to 
(55), it is reasonable to assume that a more exact expression for (55) would b e (57). Therefore, 
we can say that if Vo is the expression for a slot on a flat conducting sheet, t h en the expression 
for a slot on a cylinder of large (ka) and values of cp small is 

(60) 

where 
(kacp) 3/2 

y=--' 
ka 

A plot of the bracketed term of (60) is shown in figure 3.7, This result corresponds exactly 
with the conclusions of J. R , Wait in his analysis of currents induced on large spheres [Wait, 
1956], 

For a very narrow slot the expression of Vo should be, from (58) , 

V· - . Vo€ H (2) ( ) 0-+ '/.2 0 x (61 ) 

where x is th e distance from the slot. Our derivation for the correspondin g t erm , shown in (55), 
has only the first term of the asymptotic expansion of the Hankel function appearing in (61 ). 
Therefore, for narrow slo ts (61) may be used in conjlU1ction with (60). 

In conclusion we have, for large radius cylinders (ka?10 ), the expression for the magnetic 
field on the surrrtee of the cylinder 

(62) 

where >/;t and >/;1 are the traveling wave components in the positive and negative cp direction . 
The expressions for >/; t, for a slot located at cp= O°, has been discussed in detail in this section. 
From (35) we have 

(63) 

which indicates the symmetric distribution of the magnetic field about the slo t. 
Figures 3.8 and 3.9 show the plots of the ratio of the traveling wave component of the 

magnetic field due to a narrow slot on the cylinder to the field of a slot on a fl at sheet. The 
computations are based on the approximations expressed in (35 ) and (54). 
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3.4. Comparison of the Harmonic Series and Residue Series Evaluations 

In the evaluation of the surface fields by the h armonic series, we were able to show the 
order of the errors involved in the final evaluation . However , in the r esidue series evaluation, 
we did not attempt to indicate the order of the errors involved in the approximat ions. How
ever, it is quite obvious that as ka increases the residue series evaluation becomes increasingly 
accurate. On the other h an,d , as ka increases, the use of the harmonic series becomes con
siderably more difficult. Since there is a range of values of lea, where bo th method s can be 
employed , we devote this section for a comparison of the results of the two methods. We 
perform this comparison by numerical computations for cylinder sizes with ka= 10, 15, and 25. 

Figure 3.10 sh ows the results of three computations. The solid curve is a plot of the mag
nitude of the magne tic field computed by the harmonic series (see sec. 3.2). According to the 
estimate of the remainder (see eq (24» the order of the error by this method is (11M) [or small 
cp and 

[or large Mcp. There[ore, the errors in the computations of the solid curves oJ figure 3.10 are 
of order less than 1 percent over all values of cp o The points, in the figure, designated by the 
symbols ° and f:.. were computed by the residue series method. For the set of points 0, the 
computations wer e based on the first order approximation of the roots, Vm2, of the H ankel 
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functions discussed in appendix II. On the other hand, the set of points, t:. , were computed by 
using a second order approximation for the roots Vm2. It is quite apparent from the figme that 
the second set of points are closer to the harmoni c series evaluation , as expected. Actual com
parison of the numerical values shows that the latter set is off by less than 2 percent of the h ar
monic series evaluation. A comparison of the phase of the field by the two methods, which is 
not shown, has a maximum deviation of 5 degrees for either set of roots. 

It should be noted th at, in the figure, the region very close to t he slot was omitted for con
venience. The agreement between the two methods of evaluation holds for points up to several 
slot widths. However, if the field distribution across the slot and its edge is desired, the h ar
monic series evaluation will yield a more accurate result for values of ka< 25. The expression 
in (60) can be used for ka> lO provided the expression for a slot on a fiat infinite sheet is known . 

4 . Circumferential Slot Excitation 

In this section we will consider the case of a uniformly excited circumferential slot running 
entirely around the cylinder. 

D escribing the field distribution on the surface of the cylinder we have, with V representing 
the voltage across the slot , 

From (2- 10) we have 

Ez(r= a) = Va (Z ) 

E",(r= a) = O. 

Using (1) in the expression above, we have 

B n2 (/;)=- a(Z)e - trzdZ V etn"'dcp = V --= If . J'" sin n7f" {l,n=o 
27f" - ". n7f" 0, n~O. 
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Substitu tion of (2) into (2- 13) and (2- 14) leads to 

1/;lt = O 
and 

where Cl is the contour defined in figure 2.2. 

(3) 

Using (3), the equations in (2- S), and solving for the magnetic field on the surface of the 
c.dinder, we have 

H zCl'= a) = 0 
and 

(4) 

The problem, therefore, reduces to the evaluation of the integral 

(5) 

For Z > O, we can deform the contour Cl abou t the branch cut as hown in figure 4.1. The 
contours C1 and C2 are equivalent since for R1 -?oo the integrand converges to zero and the 
integral about the outer circle does not contribute to the value of I . We will next show that 
we can obtain an asymptotic eA'}Jansion of (5) for lcZ < (2ka)2. 

The argument of the Hankel functions in (5) varies between 7r/4 to - 7r along the contour 
C2' Therefore, with a sufficiently large Ro, we can take the asymptotic expansion of the ralio 
of th e Hankel functions appearing in (5) . With y = a k2 - !;2, we have 

H J2l f (y) 
H J2l (y) 

i{ l+_l _l _ 1_+_ 1 __ 25 _ l_+O(y-o) } . 
2iy 2 (2i y)2 (2i y) 3 8 (2i y) 4 

Substitu tion of (6) in the integrand of (5) leads t o 

I (kZ) ro..t _ _ 1 r irkZd [(_1 _~)+. (l+_l _ 25 )+O( -6)J. 
'-' = 27ri J C2 e !; 2y2 Sy4 '/, Y Sy3 ] 2SyO Y 

Therefore, in general, the asymptotic expansion of I (kZ) will h ave the form 

m-l 

1 (kZ) = - :6 angn (kZ) + ibnf n (kZ) + R m 
n=O 

and the fIrst few coefficients an and b" are: 

1 
a1= 2(ka)2 
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From complex variable theory (10) becomes 

From Coumnt and Hilbert [1953, page 482], we have 

Hl2 ) (kZ)=- 'l[\ r~~~;;)A) (k;)>' 1 2e ikZt (s2- 1Y- l/2d.\. 

Therefore, (11 ) becomes 

r (~) 
j (Z) = _ ~ 2 (kz) n I ~ (2n+ 1) FJC2) (kZ) 

n 2 ( 1) 2 e - n , 
r n+-

2 

Using the well known identity 

we finally have 1'0)' I ll ) 

j (Z)=c:_i r (D (kz)n If (Z) (kZ) 
n 2 ( 1) 2 n u, 

r n+-
2 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

It now remains to determine (9), which is the order of magnitude of the remainder term 
in (8) . For O< kZ< l, 

and [or kZ> l 

Therefore 

(18) 

Therefore (5) can now be expressed in the following asymptotic form with (!~2 sufficiently 

large: 
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e- ikZ (1 + ikZ) + ~ [-] (2) (kZ) 
16(ka)4 ka 0 " 

+! kZ [-] (2)("Z)_~ (kZ)2 [-] (2) (kZ) ] +O [1 + (kZ)2] . 
8 (ka)3 I c" 384 (ka) 5 2 " (2ka) 6 

(19) 

Therefore the magnetic field on the surface of the cylinder excited by a circumferentiitl 

slo t is, for (2~~)2 < < 1 

r. W€v (2 r. [ (1 l +ik~ e- ikZ 1 kZ [-]?)(kZ ) 
H .p(Z ) ~ -2 H o ) (kZ) 1+ 2ka -2(2kay ) H ri2) (lcZ) +2" (2lca) 2 H ri2) (lcZ ) 

25 (lcZ) 2 H J2) (kZ)] 
24 (2lca) 4 H ri2) (leZ) . 

(20) 

It is quite obvious that the bracketed term in (20) approaches uniLy as (lea) approaches 
infinity. As we let (ka ) approach infinity, the problem reduces to the case of an infinite narrow 
slot, which is also the limiting case of (20). 

Figures 4.2 and 4 .3 are ploLs of the magnitude and pbase of 

25 (leZ ) 2 [-]~2) (IcZ) 
24 (2lea) 4 H J2) (leZ ) 

(21) 

where various values of (lea ) were used as pflrameters and plotted as a function of normalized 
axial distances, (Z /2a). It can be seen from Lhe cmves that there is an increase in magniLude 
of feZ) which shows the contribu tion of th e various sec Lion of the source who e patb of prop
agation is alon g a spiral path on the surface. 
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5 . Mutual Admittance of Slots Coupled Externally 

In this analysis we wish to express the Mutual Admittance of a pair of slots coupled to each 
other by their External Fields. By "External Fields" we mean the electromagnetic field region 
excluding the transmission line regions feeding the slots. To obtain the expression for the 
"External 1 utual Admittance" we shall assume that the pair of slots are fed by ind epend en L 
Lransmission lines and that the slots are shunt elements to their respective feed lines. 

The external magnetic field of a single slot can be expre sed as (see Oliner [1957]) 

H .(r) = Sis (~X E) ·lfhdS 
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where E is the electric field across the slo t, J/ll is the dyadic Green's function for the exterior 
region of the slo t and S is the aperture of the slot cu t in a conducting surface. Therefore, the 
external field due to a p air of slo ts can be expressed as 

(2) 

where El and E2 represent the respective electric fields across the slo ts, S] and S2 their respective 
apertures. 

The fields of the slots in their transmission lines can be expressed in terms of voltages and 
curren ts. According to Marcuvitz and Schwinger [1951], the internal magnetic field due to a 
slo t in a waveguide is expressed as 

(3) 

J 

I 

1 

where f3 is the Green's Function Diadic for the waveguide and f3(!}, f3(2) are the standing wave 1 
type mode functions for the waveguide. 

The con tinui ty of the tangential field required that Elf(r)= El.(r) at the slo t. Therefore, 
using (2) and (3) for slot (1) we have 

f LI (~XE]) . (J/,,+if3) dS+ f L2 (~XE2)' ;¥"dS=~ (Ii!) -t-I {2») f3 i]) (r) -i ~o (V P) + V f2») f3 }2) (r) . 

(4) 

If this slot and its external load can be represente,d as a shunt element in the transmission line 
t hen 

thus reducing eq (4) into 

-iY OV l f3i2) (r)= fLI (~XE1)' (J/,,+i{11)dS+ fL2 (~XE2) ·J/lldS. (5) 

But, by th e defini tions given by Marcuvitz and Schwinger [1951] 

(6) 

-7 -7 

where I~ is the total current in the shunt admittance. Multiplying (5) by (nXE) and integrat
ing over S, we obtain 

- VJ;= fLI [fLI (~XEl)' (J/,,+i{11)dS 1 (~XEl)dS 
+ fLI [fL

2 
(~XE2) 'J/"dS 1 (~XEl)dS. (7) 

W e can 'write a similar expression for the second slot in terms of its characteristic equations, thu s 

-V2I~= fL2 [fL2 (~XE2)' (;¥,,+i{12)dS 1 (~XE2)dS 
+ JI

2 
[fL

I 
(~XE1) ·;¥"rlS 1 (~XE2)dS. (8) 

356 



Figure 5.1 represents an equivalent circuit whose elements we shall identify in terms of the 
exprcs ions discussed above. Writing the network equations for the equivalent circuit we find 

]IS=Y;IVIS+YIZVZS 

(9) 

Multiplying the above equations by Il ls and V2S respectively and considering ideal transformers 
(1) and (2) we have 

Vd; = VlS]IS = Y;l V is + Y!2 V 2s V Is 

V2]~= V2S]2S=YI2VlSV 2S+ Y;2V~S ' 

(lOa) 

(l Ob) 

Comparing equations (lOa) and (lOb) with (7) and (8) we immediately observe the equiva
lence, which leads to 

fLJJI
I 
(:'XEI) 'J/hdS J (~XE2) dS 

V isV 2s 
(11) 

where VIS and V2S can be the slot voltages and the bracketed integral represents the magnetic 
field due to slot (1) across slot (2). 

Considering the short circuit condition of the secondary (V2= 0) and eqs (6), (7) and (lOa) 
we obtain an expression for the self impedance of slot (1) at the transmission line terminals 

(12) 
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FIGURE 5.1. Equivalent circuit of coupled slots. 
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Similarly the self impedance of t he second slot is 

(13) 

These are t he same expressions as those obtained by Oliner in his study of impedance of 
narrow slots [Oliner, 1957]. It remains to show the expressions for NI and N z. Considering 
the short circuit conditions again, we have 

V1=NIV l s or N1= Tf I Y 
I I s 11 

where, 

Therefore, 

(14) 

Similarly 

iY 02JJS2 (~XEZ)· (3J2) :d8 
Y 22V 2 s • 

(15) 

Physically, NI and N2 represent the conversion factors of the slot voltages to the trans
mission line voltages of the waveguides. Such a number is necessary to evaluate the coupling 
coefficient, which can only be measured from one of the transmission lines feeding the coupled 
system. 

6 . Appendix 1. E 1 t · f 8 - -.0 sin n 'fo cos ncp va ua Ion 0 k- -L-...J --.,-, --k -
n= l n 'l'O n 

In this appendix we evaluate the sum 8k of the infinite series 

(1) 

for k= l , 2, 4, . . .. With k odd, the series is rather difficult to evaluate. Since we have 
avoided these cases in t he text, with the exception of k = 1, we shall discuss the series with k 
even and then evaluate 8 1 for values of 'fo small . 

We can write (1) as t he sum of two series as follows: 

We have from J effreys and J effreys [1956] for integer values of r> 1 

~ sin 2n7rt 
-L-...J nzr I 
n=l 

(2) 

(3) 

where 'fzr-I (t ) are the Bernoulli polynomials and can be represented by the coefficients of 
Zr jr! in t he expansion 

'" Zr 
~ 'fr(t ),' 
r=O r. 

(4) 
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Substituting tho expression in (3) into (2), we obtain for even k ? 2 

1 (27Ty +1 (-1) 2 + 1 [ (rp+ ¢to) ( rp- ¢to) ] 
8 k= 2¢to 2(k+ l )! ¢tH l 2 7r - ¢tH I ----z;;:- . 

We evaluat e the specific case of k= 2 and k= 4. From (4) we have 

¢t3(t )= t3_~ t2+~ t 
2 2 

¢t5(t) =t5_~ t 4+~ t3_~ t . 

Substitu t ing (6) into (5) and simplifying we finally obtain 

We now proceod t o ovaluate 81, for which one cannot employ t he ident ity in (3) . 

(5) 

(6) 

(7) 

We havo 

(8) 

i' N ow consider t he followin g fun ction for 0 ::; arg x::; 7r 

) 

_ '" einx _ r eixidx 
8(x)-~ n - J (l -e i X) 

Then, for x real and - 7r ::; x::; 7r, we have 

:8 cos nx = R e [8 (x) 1 = - In 2 ( sin -2X) . 
n= ! n 

Substituting (10 ) in to (8), we obtain 

8 (- I)f "'o[ ( . rp 1/;0 rp) I ( . rp 1/;0 rp)] l ~ 21/10 In 2 sm 2"+2 cos 2" + n 2 8m 2- 2 cos 2 d¢to. 

Cf1l"ry ing ou t the integration and simplifying we obtain 

8 = 1 _ _ 1_1 4 [ . 2 '!!._ ('h.)2 2 '!!.] + tan rp/2 1 [tan (rp/2) - (¢to/2)] + .l... j ( ) 
1 2 11 sm 2 2 cos 2 1/;0 n tan (rp/2) + (1/10/2) 2¢to 1 rp 

wh ore 11 (<,0) is the constant of integration. From (8) and (10) we h ave 

8 1 (rp, 1/;0 = 0) =-In (2 sin ~} 
From (13) we have 

(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 

(15) 

This will only be satisfied if 11(<,0 )= 0. In (13) the third member of t he expression at first 
glf1nce eems to be singular for ¢to= O. H owever , the limit of this t erm as 1/;0 0 is unity . 
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Therefore, (13) becomes 

81~1+ ----- In 2 sm - - 1/10 cos - - ---+ - In 2 S111 - + 1/Io cos - . ( tan cp/2 1) ( . cp cp) (tan cp/2 1) ( . cp cp) 
1/10 2 2 2 1/10 2 2 2 

(16) 

Special care is needed to evaluate 8 1 at the point where 1/Io=Cp and cp = 7r. When we take the 
limit of 8 1 as cp approaches 1j;0 and 7r we obtain 

8 1 (cp = 1/Io) = I - ln 21/10 

8 1(cp= 7r)=-ln 2. (17) 

To evaluate 81 for 0':::; cp':::; 1/10, ,ve need to reconsider the problem beginning with (8) . Thus 

(18) 

Using (10) to eval ua te the sums in (18) we take for cp small and 0 .:::; cp .:::; 1j;0 

8 1 f '" [1 ( . f o cp 1/10) 1 (. 1j;0 cp 1j;o)J d I~-- n 2 sm - + - cos - - n 2 sm - - - cos - cp - 21/10 . 2 2 2 2 2 2 . (19) 

Carrying out the integration and simplifying, we obtain 

8 1 [ . 1/101 ( 21/10 (cp)2) 1/10 1 tan 1/Io/2+ 'P/2J I~ - 21/10 2 tan"2 n 4 tan 2 - 2 - 4 tan "2+CP n tan 1j;0/2-cp/2 . (20) 

As a check we note that at cp = 1/Io (20) agrees with (17) if we assume 1j;0 small as in (17). An 
important point to obtain from (20 ) is 8 1 at cp=O. The last term in (20) approaches zero as 
cp approaches zero . Therefore, 

(21) 

If 1/10 is small (21 ) becomes 

S 1 (1j;o, CP= 0) = I - In 1/10, (22) 

This completes the evaluation of 81 for 1j;0 small for all values of cpo 

7. Appendix II. An Expansion of Hankel Functions in Terms of Airy Integrals 

In this appendix we will show an expansion of the Hankel Function of large complex 
argument in terms of the Airy integrals and its derivatives. This exp ansion is generally 
employed for real values of the argument of the Hankel function [Bremmer, 1949; Wait, 1959]. 
However, it is ea.sy to show that the expansion is valid for the half-plane d efined by 

(1) 

where Z is the argument of the H ankel function. 
We consider the integral representation of the Hankel function 

H~2) (Z)=-~ i e-Z sInh i+<id!: 
7rt Ll 

(2) 

where the path of integration is as shown in figme ILL To investigate the region of con
vergence we take 

Z= x+iy and !:=~ +i1'/ . 
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Then 
Z sinh ~=x sinh ~ cos YJ - y cosh ~ sin YJ + i(x cosh ~ sin YJ + y sinh ~ cos YJ ) . (3) 

The integral in (2) will converge if, along the path of integration, 

Re [Z sinh ~] = x sinh ~ cos YJ - y cosh ~ sin YJ > O. 

This requirement is satisfied by 

where 

< t - 1 [ tan YJ ] € an -- . 
- tanh ~ 

Therefore, we can choose an appropriate path L2 to define H ?) (Z) for 

which defin es the half plane of convergence ( ee fig. ILl ). 
We now use the Fock expansion [Fock, 1945] with the substitution 

(Z)1/3 (Z)1/3 
v= Z+ € t and A="2 ~ 

and the assumption that t and A are finite and IZI is large. 
This expansion gives 

_ (2) ~__ lA -a _ _ _ 5 1 j' A 3 [ 1 (f)2/3 ] H . (Z) = 7ri reI 60 2 X + . .. dA 

where r is an equivalent path of L2 in the X-plane as shown in figure II .2. 
We now need to investigate the properties of the integral 

( 1 f 'A -~ w t )=- e 3 dX 
.J;r 

known as the Airy Integral. 

The function wet) satisfies the differential equation 

Wii(t) = tw(t) 

L, 
-L-_---l rr 

FIGURE 11.1. Path of integration and half-plane of 
convergence for the integral of the Hankel Junct'ion. 

--f"-~-L, 
L, • _ ....... _.1 _ _ 

--------~--_.r_ E 
L, 

t-PLANE 
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r 

FIGURE 11.2. Path of integration for the airy integral . 

A-PLANE 

which leads to the recursion formulas: 

' Ve also have 

w iii (t) = w(t ) + twi(t ) 

Wi' (t ) = 2wi(t ) + twii(t) = 2wi(t ) + t2w (t ) 

Wv (t) = 4tw(t ) + t2w i (t ). 

where by (- t ) we mean (lei,,) . 
Using the relationship in (6), (7), and (8), we have the asymptotic expansion 

1 (2 )1 /3 [ t (2 )2/3 t2 (2 )2/3. ] 
H ,~2)(Z) ~-i,r; Z w(t)-15 Z w(t)-60 Z w'(t ) + .... 

(8) 

(9) 

(10) 

The first term of the expansion in (10 ) represents the so-called "Hankel Approximation" 
and is used by several authors [Bremmer, 1949 ; ' Vait, 1956 ; Sensiper , 1957] in :their residue 
series evaluations. Using (9) and the first term of (10) we have, as Z ----,>ro 

where 

(.2\1/3 
v-Z= 2) t . 

From (11 ) we have, for the derivative of the Hankel function 

But 

]'T(2)'(Z) "' -.i (~)1/3 i(t) ~. 
L v =~; Z w oZ 

ot (2)1/3 
oZ~- Z . 
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Therefore 

(12) 

Using (9) in (12) g ives 

H~2) , (Z) ~e~/ 6 (~y/3 tI-Im [~ (_ t)3/2]- (13) 

To complete this appendix, we investigate briefly the roo ts of H~2) (Z ) = 0 and II~2) ' (Z ) = 0. 
These roots, to firs t order , can be obtained from the approximations discussed above. For Z 
large, su ch as Z~ 50 , the firs t order approxima tion for the roots is quite adequa te. However , 

'r for modera te Z, higher order approximations might be necessalT Sensiper [1953 and 1957] 
discusses these roo ts qui te thoroughly. At the end of this appendix we have, tabula ted , the 
roots of H~2) ' (Z )= O, to firs t and second order, for values of Z = 10, 15, 20 and 25 . 

From the approximation s in (11 ) and (12), we can find these roots, to a fU'st order , quite 
easily. They correspond to the roots of 

where 
H m(J3) = O and H m({3) = 0 

{3=~ (_ t)3/2 . 

From Wat on [1952] we have the id en t ity 

H i%({3) =~/'3 [J - 1/2({3) - e 7 J I!3C(3)]. 
, SHl7r, 

If we let (3 = xe'" and use the id en tity 

then (14) becomes 

7r 

. - '3 
H m({3) = ~e /3 [J- I/3(X)+ Ji /3(X)]. 

Slll 7r 

(14) 

(15) 

(16) 

Th erefore, t o determine th e roo ts V", I of II ;2) (Z )= O Lo tll e first order, we n eed to deter
min e the roots of 

(17) 

The roots X"'I of (17) are well known and we have a one to one correspondence between 
V"'i and X"'I' 

t = ( 3Xml) 2/3 e- t-rr /3 (18) 
111 1 -:r- . 

The roots of H~~~ ({3) = 0 can be approximated in a similar manner. We have 
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Letting (3 =xel " again and using the identity in (15 ) we have for (19 ) 

(20) 

Therefore, to determine the roots Vm 2 of H~2)' (Z ) to first order, we first need to know the 
roots of 

J -2/3(X) - J zI3 ( X) = 0. (21) 

The roots Xm2 of (2 1) are well known and we again have a one to one correspondence 
between Vm2 and Xm2. 

( Z)1 /3 
V",2= Z+ 2 t m2 

(3 -x ei"-(~) (- t )3/ 2 m2- m2 - 3 m2 (22) 

3 2/3 
t - Xm2 -1"/3 
",2- 2 e . 

Sensiper [1957] in his discussion of these roots, gives the following expansions. 

(23) 

(24) 

Table 11.1 is a list of the roots , Xm and tm , and table II.2 shows a comparison of the values 
of Vm2 / Z computed by (22 ) and (24) for several values of Z. 

T ABLE ILl. Table oj roots related to the roots of the Hankel functions 

m 

1 __________________ _ 
2 __________________ _ 
3 __________________ _ 
4 _______________ ___ _ 
5 __________________ _ 

Xml 

2.383 
5.512 
8.647 

II. 787 
14.927 

Xm2 

0.686 
3.902 
7.058 

10.202 
13.348 

2.338 
4.0g9 
5. 3.\8 
6.787 
7.944 

1. 019 
3. 248 
4.820 
G. 163 
7.3i2 

T ABLE II.2. Comparison of values of vm,/Z computed by equations (22) and (24) 

m vm,jZ for Z=lO 

Byeq (22) 

L___ ______________ 1. 09- iO. 161 
2_ _____________ _____ 1. 28--iO. 481 
3____ ___ __ __________ J. 4HO. 714 
4__ _________________ J. 53--iO. 913 
5___________________ 1. 63- i 1.09 

B yeq (24) 

J. 09- iO. 168 
1. 2HO. 491 
1. 4D-iO. 693 
J. 5HO. 946 
J. 6o-i1.14 

vm,/Z for Z =20 

B yeq (22) B yeq (24) 

1 ___ ________________ 
1. 059- iO. 102 I. 05HO.105 

2 ___________________ 1. 175-iO. 304 1. 173- iO. 308 3 ___________________ 
1. 260-iO. 451 1. 255-iO. 459 4 ___________________ 
1. 333- iO. 576 I . 32.'i- iO. 589 

5 ___________________ 1. 398--iO. 689 I. 387-iO. 707 
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vm,jZ from Z = 15 

B yeq (22) 

1.07HO. I23 
1. 21HO. 366 
1. 313- iO. 543 
1. 40HO. 694 
1. 479- iO. 830 

B yeq (24) 

1. 069- iO. 127 
1. 208-iO. 372 
1. 30C,..iO. 555 
l. 39D-iO. 713 
1. 466-iO. 857 

vm,/Z for Z=25 

Byeq (22) B yeq (24) 

J. 05HO. 0878 1. 050-iO. 0895 
1.1 5HO. 262 1. 149-iO. 265 
1. 224-iO. 388 1. 22Q-iO. 394 
1. 287-iO. 496 1. 281- iO. 506 
1. 343- iO. 594 1. 335-iO. 668 
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