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This paper is a partial study of currents induced on circular, conducting cylinders by
narrow radiating slots. First, a brief and general formulation of the radiation fields of
slots on cylinders is made. Then, the problem of an infinite axial slot is examined thoroughly
for all eylinder sizes. An expansion for the fields, very close to the slot, on large radius
cylinders, is also obtained. Sample computations are made, for various ranges of cylinder
radius, and the order of the errors is discussed.

The problem of a circumferential slot, of constant excitation, is also considered. An
asymptotic expansion obtained for this case yields the surface current distribution for values
of axial distances that are smaller than the square of the circumference of the eylinder.

Since one of the objectives of this study is to determine mutual coupling between two
slots on a eylinder, the last section presents a formulation of the equivalent network in
terms of the surface and feed line currents.

1. Introduction

The problem of determining the interaction of sources with each other or with other
discontinuities, on curved conducting surfaces, is basically a problem of the fields of the sources
on the conducting surface. In a previous report Held and Hasserjian [1958] discussed the
results of an experimental study showing the effect of the tip of a cone with a slot. The con-
clusions of that study led us to consider the problem of the fields of a slot on a circular cylinder.

There were several reasons that led us to this approach. Our study of the cone indicated
that the cone problem was basically a study of fields on curved conducting surfaces with the
cone tip as a singularity. In addition, the mathematical analysis of surface fields on the cone
was thought to be a formidable problem. Therefore, a simpler geometrical model was sought
which could be studied both theoretically and experimentally and then the results extended
to not only the cone but other geometries as well.  Therefore, it is believed that a complete
study of a circular cylinder will provide fundamental answers to various problems of curved
conducting surfaces.

The formal solution of the fields due to sources on cylindrical structures has been treated
in the literature [Silver and Saunders, 1950; Sensiper, 1953 and 1957; Wait, 1959]. However,
expressions for numerical computations have been limited to the determination of the fields
at large distances from the cylinder surface. Several authors have treated the problem of cur-
rents on the surface of cylinders [Papas and King, 1949 ; Lucke, 1953 ; Nishida, 1960] for infinite
axial slots. However, their results do not indicate the magnitude of the errors involved in
the approximations that they employ.

In this report we provide expressions, for the surface currents due to infinite axial slots,
for all ranges of cylinder radius. The expressions that are used are all asymptotic which pro-
vide estimates for the errors. Comparisons are made between the harmonic series and residue
series evaluations.

1 The research reported in this document has been sponsored by the Electronics Research Directorate of the Air Force Cambridge Research
Laboratories, Office of Aerospace Research (USAF), Bedford, Mass. Contract No. AF 19(604)-4098.
2 Present address of Dr. Gerard Hasserjian: Physics Technology Department, Boeing Company, Seattle, Wash.
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The problem of the currents excited by a narrow circumferential slot of constant excitation,
running entirely around the cylinder, is also treated. The results are again asymptotic expan-
sions and in this case are limited to axial distances small compared to the circumference of
the cylinder.

2. Formulation of the Cylinder Problem

In this section we shall formulate the expressions for the fields due to slots located on
conducting circular cylinders of infinite length. Such a formulation has been performed by
various authors [Silver and Saunders, 1950; Wait, 1959] and is outlined briefly here.

The general solution, for the field components, may be derived from two scalar functions
which individually satisfy the wave equation. We shall identily these functions by ¢, (r,¢,7)
and ¥, (r,0,7). The coordinate system and the cylinder orientation is shown in figure 2.1.
The formal solution for the two functions may be written

®

alr0,2) = f et 3 Ay e HD (= )ds (1)

= n=—ow

where an appropriate path should be chosen for the Fourier inversion. The coefficients of
the series, A, and A,,, may be determined if the field distribution on a closed surface is known.
In this problem, the tangential components of the electric field on the surface of the conducting
cylinder will be zero everywhere except across the slot. If the field across the slot is known,
then the field distribution on the entire surface of the cylinder is defined, which makes it pos-
sible to determine the unknown coefficients of the general solution.

Considering two slot orientations, longitudinal and transverse, and assuming the tangen-
tial electric fields to have only components transverse to the slot, we have the following bound-
ary conditions on the surface of the cylinder (r=a). For a longitudinal slot

E,=0, for all Z and ¢
E,=f(o)f«(Z), for Z\<Z<Z,, 0 << e, (2)

FE,=0, everywhere else.

For a transverse slot
EZIQI(<P)92(Z), for Z{SZSZZ;; ﬂﬂ{ﬁsﬂgipé

E,=0, everywhere else 3)
FE,=0, for all Z and o.

These provide sufficient information to determine the coefficients of the general solution and
the field components derivable from them.

For a longitudinal slot, the coefficients of the series of ¥, are zero because F,=0. The
field components as a function of ¢, are:

Hy= b (St ), =0
Z—"w“’e aZ2 1y Z—

_ L %% 1ok
*™ wpe 1007 Lo e Or @)

o 1o
" wpe 0rdZ T er dp

Matching (1) and (2) by the relation E‘P:—-% %; we find that
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];nl(g-) ('-))

An"'“"
U= H2 (e — )

where

, 1 (%% . o o ,
Bu() =y || " Hoa@)e e dgi2. (©)
™ Zy ?1
Therefore, for the longitudinal slot
"7z 5 Bu@e R (NE=E)
r0, L) =— ﬁf et? c : )
‘pll( (4 ) .4)7|' . ":Z—m \A" g_ []L))/(a\l\) g‘) (‘,

Once (7) is evaluated, we can then evaluate the other field components from the rela
tionships in (4).
For a transverse slot, both scalar functions ¢, and ¥, have non-zero coefficients.

The field components as a function of ¢; and ¢, are:
i
H—— (5 ,,+k2) »

= wuelagoa/ u O/’

oYy, 1oy

" ope OrdZ ' urde

p— ]i 2 ,
Brmr (k) s 0
E.= ] Q‘l/” L ;bipL

e Or  iwpe r00d/

] O\P“ 1 62\1/2.
€ ¢ ' iwue OrdZ

8=

Using eq (8) and the boundary conditions (3) we obtain from the £, component

A — (Iiwue) Bn?({)__ (9)
TR -HP (V=)

where
. 1 72 ‘¢; i (np—tZ)
B = [ [ aie)ga2yet e, (10)
4T Zy e)
Also, from £, we have
(2) W2 ___ 2
ng‘ H (CL\/]L § )Anz (11)

n1=

zwp.a \kl §2H 2/ ((L /kz_g-z)
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or

€ n{ B2 (¢)
4u=(G) E e VT )

Therefore, for the scalar function ¢, of the transverse slot, we have

€ ® g < NEBa(D)e e H @ (r/l2— 2 g“z) .
1xl/ll(’ 7§0;Z) 9 (Lf € rénzz_m (k'z 2 §_1>%/2H 2)/(0 kz ) f (15)
and
® ing 2) 2
bl 2) =22 [ gz 33 BaQCHDGAE_E) (14

- =" (k2 g—)[]m ((I,\//nz—-fz)

Substitution of (13) and (14) in (8) will yield the desired field components at‘fv any point
around the cylinder.

In the expressions of (7), (13), and (14) we have integrals of the form
L@= [ e P (s (15)

where the path of integration should be specified around the singularities of the integrand.
These singularities are two branch points located at {= + k.

For the Hankel function of the second kind, it is necessary to require that over the path of
inteeration of (15)

— (o) <arg Vil —2<e. (16)

Furthermore, in order to have outward radial propagation and to keep the fields bounded at
infinity, it is necessary to require that for & complex

Re [vVE2—¢2]>0, Im [y —?] <0. (17)
For k real, (17) reduces to
arg yk*— =0, for |¢|<k

arg Vk*— = —g: for [ >k. (18)

Therefore, in discussions of the integral in (15), we shall denote the path of integration by
(}, as shown in figure 2.2.  The branch cuts and the path of integration conform with the con-
straints specified by (16), (17), and (18).  When £ is real, the path of integration should avoid
the singularity as shown by the dotted curve in the figure.

This completes the formulation of the fields of slots on conducting eylinders. In the
sections that follow, we shall evaluate the magnetic field on the surface of the cylinder for a
uniformly excited longitudinal slot of infinite length and a circumferential slot running entirely
around the cylinder.
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3. Infinite Axial Slot With Constant Excitation

A longitudinal slot, of narrow width, can be said to have a constant electric field across the
slot. Therefore, on the surface of the cylinder

Vo

om0 (o0 —U =4 [ 1(202—2)02" W

where Vi is the voltage across the slot at some reference point, 2y, is the angular width, a is the
radius of the cylinder, f(Z) is the axial variation of the voltage along the slot and the functions
inside the brackets are the usual Heaviside, step functions. Since the integral implies the
summation of infinitesimal slots, for the purpose of formulating the problem, we shall first

assume
f@)=s(2Z-2"). @)

Therefore, considering (1) and (2) and evaluating the coeflicients B,;(¢) defined in (2—6),
we have
V, sin n:ﬁo

Bnl (?)_2—7"; ,,“l/) (3>

Substituting (3) in (2=7), we have

e J SR (VP ds, (4)
™2 e ~o V= HP' (aVkP—¢?)

In order to evaluate the fields due to any slot with an excitation f(Z) along its axis, we
need to integrate the product of f(Z’) and (4) with respect to Z’.

To obtain the appropriate expression for the longitudinal slot of infinite extent, of 2ay,
width and of constant excitation along the Z-axis, we integrate eq (4) with respect to Z’ from
—o to +o. Since

1 (e

_2_7; 61'{(Z—Z’)([Z/:_6(§‘) (5>
then (4) becomes
sin nyy ;. HP (kr)
‘//ll (T,(P) +2 ]L(I e n 1!/0 ¢ WI{fL)),(A(O (6)

From this result expressions for any of the field components can be obtained. However,
we shall concern ourselves only with the numerical evaluation of the magnetic field on the
surface of the cylinder.

In order to obtain expressions which are amenable to computations, it is necessary to con-
sider approximations valid in different ranges of cylinder radius. We will obtain approxima-
tions valid in the ranges ka <<1, ka <25 and ka> 10.

3.1. Small Radius Cylinders

The scalar function (6) evaluated on the surface of the cylinder is

n( )_—Voe[ HP (ka) 2\ sin nyq cos ne HP (ka) @
N =T 2k (ka) = e ke HP (ka) i

for n>1 and ka< <1

HY (ka) ka .
T = —(22) [+l o). ®)
Therefore,
Voe[[ H? (ka) sin 711,1/0 (05 ne
Wiag)m—2| GO oty ©)
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The sum of the infinite series in (9)

© | Sin Ny, cOs N

n=1 ‘//O72 2

Sl<§0):

is a symmetric function of ¢ and is evaluated in appendix I.  Therefore,
Ve[ H (ka) ;
\bl(ayﬁa)— - [2k(lf1w)(k’ ) 61(99)

using (2 to 7) and (11), the magnetic field on the surface of the cylinder becomes

HE (ka)
= mw[zkum 7 Geay TS (‘”>]

where for ¢y, <o <r

Si)=1- r( (‘”/2) — 5 ) In@sin(e/2)— ¥y cos(/2))

tan ‘p/2)+ >ln(2 sin(¢/2) +¢o cos(g/2)).

(10)

(11)

(12)

(13)

Appendix I also includes the evaluation of S, for — ¢, <<y, making it possible to evaluate the
magnetic field across the slot.  Figure 3.1A shows the plot of sample computations for the
magnetic field distribution on the surface of cylinders of ka< <1 and ¢,=1/40, and figure
3.1B is an expanded plot of the magnetic field in the region of the slot for various values of

slot widths 2¢,. Both figures represent the plot of the bracketed term in (12).

El ()
18 .
'//l((p) 2/{'(111(2) (/L(l)+ 1(99)
8 : —
. r i , ,
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6 1 501
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Hy® (ka) FiGure 3.1B. The expanded plot of ¥, (¢) around slot
. o Ho®(ka) | oy 10 AB. P f Y1 (e
Froure 3.1A.  Plot of yi=gy -6 1oy T51( ) for ka=0.1.

3.2. Intermediate Range Cylinders

For (yhndels having radii 0</ka<25 (this also includes the first range), the numerical
evaluation is obtained by approximating the Hankel functions for large orders and using the
approximation for the higher indexed terms of the series. A paper by C. H. Papas and R. King

[1949] shows this evaluation without indicating the or der of the errors involved.
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section we attempt to bridge this gap. Furthermore, the results obtained in this analysis
can be employed to determine the magnetic field across the slot of widths up to 30° with great
ease, making it possible to evaluate the slot impedance. The examples, considered in the
analysis, are assumed to have a constant electric field across the slot. However, the analysis

»
can be applied to other field distributions, provided the axial distribution is constant.
Taking the expression in (7) and letting ka=p, we write
i )_—Voe H (p) sin ny, ngﬁsﬁﬂpr ()] (14)
| e L20HP (p) = e p HP(p) ] ’
-

2771/2 i
For n |:1—<7—’1>:| >>1and " cosh a, we have (see [Watson, 1952] page 243)
P

‘ .2 1
H® ~ " ppla cosh g—sinh @) S
| « (p) _/L\/Wp sinh a © [1+0 (p sinh a)]

}];}2)/( )N_ \/‘) Qlllh 0‘ p(a cosh q¢—sinh q) |:1+ & >] (15)
T p smh «

Therefore, the ratio of the two functions above becomes
)

G anlo G - QLA [T o

This leads to an approximate expression for the series in (14), which can now be expressed
)

as
M=1 gin Y, oS ne H,,)(p) = sm Y, cos Ny p? & sin ny, cos ne _
e Lo oS e £ 5s S COSReLRL ()
n=1 n‘/’() p (P) n=M 711[/0 n 2 5= My n
where, for sufficiently large M
cOs ?1(,9 p cos ]1(p i
M1< Z Z : (1 8)
n=M v n=M
Considering, now, the series
&, sin iy cos ne
= Y (12} n’
appearing in (17), we write
1 & sin m//0 COS mp o
S=+—~ +]l)ﬁ[ (19)
M=
where, for sufficiently large M
i< > L) 008 Ny (20)
Sl ﬁ Mn?) ’

In order to evaluate the upper bounds of (18) and (20), we employ the Euler-Maclaurin
sum formula. The members of the series in (18) and (20) have the form

cos <p71

Siln) =— 21

Therefore, with B, and ¢,(t) as the Bernoulli constants and polynomials respectively, we have
from Whittaker and Watson [1952, p. 128],
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1)?B,

: { (-
= 500= [ p@dstgnan+S E30

o ST M)+ R, (22)
where

Rng}m JOI 0 [g fi’”(M+p+t):| dt.

Considering (21) in (22), it is immediately apparent that the dominant term of (22) will be

©
Ccos or
Il:f x dl‘.
M xr

Integrating this by parts, we have

Il:_smM<p lcf sin e

QOML k-l—l
Furthermore,
1
P jw Slﬁffo dx <1/[‘ ; for My small

U" for My large.

Therefore, for a sufficiently large M, we can write

- sin Mo
Ol:< oM* >:|

where by the symbol, < > we mean the bounds described above.
This leads to the conclusion that, for a sufficiently large M

2\ COS g sin Me ]
Z nk —=0 [< @J[}c >] (23)

n=M

We can now use (23) to estimate the upper bounds of (18) and (20). Therefore, the
expression in (17) becomes

NS sin " HP(p)
S: 7;1 72,‘[/0 cos ne H (2)7 (P) n 2 “[ <2n> ] [S +2 w‘[ S2]+R\[ (24)
where
&, sin ny, cos N
Sl_ngl n"l/o n

© Sin my, Cos ne
SZZZ 2
=1 Y N

Ru=0 <<Sm Pl [ M+M< M) +< 11) :D

The infinite series S; and S, can be expressed in a closed form and are evaluated in appendix I.
The dominant term in the expression for £, depends on the values of M, ¢, and p.
Therefore, the magnetic field on the surface of the cylinder is

ik? 1wV [ HP (ka) ka .
szm ¢1(P;S")~ 2 <2kaH(2)(k ) 51+S1+ms2> (20)
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where

_ ALTsin 1P (ka) ka
Si=2g my, s [‘)kaIJW(lm Tt M< >]

l+<tan i ‘)> In (2 sm T—y cOs ) < e —;—) In (2 sin g—l//(, cos g);

for <o <, and

2
ng 6 2¢+4¢ + Kl/o

The order of the error of (25) can be estimated from (24). Figures 3.2, 3.3, 3.4, and 3.5
are sample computations of the bracketed term in (25), which are identified by y¢,. These
computations were performed by a digital computer and the following conditions were
imposed.

M=10 for 0<ka <3
and
M=3[ka) for 3<ka <25.

By [ka] we mean the integer following ka.

The results in this section show clearly the orders of the approximations used in computing
the magnetic field on the surface of the cylinder by using finite terms of the harmonic series
Even though one example of the slot angular width (2¢,=1/20) was considered, the expressions
are valid for widths up to ¥,=1/2. In addition, for values of ka large, fairly accurate values
for the surface fields near and across the slot can be obtained.

These results can also be compared with the residue series evaluations since computations
are not restricted to small values of ka. Such a comparison is made in section 3.4.

In computing the examples in the figures, the Hankel functions for S* (see eq (25)) were
computed by using the recursion formulas. For the real part of the Hankel function, ./, (p),
the iterative steps were started at index M and M—1, and for the imaginary part of the
Hankel function, Y, (p), the iteration was begun from n=0, 1. This approach reduces possible
cumulative errors due to the iteration process.
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— 4 1
= 2 04y W\ o2 N
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> 02_\\ IO\ N = I F] |
g N I *
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— = o ¥ —
& - i = 7 \/ 5
% iz JE 05
ok E Rk s i =
02 | z - 3
=4
o 2 04 B
& -2 -0af ECEE Fil € 7
0 i -3 -0 —
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i Ficure 3.3. Real part of the magnetic field on the
Ficure 3.2.  I'maginary part of the magnetic field on cylinder surface, for ka=0.5, 1.0, 5.0, 10, yy=1/40.
the cylinder surface, for ka=0.5, 1.0, 5.0, 10,
Yo=1/40.
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3.3. Large Radius Cylinders

For cylinders having radii in the range ka> 10, the standard Watson Transformation
[Bremmer, 1949; Sensiper, 1957; Wait, 1959] can be used quite adequately. The expression

_ Vee & osinmyy . HP (ka)
llll(ayﬁp)'— ket = W, wHﬁ["“(ka) (26>
is a residue series of the contour integral
Ve I'1 sin oy, e~ =™ HP (ka) :I
Yi(a.e) —+27rka L2—z ¢ Wo sinor HP'(ka) 27)

where (] is specified in the v-plane as in figure 3.6. The series in (26) represents the sum of the
residues of the poles of the integrand in (27) that occur on the real axis. However, the contour
O, can be deformed into a new contour (,, which encloses the zeroes of H\” (ka) providing
another residue series. Figure 3.6 also shows the deformed contour €, which encloses the
poles, »,. The poles v, are the set of roots of

HO' (ka) =0
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Ficure 3.6.  The contours of C; and C; in the v-plane.

¢

identified by the index m=1, 2, . . . . This new series converges rapidly for ¢ and ka large.
However, it will be necessary to evaluate the integral (27), by another method, for small
values of ¢.

We first take the residue series about the poles ,,. Since
HP®' (ka)=e¢~""H?/ (ka),

and if the zeroes of H, ' (ka) are v, in the lower half plane, then the poles in the upper half
plane are v,,=——n,,. Therefore, the integral in (27) expressed as a residue series is

01,0 = — Vo[ s sin vy e~ eete=0 [ HEP (k)
’ 2ka

m=1 Updo  Sino,w 2 @7
5 H®' (ka)

ol
U

@ Sin VY e mle—™ H? (ka)

+ :
m=1 O SN, [ 0 Lo,
DDH” (ka) .
:_Y(,_e i sin V, ¥, cos .Q)m(cp——w) H? (ka) . (28)
ka 7=t v sin v, o e’ (ka)
bv ’ v=0

m

Note the sign change due to the clockwise rotation of the contour . Equation (28) expresses
the fields on the cylinder surface as attenuated standing waves in the ¢-direction. Tt is also
possible to express the fields in terms of traveling waves. We take

1
sin o

— :sz ZU 6:&iv(2p+l)1r (29)
=

as a function of the complex variable ». The first sign represents the value on the upper
half plane and the second sign represents the value on the lower half plane. Considering
the two parts of (28) and identifying ¢, and y; as the two sums representing the residues in
the upper and lower half planes respectively, we have

yomi z}c/;{;e >3 i”) Ry S0 O sin 2,3, etitn 2+ DT—g] (30a)
=0 m=1 o

+_ ’I:Voé Sln vm¢0 "”m [2p7+¢] b

V= ka z‘?——‘('l Z i Vuo ’ b

where R, represents the ratio containing the Hankel functions.
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The ,’s, which are roots of H,” (ka)=0, fall in the fourth quadrant of the s-plane.
Therefore, one could say that (30b) represents the waves traveling in the positive ¢ direction
and that the integers, p, represent the waves of mode m that have encircled the cylinder p-
times. For large cylinders the p=0 term would be sufficient to represent the field since waves
that have completely gone around the cylinder will be highly attenuated.

To evaluate R, the ratio containing the Hankel functions, we use the approximation for
the Hankel function discussed in appendix II.

We need to evaluate

] @
]{1:3”—('%‘)* (31)
arel @)/
ov ]{1/ (ka) V=1,
where the v,,’s are the roots of H®' (ka)=0.
From (11) and (12) of appendix II we have
1 /2\"
HP(ZD)y=———{5) ot
B=—=(7) «
and
2/3
He (Z)=-1 (;) o (8)
vy =
where
VANE
If we let Z=Fka and substitute the above approximationsinto (31), we have
= w(t) bv* <Z>2/3 w(t,,)
ri=—(3 ) —(3)" (32)
Z © /(t) . 2 @ (tm)
where the t,,’s are the roots of w’(¢)=0 corresponding to the #,’s by the above relationships.
From the differential equation of the function w(f), discussed in appendix IT, we have
o (t)=tw(t). (33)
Substitution of (33) in (32) leads to
A .
Rl:""(?) t_m (34)
Substituting this result in (30), 2,, for —u,, and taking the p=0 term we have
V06> <ka>2/3 o o Vo e 'mBm—o
ll/l m=1 Dm‘po tm (353)
. Ve (ka\** °° sin v, e~ 1n® -
¢l o < >< ) m=1 'Um‘ﬁo _ tm <';L)b)
where
SEe =
—o%m 3
t"L 2

1/3
?),n:l(?a,-{—(%) (Ao

Jz/a(vl') ~J_2/3(]')=0.
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I't is apparent that the expression in (35a) represents the waves traveling in the negative ¢
direction and in (35b), those traveling in the positive ¢ direction.
Therefore, for large cylinders, the total magnetic field is

7 In s 2/3 o 1 —iv"l(Z‘lr— ) —1i0,,
Hymep l‘—“») Rl [6 - ¢:,~ (36)

W 2 m=1 I’m‘PO t m

For sufficiently large values of ¢ the series is rapidly convergent. For instance, with ka=25,
the m=4 term is less than 1 percent of the m=3 term for ¢=20°.

To evaluate the integral in (27) for ¢ small, we again consider the traveling waves to be
highly attenuated at the end of a 360 degree path. Therefore, we can again substitute

2ie=17 for ———
S1n o

in eq (27) and consider the integral along the lower hall of the contour. 'This gives the expres-
sion for the traveling wave along the positive ¢ direction. The expression now becomes

e Jj’e, e _\lni‘pﬂ o _]],(,2) (A([) ‘ ‘
2 *+27r/m, J,ihw e e ‘P]I,(,z (ka dv. (37)

We evaluate the ratio of the Hankel functions above by using again the first term of the
asymptotic expansion discussed in appendix II.  We have from (I1-11) and (I11-12)

¢ 1/3
HE (b =—-— () o)

N T ka

H®' (ka) =~ 1 '72 >2/3 ‘o
! . :r,'\:,}</c(1, ¢

. ) k.(l“ 1/3
which gives for L‘:ka+< > ) t

Hoth) (koY o0 38)
H® (ka)— \ 2 o' (1)

This approximation is based on the assumption that ¢ remains finite as (ka) increases. The
integral in (37) implies an integration for 0<_|{|< = and the approximation in (38) is valid for
finite values of . This apparent contradiction is compatible due to the exponentially decaying
nature of the integrand in (37) and Watson’s Lemma. Therefore, the major contribution to the
integral is due to the finite values of . Thus, taking the approximation of (38) and the first
term of the expansion

Sin v,¥0_ sin kayy [ 1/ 2% B _
pm\b() o ka‘l/ﬂ [1 2 (ka) t(l k“\bo cot kalp())
l 2 4/3 ‘ k 2
—i-4— (E) I <l—ka¢0 cot ka¢0+<(lT¢())>+ .. :I (39)

The integral in (37) with the new variable of integration, ¢, becomes

Ve sin kay, [ka\*/® . Tiete (51 e w(t)
+____roce > Albyo [ vty ika
b= Gage(3) e [ D e 0)

We now make the following change of variables:

t=kae=2m times the distance in wavelength from the center of the slot
2ro=2kayo=2m times the slot width in wavelength

347



C—2 (%l) #8=a curvature term
s=—1it=change of variable of integration.

The expression in (40) now becomes

eV, sin x, e

= i (41)

y § Ty V%

4 Tetle 2 w(is) 5
I= J; 27”/ i € ,(28) ds. (4.4)
The singularities of the integrand above lie on the left hand side of the line of integration

in the s-plane. Since the origin is not a singularity we can express (42) as a Bromwhich integral
with r=x/c

where

0 L e (8 (43)

21r’b B, @ o’ (i8)

Therefore, with ¢ representing the Laplace operator

[T ocp—1 w(?:&‘)
I)=+r £ 505 (44)

We next attempt to find an expansion of

w(18)

Fls)=- Gs) (45)

in inverse powers of s to obtain an expansion of I(r) for r small. We have

o=y iy [ 2~
o (=5 F (omg[2 (o] 46)

« 3|2 iy
vV —ZS H(?) I: (_%)3/2] .

Therefore

I’(s)-

(47)

In order to develop the Hankel functions in their asymptotic expansions, we need to assure
that the phase of the argument lies in the range —27 to 7. We note that in (43) s will range
in value from +ie to —iw. Therefore, we use the identity

(2) (Z ) ]1(2) Z’e—i31r> .
1/3 ir 1/3

i~ e o

in r< 2
e15 HE) [—\ ;2 83/2]

: 3

F(s)=— —

VRHE, l:-—v’i 2 .s3/2:|
Using the asymptotic expansions of the Hankel function we obtain for their ratio
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17— R S S
;%Zm /6[1+6Z P z7223+...]. (50)

If we now let Z=—/i % s¥? and substitute (50) in (44) we obtain

I(7)=e" ’4\ P! [\/ 462+3287/2+‘/’ 6455 + :| (51)
Then employing the basic relation
lzf‘”e 8 y[ (52)
s* Jo I‘(?f) I'(v)
it follows that
I(r)= (1—%’#@73/24_?2 T > (53)
where
. kae
== Tha\T
(5)
" . . (kap)3?
Substituting (53) in (41) and letting y=-—"—-— we finally have
ka
Vne sin : T ( \1r 7wr . > (_~ 7 )
W=t \/ﬂ ' ooVt TR 9048

t)

The curvature term, the series appearing in (54), is rapidly convergent for small 7. It
approaches unity as (ka) approaches infinity. Therefore, the expression

| L € Sin Z, 4\/9' .

i s 0! 0 “ —i(z—m/4) 55
l// = "{'_'L'_—"_ — € (219
10 2 Ly L ( )

which appears in (54) as a multiplying factor to the curvature term, should represent the
field due to the slot on a flat sheet. However, taking the same limit of the original expression,
eq (37), yields the following results:

. o ’Z:V()E Lfro , _1~ —tlet+ @ toCe—gr) H(Z)(k.a> -
limy;—lim (+°5%) s e-trtemen s (KD _ g, (56)

ka—> o ka—w —i€/— IC(I,H(Z)/(IC )

where zo=kay, and 2’ =kay'.
We have from Sensiper [1957] or Nishida [1960], with z=Fkae

1 L te—en ka) L i
klalf)r:o = f_ie_w PRICOT kaH””(k )d1 =H (x—a’).

Therefore (56) becomes
'LT/ 06 1

,J

V=t f HE (o—a')da'. 57)
The expression in (57) is the exact scaler function for the fields of a slot on a flat sheet with a
constant electric field Vik/2x, across a width of (2x/k). For a sufficiently small z,, (57)
becomes

7,V0€

Vo +—— Hi? (2) (58)
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and for a sufficiently large z

Yy o€ S0 T, \/3 o-ite=eh (59)

2 T e

Since (59) is the first term of the asymptotic expansion of (57) and (59) is also equal to
(55), it is reasonable to assume that a more exact expression for (55) would be (57). Therefore,
we can say that if U, is the expression for a slot on a flat conducting sheet, then the expression
for a slot on a cylinder of large (ka) and values of ¢ small is

il I:( &; 27347;3@/3+ ) </b_7/ T 2045J+ )] (60)

B (kae 3/2.
~ ka

where

A plot of the bracketed term of (60) is shown in figure 3.7.  This result corresponds exactly
with the conclusions of J. R. Wait in his analysis of currents induced on large spheres [Wait,
1956].

For a very narrow slot the expression of U, should be, from (58),

Uy=+1 ‘—20—5 He () ©1)

where z 1s the distance from the slot. Our derivation for the corresponding term, shown in (55),
has only the first term of the asymptotic expansion of the Hankel function appearing in (61).
Therefore, for narrow slots (61) may be used in conjunction with (60).
In conclusion we have, for large radius cylinders (ka=10), the expression for the magnetic
field on the surface of the cylinder
H,=" 1y 141 (62)

WHE

where ¢ and ¢ are the traveling wave components in the positive and negative ¢ direction.
The expressions for ¥, for a slot located at ¢=0°, has been discussed in detail in this section.
From (35) we have

¥ (@) =¥ 2r—o) (63)

which indicates the symmetric distribution of the magnetic field about the slot.

Figures 3.8 and 3.9 show the plots of the ratio of the traveling wave component of the
magnetic field due to a narrow slot on the cylinder to the field of a slot on a flat sheet. The
computations are based on the approximations expressed in (35) and (54).
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current on the cylinder to that of a flat surface.

3.4. Comparison of the Harmonic Series and Residue Series Evaluations

In the evaluation of the surface fields by the harmonic series, we were able to show the
order of the errors involved in the final evaluation. However, in the residue series evaluation,
we did not attempt to indicate the order of the errors involved in the approximations. How-
ever, it is quite obvious that as ka increases the residue series evaluation becomes increasingly
accurate. On the other hand, as ka increases, the use of the harmonic series becomes con-
siderably more difficult. Since there is a range of values of ka, where both methods can be
employed, we devote this section for a comparison of the results of the two methods. We
perform this comparison by numerical computations for cylinder sizes with ka=10, 15, and 25.

Figure 3.10 shows the results of three computations. The solid curve is a plot of the mag-
nitude of the magnetic field computed by the harmonic series (see sec. 3.2). According to the
estimate of the remainder (see eq (24)) the order of the error by this method is (1/M) for small

¢ and
1 fea)\? fea\¥]
T“vaa[“f a1) ;17>J

for large M¢. Therefore, the errors in the computations of the solid curves of figure 3.10 are
of order less than 1 percent over all values of ¢. The points, in the figure, designated by the
symbols ©® and A were computed by the residue series method. For the set of points @, the
computations were based on the first order approximation of the roots, v, of the Hankel

625829—62——10 35]
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functions discussed in appendix II. On the other hand, the set of points, A, were computed by
using a second order approximation for the roots v,.. It is quite apparent from the figure that
the second set of points are closer to the harmonic series evaluation, as expected. Actual com-
parison of the numerical values shows that the latter set is off by less than 2 percent of the har-
monic series evaluation. A comparison of the phase of the field by the two methods, which is
not shown, has a maximum deviation of 5 degrees for either set of roots.

It should be noted that, in the figure, the region very close to the slot was omitted for con-
venience. The agreement between the two methods of evaluation holds for points up to several
slot widths. However, if the field distribution across the slot and its edge is desired, the har-
monic series evaluation will yield a more accurate result for values of ka<'25. The expression
in (60) can be used for ka_>10 provided the expression for a slot on a flat infinite sheet is known.

4. Circumierential Slot Excitation

In this section we will consider the case of a uniformly excited circumferential slot running
entirely around the cylinder.
Describing the field distribution on the surface of the cylinder we have, with V representing
the voltage across the slot,
E,(r=a)=V5(Z)

E,(r=a)=0. (1)
From (2-10) we have

N2z ¢! ) }
Bul®)=y- [ "7 [ 2.0 0:(2) v,
27I’ Z1 ¢1’

Using (1) in the expression above, we have

T o 1,%:0
By (0= fa(Z)e—ferZ f Venedp =V 0T O ©
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Substitution of (2) into (2-13) and (2-14) leads to

¢1z:0
and
iopeV ( eHP (rVk*—%)ds
2r  Jo, (—¢t) HP (a+le—¢2)

Vo= (3)

where ¢; is the contour defined in figure 2.2.

Using (3), the equations in (2-8), and solving for the magnetic field on the surface of the
cylinder, we have

]]Z(l":a/) =0
and
4 eRZFI @/ 12__ 2
H,(r=0)="2% f 1 (ayk—)ds "
21 Jey av kz (z[{(z)(a\ kg_g_ )
The problem, therefore, reduces to the evaluation of the integral
BZET D (g 12— ¢2)
I(/)—‘ € I]o ((l\k §' ) (]g‘ (5)

2mi Joy el — PHP (ak*— ¢2)

For Z >0, we can deform the contour ¢; about the branch cut as shown in figure 4.1. The
contours ¢; :md ¢, are equivalent since for /2,—« the integrand converges to zero and the
integral about the outer circle does not contribute to the value of 7. We will next show that
we can obtain an asymptotic expansion of (5) for A7< (2ka)*.

The argument of the Hankel functions in (5) varies between 7/4 to —= along the contour
¢;. Therefore, with a sufficiently large /), we can take the asymptotic expansion of the ratio
of the Hankel functions appearing in (5).  With y=a+/k*— ¢, we have

HP () . 111 125 1 ,

ag U ez @ e s ey ) &
Substitution of (6) in the integrand of (5) leads to

e itkZ 6 -

1) = f o [(27/ 8y >+ Y %1/ 12by )+ v ):I @

Therefore, in general, the asymptotic expansion of I(£7) will have the form

I(ch)——’%, nGnkZ)+ib, [, (kL) + R, (8)
1{kd
R —0[(10(1) ZMJ (1 g..),)m ] (9)
D=5, | s (10
1g'kl
A= | e (1)

and the first few coefficients @, and b, are:

1 —1
2(ka)? T 8(ka)
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Ro Tk ¢
1 1 —25 1
5=t Y TSGar P28 (o (12)

From complex variable theory (10) becomes

o k%8 1 dn1 oikzt )
-""(Z)—{Res‘d““[a 2y l} D)l dg <1—-r>‘"l=_; (13)

From Courant and Hilbert [1953, page 482], we have

1 T(1/2—N\) (kZ)x[ ) )
(@) & — N (R4 iKZE (2 /
B2 G2 =—5"rapy \z) ) 7= (14)
Therefore, (11) becomes
fiZ) ==} ) (52) i mae), (15)
ges
Using the well known identity
H® (kZ)y=e""""HP (kZ) (16)
we finally have for (11)
h@=—t 22 ") (%) mean, a7)

ACH

It now remains to determine (9), which is the order of magnitude of the remainder term

in 8). For 0<kZ<1,
e ¢ :I: 1 ]
La—enL° <2m>

t ik ([kz]m 1
L A= 0 >

R0 s (60" | (18)

(ka)
kZ

and for kZ>1

Therefore

Therefore (5) can now be expressed in the following asymptotic form with

2
sufficiently

large:
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— 1 —ikZ e MZ(I—}“I]{,‘/)
I(Z)=— 2[2(1«;)2 16(ka)*

4+ L - HP (k2)

1 kZ 25 (kZ)? 17 :I [lﬂ%)z:l
T3 Thay? ~384 (o)’ 12 ®A) 10| ~Gpgye | (19
Therefore the magnetic field on the surface of the cylinder excited by a circumferential
. kZ
slot is, for ha)? <1

H,2)=—23 19 42) [ 1+(5

1+sz) e 1 RZ_HP(Z) 2 (kZ) HP (k2)]
Ska2(2kay ) HO(i7) T2 kel HO(Z) 24 (2ka)t HO (kZ)
(20)

It is quite obvious that the bracketed term in (20) approaches unity as (ka) approaches
infinity. As we let (ka) approach infinity, the problem reduces to the case of an infinite narrow
slot, which is also the limiting case of (20).

Figures 4.2 and 4.3 are plots of the magnitude and phase of

. 1 14+1kZ\ e~ % 1 7 HP2(kZ) 25(kZ2)* HP (kZ
f<l>:]+> _<1_>7—{—{k 2> <’> d (z)<k )_T“)(T]e—)i ,_?Jgf—{z (21)
2ka 2(2ka)’ 11 (k2) 2 (2ka)* H® (kZ) 24(2ka)* HP (kZ)

where various values of (ka) were used as parameters and plotted as a funection of normalized
axial distances, (Z/2a). It can be seen from the curves that there is an increase in magnitude
of f(7Z) which shows the contribution of the various sections of the source whose path of prop-
agation is along a spiral path on the surface.
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5. Mutual Admittance of Slots Coupled Externally

In this analysis we wish to express the Mutual Admittance of a pair of slots coupled to each
other by their External Fields. By “External Fields” we mean the electromagnetic field region
excluding the transmission line regions féeding the slots. To obtain the expression for the
“External Mutual Admittance” we shall assume that the pair of slots are fed by independent
transmission lines and that the slots are shunt elements to their respective feed lines.

The external magnetic field of a single slot can be expressed as (see Oliner [1957])

()= ﬂs (WX E) - 3:dS (1)
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where £ is the electric field across the slot, #; is the dyadic Green’s function for the exterior
region of the slot and S is the aperture of the slot cut in a conducting surface. Therefore, the
external field due to a pair of slots can be expressed as

7.0~/ OXE) S+ I1. XS @)

where £, and £, represent the respective electric fields across the slots, S; and S, their respective
apertures.

The fields of the slots in their transmission lines can be expressed in terms of voltages and
currents. According to Marcuvitz and Schwinger [1951], the internal magnetic field due to a
slot in a waveguide is expressed as

H.() :% (IO TD)WD () —5 I_;_o (VO Ly @) (,.)_iffs (;XE—}) - 8dS (3)

where g is the Green’s Function Diadic for the waveguide and g, 3» are the standing wave
type mode functions for the waveguide.

The continuity of the tangential field required that F,(r)=I,(r) at the slot. Therefore,
using (2) and (3) for slot (1) we have

— -> . =5 => 1 -Y
[[ @xB - nvigas+ [[ @xEY -mdsS—3 APHIPBE O=i 2 VO+VER0)
Sy Sg
@)

If this slot and its external load can be represented as a shunt element in the transmission line
then

L=IP=—I® and V,=VO=V

thus reducing eq (4) into
. 5 o . > >
— iV VP ()= f fs (WXEy) - (#2-+i8)dS+ f L (X ) - #adS. 5)
1 2
But, by the definitions given by Marcuvitz and Schwinger [1951]

2T, —iY, f L (nXEy) - B2 dS=I, ©)
1

- o
where I, is the total current in the shunt admittance. Multiplying (5) by (7> E) and integrat-
ing over S, we obtain

—VII;=fL 1 Ufs, (nXEy) - (yh+wl>ds]- (nXEpdS

+[[ L), @<y s xinas. @

We can write a similar expression for the second slot in terms of its characteristic equations, thus

—vuti= [{ [[f, @xEy - ontisyas]- xidyas

+ Jf Lf]. 1 (WX E) 1S |- (B (9
56
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Figure 5.1 represents an equivalent circuit whose elements we shall identify in terms of the
expressions discussed above. Writing the network equations for the equivalent circuit we find

IIS:Y;I‘/YIS TLY]zV:)s
]Zs:YlZI’"yls_i_Y;z‘/Y?s' (9)

Multiplying the above equations by Vi; and Vo, respectively and considering ideal transformers

(1) and (2) we have
VII/:I/Ylslls:YhV%s +Y12V23V13 (103)

V2 7 2,.»: V'zsl 25— Y12L715‘72s +Y;2V§s . (1 Ob)

Comparing equations (10a) and (10b) with (7) and (8) we immediately observe the equiva-

lence, which leads to
> > o = =
f f [ j f (WX Ey) -yhdS:l-(nXEz) as
Sy S

‘71 3‘723

where Vi, and Vi, can be the slot voltages and the bracketed integral represents the magnetic
field due to slot (1) across slot (2).

Considering the short circuit condition of the secondary (V.=0) and eqs (6), (7) and (10a)
we obtain an expression for the self impedance of slot (1) at the transmission line terminals

5 ff [‘J‘J‘ (;;Xl:}l)(,7n+’651)([S:I(ZXEI)([S
}___Aj: Sl Sl . (12)

Y. vV’ r o o 2
e UJ <n><E1>-mf"’S]
Sy

(11)

Yl2=

~

z

12 3

N2 z
\ \ o
7

2]

=

N2 0

=

\ / <

14

-

e
\

TRANSMISSION LINE (1)

Ficure 5.1.  Equivalent circuit of coupled slots.
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Similarly the self impedance of the second slot is

L_N ff U (0 Iy </n+wz>d8] (n><F2)(1S
e [jJ ("X’w>ﬁmds]

These are the same expressions as those obtained by Oliner in his study of impedance of
narrow slots [Oliner, 1957]. It remains to show the expressions for N, and N,. Considering
the short circuit conditions again, we have

(13)

V1:]\71V18 or AH:TLI—,—
‘ lS) 11
where,
Li=i¥, J J (WX E)-B2dS.
Sy
Therefore,
Vo || GxEgeas
Ny= =S : 14
! YuVis ( )
Similarly

Vs J f (X E)-B2'dS
} 22‘/ 2s

Np= (15)

Physically, N, and N, represent the conversion factors of the slot voltages to the trans-
mission line voltages of the waveguides. Such a number is necessary to evaluate the coupling
coefficient, which can only be measured from one of the transmission lines feeding the coupled
system.

Sin 7Y, Cos N

6. Appendix I. Evaluation of S=> .

=1 M n

In this appendix we evaluate the sum Sx of the infinite series

sin sIn 1y, cos ne

= — 1
S n;l ot M
for k=1, 2, 4, . . . . With k& odd, the series is rather difficult to evaluate. Since we have

avoided these cases in the text, with the exception of k=1, we shall discuss the series with £
even and then evaluate S, for values of ¢, small.
We can write (1) as the sum of two series as follows:

Z sin ne+yo) Z sin n(e—¥o) 7 | 2

I

Sk_ =~ 2
2y, n=1 i

We have from Jeffreys and Jeffreys [1956] for integer values of 7>1

> Sii’bz?f’f’f—@?(; (1);1 " eatt) Y

n=1

where ., () are the Bernoulli polynomials and can be represented by the coefficients of

Z7[r!'in the expansion
Z Z[_l © Zr
A S0 Z. (@)

ez =0
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Substituting the expression in (3) into (2), we obtain for even k>2

sk BRI (58 (39

We evaluate the specific case of k=2 and k=4. From (4) we have

3 1
¢3(t):t3—§ t2+§ t

ws(1) :ﬁ—g t“—l-g tﬁ—-é— t. (6)

Substituting (6) into (5) and simplifying we finally obtain

Sz—— (27 —6mo+3¢* +¥]

V_7r4 ot T ‘/’()) < ‘h")») 2 -
*54—'90_&‘}"@ (P <12+ 2 +12 Vie— 36 940 ¥ )
We now proceed to evaluate S, for which one cannot employ the identity in (3). We have
Y&, cosn = COS —
S=1 1 Z sin rw f 0 [Z oS n(<p+¢0)+z Cos 11(¢ %):I(N/"‘ 8)
‘//0 n=1 n 0 n=1 n n=1 N
Now consider the following function for 0 <arg z <=
S(x)_'? (f ““)——m (1—e'), ©
Then, for z real and —7 <z <w, we have
Z e M~R0 [S(z)]=—In2 (sin 5> (10)
n= 2
Substituting (10) into (8), we obtain
—1) (¥
S= 2‘//1) ! [ln 2 sin ‘p+%>+ln (2 sin &- }00>i| . (11)
0

For ¢, small and ¢, <o <r—1y,, we have

1_(2_‘&1)[ [1112<41n +¢0(0§ >+ln ( = 1//—“(oq >j|d% (12)

Carrying out the integration and simplifying we obtain

1 e (WY Lo, tan ¢/2 tan (¢/2) — (¥o/2) .
Si=1 21114[511122 <2>cos 2:|+ v In l:tzm (<p/9)+(¢0/2):|+2¢0f‘(¢) (13)

where f,(¢) is the constant of integration. From (8) and (10) we have

S (e, ¥=0)=—In <2 sin g) (14)
From (13) we have
lim S,(¢,¥0) =—In 2 sin € 4 lim- f1(<p) (15)
Y00 2 Y00 2#’0

This will only be satisfied if f,(¢)=0. In (13) the third member of the expression at first
glance seems to be singular for ¢,=0. However, the limit of this term as ¥;—0 is unity.
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Therefore, (13) becomes

S1~1+< JI . >ln<9sm —%(os

Special care is needed to evaluate S; at the point where ¥,=¢ and ¢o==m. When we take the
limit of S; as ¢ approaches ¢, and = we obtain

Sl(‘P:‘l/o) —]—In ¢,

tan (,a/2

+1> In <2 sin +¢o cos 2) (16)

S, (p=7)=—In 2. a7
To evaluate S for 0 <¢ <y, we need to reconsider the problem beginning with (8). Thus
1: f [Z COs n(w+¢o) Z cOS n(‘P—\b()) do. (18)

2¢, = n

Using (10) to evaluate the sums in (18) we take for ¢ small and 0 <¢ <y,

~ b — —_— —_— e — —
Si~— 2%f [1112(5111 + cos > 1112<sm cos ):ldw (19

Carrying out the integration and simplifying, we obtain

. Yo 2 lPo . Yo tan ¢0/2+¢/2:|_
Sy~ 0 |:2 tun "1n 4 (t:m <2>> 4 tan + In Y P —o3 o2—o)2 (20)

As a check we note that at o=y, (20) agrees with (17) if we assume ¢, small as in (17). An
important point to obtain from (20) is S, at ¢=0. The last term in (20) approaches zero as
¢ approaches zero. Therefore,

Sl(wo,gp:O):‘% tan % [l—ln (2 tan %)] (21)
0
If ¢, is small (21) becomes

S1(o,p=0)=1—1In ¢. (22)
This completes the evaluation of S, for ¥, small for all values of ¢.

7. Appendix II. An Expansion of Hankel Functions in Terms of Airy Integrals

In this appendix we will show an expansion of the Hankel Function of large complex
argument in terms of the Airy integrals and its derivatives. This expansion is generally
employed for real values of the argument of the Hankel function [Bremmer, 1949; Wait, 1959].
However, it is easy to show that the expansion is valid for the half-plane defined by

—(B+e) <arg 2<5— M

where Z is the argument of the Hankel function.
We consider the integral representation of the Hankel function

HEZ)(Z)=-—7—F1; fm e~Zsinh bty (2)

where the path of integration is as shown in figure IT.1. To investigate the region of con-
vergence we take

Z=x+1y and {=¢+ .
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Then

Z sinh ¢=ux sinh ¢ cos n—y cosh £ sin n-+i(z cosh & sin 9+ sinh £ cos 7).

The integral in (2) will converge if, along the path of integration,
Re [Z sinh ¢]=2 sinh ¢ cos n—y cosh & sin 7 >0,
This requirement is satisfied by
—~5<arg Z+e<5
where

tan n

tanlﬁ ’

e<tan~! [

Therefore, we can choose an appropriate path L, to define H® (Z) for
™ ™
(—§+e><:lrg Z< —2"—6

which defines the half plane of convergence (see fig. I11.1).
We now use the Fock expansion [Fock, 1945] with the substitution

7\ /
v:Z-|—<2é) : t and >\=(2§>l ' ¢

and the assumption that ¢ and N are finite and |Z] is large.
This expansion gives

: R P 1 (ZN\*®
(2) ~ e e 5
H® (Z) ~ m.JFe 3[1 60<2> >\+...:|d>\

where T is an equivalent path of L, in the A-plane as shown in figure I1.2.
We now need to investigate the properties of the integral

1 A3
w(t)=tf PSSP
Ir

\m
known as the Airy Integral.
The function w(t) satisfies the differential equation

Wi () =tw(?)

3)

4)

()

(6)

7 y
€
-—-—L-‘-'»I-—— T € /
. . ——F > 7
Ficure 11.1. Path of integration and half-plane of L2 L, € / WALF PLANE OF
convergence for the integral of the Hankel function. l — /\CONVERGENCE

{—-PLANE
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Ficure 11.2.  Path of integration for the airy integral.

A—PLANE
which leads to the recursion formulas:
w' (8) =w(t) +tw' (¢)
w () =2w'(t) +tw' (t) =2w' (t) +12w(t)

w'(t) =4tw(t) + 2w (t). (8)
We also have

w=y/5 5 o [2 o] ®

where by (—%) we mean (te'™).
Using the relationship in (6), (7), and (8), we have the asymptotic expansion

HO(Z) o —h%_r (%)”3 I:w ()~ (%)m w (f) —% (22)2/3 wi(t) + . . ] (10)

”

The first term of the expansion in (10) represents the so-called ‘“Hankel Approximation
and is used by several authors [Bremmer, 1949; Wait, 1956; Sensiper, 1957] in ‘their residue
series evaluations. Using (9) and the first term of (10) we have, as Z—w

L2\ 2\ [—t _, 2 .
(2) ~— = ~( = __~ p,—ixn/6 @) | Z (_4\3/2
o (5)" o) VT G o] o

Z 1/3
’IJ‘—Z—<§> e

From (11) we have, for the derivative of the Hankel function

where

2\ O
2 g—l:<~> (1) =7
O=77) v 35z

ot P 1/3
e-(3)"
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Therefore
II( - (/ < ‘>1/$ (
v (Z) e L 12
) @\7!' Z )
Using (9) in (12) gives

—HI’/G 2/3
H®' (7) =~ (/> uyg;[ tfu]. (13)

To complete this appendix, we investigate briefly the roots of I” (Z)=0 and H®'(Z)=0.
These roots, to first order, can be obtained from the approximations discussed above. For Z
large, such as Z>50, the first order approximation for the roots is quite adequate. However,
for moderate Z, higher order approximations might be necessary. Sensiper [1953 and 1957]
discusses these roots quite thoroughly. At the end of this appendix we have, tabulated, the
roots of H?" (Z)=0, to first and second order, for values of Z=10, 15, 20 and 25.

From the approximations in (11) and (12), we can find these roots, to a first order, quite
easily. They correspond to the roots of

H®,(8)=0 and HEZ,(8)=0

where
2 )
ﬁ_ f; ( t)&/‘.’.

From Watson [1952] we have the identity

HEO = [T -12@— 31,0 (14)
If we let B=wze™ and use the identity
T (e =] (2) (15)
then (14) becomes
Hp@) =2 / 5 os(8)+J1s(@)] (16)

. . 71 (@) /7 .
Therefore, to determine the roots »,, of H,” (Z)=0 to the first order, we need to deter-
mine the roots of

J—1/3(J‘)+J1/3('J’):0- (17)

The roots x,, of (17) are well known and we have a one to one correspondence between
Uy DA 2.
Z\1/3
1;rnl:Z+(§ tml

2
ﬁml ,I‘mle”':§ ("‘—tml)z/2

3-l‘m L3 —
ml‘( : z1r/'3 (18>

e . . v s -
The roots of H,5(8)=0 can be approximated in a similar manner. We have
2/

H2,(8) ,:J_m(r) p* Jzns(ﬁ)] (19)

an

.
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Letting f=uze'™ again and using the identity in (15) we have for (19)

2
o by
e °

H@(ve')=

o0 [J —2/3(x) —J53(x)]. (20)

sin —
3

Therefore, to determine the roots ,, of H\"'(Z) to first order, we first need to know the
roots of

J _o/3(x) —J 53 () =0. (21)

The roots ,, of (21) are well known and we again have a one to one correspondence
i

between »,,, and z,,.
VAN
Ome = Z+ <~2‘> tm2

: 2

ﬂm2__xmzem__<§> ( tm2)3/2 (22)
2/3

£z ——32’"2 e~ i"3,

Sensiper [1957] in his discussion of these roots, gives the following expansions.

Uit o e N
Z_1+2<Z> t’”1+120<2> 2t ... (23)
?ﬂ___ 1 z 2/3 L g 4/3( 8 )

Z—1+2<Z> tm2+120(z> 1+3x‘,2n2 th “ e e e (24)

Table 1.1 is a list of the roots, z,, and ¢,,, and table IT.2 shows a comparison of the values
of v,./7 computed by (22) and (24) for several values of Z.

Tasure I1.1.  Table of roots related to the roots of the Hankel functions

m Tmi Zm2 tmiei™3 | tmoei*/3

2.383 0. 686 2.338 1.019
5. 512 3. 902 4. 089 3.248
8. 647 7.058 5.358 4. 820
11. 787 10. 202 6. 787 6. 163
14.927 13. 348 7.944 7.372

Tasre I1.2.  Comparison of values of v,./Z computed by equations (22) and (24)

m vm2/Z for Z=10 Vm2/Z from Z=15
By eq (22) By eq (29) By eq (22) By eq (24)
) 1. 09-i0. 161 1. 09-i0. 168 1.071--i0. 123 1. 069-i0. 127
S| 1.28-i0. 481 1. 27-i0. 491 1. 211-i0. 366 1. 208-i0. 372
1. 41-i0. 714 1. 40-i0. 693 1. 313-i0. 543 1. 306-i0. 555
1. 53-i0. 913 1. 51-i0. 946 1. 401-i0. 694 1. 390-0. 713
1. 63-i1.09 1. 60-i1. 14 1. 479-i0. 830 1. 466-i0. 857
Vm2/Z for Z=20 vmo/Z for Z=25
By eq (22) By eq (24) By eq (22) By eq (24)

1. 059-i0. 102 1. 051-i0. 105
1. 175-i0. 304 1. 173-i0. 308
1. 260-i0. 451 1. 255-i0. 459
1. 333-i0. 576 1. 325-i0. 589
1. 398-i0. 689 1. 387-i0. 707

051~i0. 0878 1. 050~i0. 0895
151-i0. 262 1. 149-i0. 265
224-i0. 388 1. 220~i0. 394
287-i0. 496 1. 281-i0. 506
343-i0. 594 1. 335-i0. 608

bk et et
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