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T he problems of the diffraction of homogeneoLls p lane waves and groLlnd wa ves by a 
linear shoreline in a p lanar land-sea surface are discussed. The direction of propagation 
of these incident waves is ass umed perpendicular, and tha t of their magnetic vectors parallel, 
to the shoreline. At the air-land interface, the cus tomary impeda nce boundary condiLion 
is imposed while the sea is treated as a perfect conductor ; atmospheric and ionospheric 
efrects a rc ignored. ExacL integral representa tions of the solutions are presented. I n 
the case of homogeneous pla ne-wave exciUliion origina ting over the sea, the in tegral repre­
se ntations are employed t o obta in exprc sions for t he geometrical optics fi cld a nd for the 
far-field form of the remain ing scaLtered fi eld , transition r egions included. The possibiliLy 
of cOAs tal r efraction is discussed. 

1. Introduction 

The fu'st version of tbis paper appeared in July 1952 as a report [Bazer and Karp, 1952] 
which, however, has been out of pril1t sinee early 1953. The present version has been solicited 
by the editor, who felt, in view of the eontinuing interest in the ubj ect matter, that it would 
prove useful to make the e sential eontents of the report more generally available. At the 
suggestion of the past editor, the author have extended their original bistorical survey to 
include mention of subsequent work by other authors on the ame problem, and on some clo ely 
related problems. They have not, however, attempted to improve upon their own results; Lhis 
paper is simply a survey of the resulL of their report. 

The problems treated arise from the following model for propagation over a land-sea 
smface. The surface of the earth is taken to be the X-Z plane and the region y> O, the air 
(see fig . 1). The Z-axis (normal to the ph-me of t he page) is taken to be the shoreline and 
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FIGURE 1. Plane-wave excitation orig'inating over 
the sea. 

the half-planes x> O, y= O, a nd x< O, y= O, to be the air-land and air-sea interface, respectively, 
of t he earth-sea surface. I t is assumed that this system is excited by plane waves- specifically 
by planar ground waves originating at x= co or by homogeneou plane wave originating over 
the land or sea. It is further assumed tlutt these plane ,\Taves are polarized with the magnetic 
vector pfl.rallel, and with the direction of propagation perpendieular to the shoreline so that 
the total field may be taken to be "two-dim ensional. " This field is specifLCcl by two veetors, 

1 The research in this p aper was supported by the GeophysiCS Resea rch Division qf the Air Force Ca mbridge Research Center, nn clec Contract 
No. AF 19(122) 2. 
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an electric vec tor EP= EP(x,Y), parallel to the X- Y plane, and a magnetic vector H = h(x,y)z o,z J, 
being the uni t along the Z-axis. It follows from M axwell's equations that 2 

- co<x< + co, (l. 1) 

where 

(l.2) 

and that Ep is related to h by 

(l. 3) 

In these equations, ~ and J.i. are t he electric and magnetic inductive capacities; (J is the conduc­
tivity of air ; w is t he angular frequency; c is t he veloci ty of light; and \7 P is the operator 
xoo ( )/ox+Yoo ( )/oy, Xo and Yo being unit vectors along t he X and Y axes . The total 
field is evidently determined, once h(x, y ) is known . 

The sea is treated as a p erfect conductor ; t his fl,ssumption lead s to t he boundary condition 

oh(x, y) I = 0 
Oy yJ,O , 

(1 .4) 

Further , if, as is here and hereafter assumed, t he modulus of t he ratio k/k l of t he propagation 
constant k of air to that of the land k l is small and the conduction current is much larger t han 
the displacement current in the earth , then the usual condit ions on the t ransition of t he tan­
gential components of t he electric and magnetic vectors through a surface of discontinui ty 
lead to the following impedance boundary condition at th e air-land interface: 

Oh(x ,y) I + ah(x, y) I = 0, 
Oy vJ,. o vJ,. o 

(l. 5) 

The quantity a is a complex constant whose argument is ~+ o , i .e., 

a= lal exp [i (n/ 4+ iJ) J. (l.6) 

In terms of the electromagnetic constants ~, J.i. , (J and El, J.i. l, (J l of the air and land respec­
t ively, a is given by 

(1. 7) 

where 
w= 27rv. (1. 7 ') 

H ere, A is the wavelength in air, d the "skin depth" of t he land , and v t he frequen cy of 
the excitmg field. If v is less than or equal to 1,000 kc/s and (J l is the conductivity of wet 
earth, one can easily verify (d . B azer and Karp [1952], Grunberg [1942, 1943]) that the approx­
imations leading t o the impedance boundary condit ion are valid . Furthermore, it can be 
shown that t he ratio 

l(a/k) lS:: l /10, (1.8) 

and is O(vt ) for vS:: 1,000 kc/s. I t should be added that the boundary conditions of eqs (1.4) 
and (l.5 ) are not strictly valid in the neighborhood of the shorelin e, so that one should not 
expect the fields derived from h(x ,y ,) to describe the physical situation in this vicini ty . 

• T he time dependence exp ( - iwt ) and th e Giorgi M KS system of units is employed throughout , 
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As indicated above, homogeneous plane and ground-wave excitation will be treated. For 

cxcitation of the homogencous pl fLne-wave type that originates over the sea, an incident 
magnetic field h~(x,y) of the forl11 

hg(x,y) = exp [ile (x cos 80- y sin 80)], 
'If' 

0 < 80 < - ' - -2 (1.9) 

is ass umed. For excitation of the same character originating over the land, an incident mag­
neti c fi eld of the form 

h~(x,y) = exp [- i le (x cos 80+ y sin 80)], (1.1 0) 

is assumed. For excita tion of the ground wavc type,3 propagating in the negative x-direction 
from x= + 00 to the shoreline, it is assumed that 

(1.11) 

In fLll cases the COlTcsponding electrical excitation is to be determin ed from eq (l. 3) . 
To complete the formulation of t he problem, it is necessfLry to specif~T appropriate condi­

tions fLt the shoreline and at infinity. At the shorelin e one assumes, whfLtever the excit fLt ion, 
thfLt the total Il1fLgnetic field h(x, y ) satisfies 

L · i '" *( 8 . 8) oh(p cos 8, p sin 8) pd8-- 0. un ~ p cos , p sm A 
p~o 0 up 

(1.12) 

Here, h * denotes the complex conjugate of h, and X= p cos 0, y= p sin 0, 0 ::; 8::; 'If'. This condition 
is equivalent to the statement thfLt electrom agneti c powcr is neither radifLtcd nor absorbed at 
the shoreline. 

Since it hfLs been supposed thfLt the fLil' is slightly conducting (see eq (1.2)), it is to be 
expected, on physicfLl grounds, that no scattered power will reflch infinity. I'Vrit ing 

h(x, y) = ho(x,y) + v(x,y) , (1.13) 

where ho(x,y) is fLUY one of the incident waves described fLbove , one finds easily that no 
scattered power will reach infinity if the following requirement is met: 

L · i 211' *( 0 . 8) ov( p cos 8, p sin 0) pd8 - 0 1m v p cos , p SIn A - • 
P~"" 0 up 

(1.14) 

The problem is therefore to find solutions h(x, y ) of the form given in eq (1.13), whi ch cor­
respond to the various excitations introduced above and which satisfy: (1) the time-redu ced 
WfLve equation (l.1 ), (2) the boundary conditions of eqs (l.4) and (l. 5), and (3) the conditions at 
t he shoreline (eq 1.12) and infinity (eq 1.14). It has been shown by Bazer and Karp [1952] 
that such solutions are uniquely determined. Here, it may be mentioned that neither e:\lstence 
of the solutions, nor questions of uniqueness depend critically upon the fact that al'g (a) = 
('If' j4)+ o. For the unique existence of the solutions, it is sufficient to require merely that al'g (a) 
be r estricted to the range o< arg (a ) <'If'+ o. Similarly, the small positive imaginar~- part of 
lle l, le , namely lle l sin 0 (cf. eq (1.2)), may be dispensed with and (l.14 ) replaced by the Somm er­
feld condition. It is, however , retained here because its presence shortens the analysis . 

For plane wave excitation originating over the sea, the formulation sketched above is a 
variant of that given by G. A. Grunberg [1942, 1943]. In these works he considers only the 

vertical component of the electn c field , E v, which from eq (1.3) is proportional to our ~~; 
3 The concern hero is onl y with the mathematical possibility of such excitation, not with its physical realization. 

321 



Ey clearly satisfies the wave equation and the same boundary conditions as h. Grunberg 
reduces the problem of finding E y to that of solving an integral equation of Wiener-Hopf type . 
While recognizing the possibility of exact solution by the Wiener-Hopf teclmique, he prefers 
an approximate method which leads directly to an expression for the far field of Ey on the land 
and to the conclusion t hat t here is no refraction at large distances from the shoreline. 

Problems closely related to those formulated above have been treated by several investi­
gators, all employing t he Wiener-Hopf technique. Among these are works by S. Edelberg 
[1952), T. B . A. Semor [1952), A. E. H eins and H. Feshbach [1954), and A. F . K ay [1957]. 
Edelberg 's work relates in part to the diffraction of a normally-incident plane electromagnetic 
wave by an imperfectly conducting half-plane. Senior treats the same two-dimensional 
problem but allows arbitrary angles of incidence. K ay's investigation is a generalization of 
the present one in t he sense that he employs the impedance boundary condition oh/oy+ aoh= O, 
ao~O when x< O and oh/oy+ ajh= O, al ~o, aj ~ao when x> O. Kay, however , assumes that 
ao and al are real, whereas here t he analog of aI, namely a, is complex and ao vanishes. Heins 
and Feshback [1954] discuss the coupling of two half-planes. The common feature of all of 
these works is the "factorization" of a function cr (v) the form cr (v)= 1+ K/..JP-v2 (see section 2) 
where v is a complex variable and K is a suitable constant. 

Concerning treatments of the land-sea problem not using the Wiener-Hopf technique, 
mention ma~T be made of the works of P. C. Clemmow [1953), H. Bremmer [1954), K . Fmutsu 
[1955), J. R. Wait [1956, 1957a, b , c, 1958), E. L . Feinberg [1959), and T. B. A. Senior [1956]. 
The reader is referred to these papers for additional bibliographical material and for the latest 
developments in the subj ect. 

J n the next section, solutioils of the problems formulated above are given. These solutions, 
which are expressed in the form of integral representations, were originally derived by Bazer 
and K arp [1952] by a variant or the Wiener-Hopf procedure (see, in this connection, the work of 
S. N. Karp [1950a, b]). Here, for the sake of brevity, only the end results of the procedure, 
the integral representations, are presented. It is then verified by standard function-theoretic 
techniques that the integral representations actually do furnish solutions of the problems con­
sidered. An excellent survey of methods based on the Wiener-Hopf technique for the solution 
partial differential equations has been given by B. Noble [1958] . 

In section 3, the last section, formu las for the far field resulting from plane-wave excitation 
over the sea are summarized. In the special case of horizontal incidence, the far field on the 
air-land interface is shown to agree with that obtained by Grunberg in the works cited above. 
It is noted, in additi,on, that the behavior of far fields on the land for intermediate distances 
indicates the possibility of coastal refraction. All comments on this subject are, however, 
necessarily of a tentative nature, since, among other things, the vector character of the fields 
is not taken into account in the present two-dimensional treatment. For a thorough discus­
sion of coastfl,l refraction and related phenomena, based on methods which do not make explicit 
use of the Wiener-Hopf technique, the reader should consult the papers of P. C. Clemmow, 
E. L. Feinberg, and T. B. A. Senior, that were mentioned above. 

2. Integral Representations of the Solutions- the Factorization 

2 .1. The Integral Representations 

H ereafter, the symbols P s and P I will be used for abbreviated reference to the problems 
associated with homogeneous plane-wave excitation originating over the sea and land, respec­
tively (d. eqs (1.9) and (1.10)), and P g will be similarly employed for the problem associated 
with ground-wave incidence. Let m, 1', t, and b be defined by the equations 

m= k cos 80, 

i k sin 80- a 
r ik sin 80+ a' 
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(2.3) 

(2.4) 

Let, in addition, (1'+(,,) and (1'-(") denote th e "factors" of t.he function 

(2.5) 

in the sense that 

(2.6) 

Explicit representations of these factors ,,,ill be given latel'. For t he followin g, iL need only be 
required that (1'+(,,) and (1'-(") enjoy the following properties: (1) (1'+(,, ) is regular, zeroless, and 
uniformly bounded in t he (upper) half-plane defined by 1m (v»- Ikl sin 0; (2) (1'- (") is r egular, 
zeroless and uniformly bounded in the (lower ) half-plane defined by 1m (v) < Ilel sin o. Then , in 
terms of these quantities, the integral representations of the solution may be expres ed as 
follows: 

P - ' 71,8- 2 • ( . ) [ (k2 - 2).1.]- a f '" exp {i[vx+ y(k2- v2)tJ) - () d ' • . - exp ~mx co y m 2 . + ( ) ( )[ ' (k2 2) "J (I' v V, 
7f'~ (I' m _'" v-m ~ -v , 

P l- : hl= exp (-imx){ exp [-iy(k2- m2) ~ ] +r exp [iy(Jc2-m2)!]} 

t f '" exp { i[VX+y (~2_ V2) i ] } (1' - (v)clv' 
7f' ~ (I' (-m) _'" (v+ m)[~(Jc2-v2) t] , (2.8)-

Pt : hl= exp (-imx) {exp [- i y(Jc2 - m2)t]+ r exp [iy(k2- m2)t]} 

t f '" exp { i[vX+y(Jc2- v2)~ ]} 
7f'~ (I' (- m) _'" (v+ m ) [a+ i(Jc2-v2)t] (1'+ (,,) dv; (2.8)+ 

_ . M +(b)f '" exp {i["X+ y(Jc2 _ V2) t]} _ 
P g : hg= exp [-(~bx+ay)]+ 27f'i _'" (v + b) (k2-v2) t . (I' (,,) d,, ; 

+ . g_. . _ a(l'+(b)J' ''' exp { i["X+y (k2_V2) ~ ] } + 
P g • h - exp [-(~bx+ay)] 27f'i _'" (,,+ b)[a+ i(k2-v2)t] (I' (v) dv . (2.9)+ 

In these equations, t he P+ representations are obtained from the corrcsponding P- repre­
sentations simply by replacing (1'- (") by the equivalent expression (I'+(v)[ I + a /i(k2-v2)i]- 1 (see 
eqs (2.5) and (2.6)) . In each equation, the terms in the right member consist of an incident 
wave and when reflection is possible (as is the case in the p . and P I representations) a suitable 
reflected wave. Thus, in eq (2 .7 ), the term 2 exp (imx) cos [y(k2-m2)t] is a superposition of the 
incident wave h~= exp [ik(x cos Bo - y sin Bo)] (cf . eq (l.9)) and the wave exp [ik e;), cos Bo + y sin Bo], 
reflected off the perfectly conducting sea. In eq (2.8) the first term is the incident wave 
originating over the land and the second term is the wave reflected off the imperfectly conducting 
air-land interface, the coefficient r being the reflection coefficient at this boundary. The 
exponential terms in the integrands of eqs (2.7)-(2.9) are factors of product solution, obtained 
from t he wave equation by means of the standard separation-of-variables procedure. The 
remaining factors in the integrand are chosen so as to meet the boundary conditions at the aiT-
ea and air-land interface (see eqs (1.4) and (l.5 )). 

To insure convergence of the integral representations and at the same time to satisfy the 
"damped radiation condition" at infinity (see eq (1. 14)), it is necessary to fix the branch in such 
a manner that exp [iy (k2_ V2)t] is exponentially damped whenever "is on the contour, 
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-oo<Re v<oo, and Ivl exceeds Ik l. For this purpose, one fixes the value of (F - l/)t at 
v= O by requiring that 

(2.10) 

Choosing the branch cuts along the rays which go from + k to 00 exp (io) and - k to - 00 cxp (io ), 
one may then write 

where 
rl=lv-kJ, 

From eq (2.11 ), it then follows that 

'Y1 = arg (v - le) - arg 0, 

'Y2 = arg (v + le) -arg o. 

(F _ v2) t= Crrr2)t exp [i('Y1+ 'Y2+ 3'1l/ 2+ 0)], 
0< 'Y1::; 271', 

- 7r< 'Y2::; 71', 

(2.11) 

(2.12) 

(2.13) 

It Ci\,n now be verified that arg (k 2_ V2)t "-'71'/2 for v real and Ivl > le. The behavior of arg (F- v2)! 
on the Re (v)-axis and immediately above and below the cuts is depicted in figure 2, 

It has thus far been assumed in the P s and P! representations that Oo~7r/2. Physically, 
this angle 00 = 71'/2 corresponds to plane-wave exci tation incident normally on the Jand-sei\, 
surface. This restriction may be removed as follows. Starting with the P; -representation of 
eq (2.7)+, one allows 00 to increase to 7r/2, The pole in the integrand at v= 1n= k cos 00 then 
approaches to contour, on the Re 7J axis from above. In the limit as is well-known, half the 
residue of the pole at v= lim m = O is split off and the resulting integral is taken as a principal-

8,,..+,,/2 

value in tegral with respect to the pole at v= O. Letting hn(x,y) be the limiting solution, one 
obtains the following integral representation : 

P + . hn-2 le a exp (iley) 
n ' - cos y (a+ ik) (2.14)+ 

the principal value being taken with respect to the pole at zero. P: refers to the problem 
associated with normal incidence and the function (T+(v ). Writing (T+(v) in terms of (T - (v) by 
means of eqs (2.5) and (2.6), one then obtains the alternative P;: -representation; namely. 

_ . n a. a f a> exp i[vx+ y(Jc2- v2)!] _ 
P n ·h = 2 cos ky- + 'le e'lCp (~ley) - . +(0) ['W 2)'] u (v)dv. a ~ 7r~(T _ a> V ~ - - v ' 

(2.14)-

It can be shown, using a similar procedure, that the same results are obtained whcn the P7-
representation is taken as the point of departure. 

It is now a simple matter to verify that the integrals appearing in cqs (2.7), (2.8), (2.9 ), 
and (2.14) are properly convergent and admit all operations under the integral signs, neces­
sary for proving that the boundary conditions and the wave equation are satisfied. First, 
taking into account the boundedness of lu+(v )1 and lu-(v)1 on the contour (see properties (1 ) 
and (2) in the neighborhood of eq (2.6) ), the behavior of (Jc2 - v2)! on the contour, one sees that 

FIGU RE 2. The cut v-plane. 
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the integrands arc at worst 0 (v- 2) as Ivl-'700, independently of x and y. It follows that all the 
integrals co nverge uniformly for all x and y in the ranges - 00 < x< 00 , 0 ~ y < 00 and t hat taking 
t he limi t y -'70 under the integral sig ns is permissible operation. Next, when y is positive, the 
funct ion exp [iy (k 2- v2)tJ decays exponentially as Ivl 00 on the contour. Thi s impli es that 
one may differentiate any number of t imes under t he integrals signs and still retain the ab-
olute convergence of t hese integrals for all x andy, - 00 < x< 00, O< y< 00 ; the reduced-wave 

equation is therefore seen to be satisfied . Finally, if in P+(P -) r epresentations, all contours 
are bent upwards (downward) slightly so that, as Ivl-'700 on the contour, the relation O< Im v< 
Ik l sin 8(0 ) Im v>lk l sin 8) is satisfied, then for x> O(x< O) the function exp (i vx) is exponen­
t ially damped. It follows, in all cases, that differentiation under the integral signs is a per­
missible operation for all y"? 0 provided Ixl>o. Employing the P+ representations when 
x> o and the P - r epresentations when x< O, it is now a rou tine matter to veri£.\" t he boundary 
conditions. 

2 .2 . The Factorization 

The crux of an." boundary-value problem which is solved by the Wiener-Hopf techniqu e 
is, as a rule, the factorization of a suitable function- (T(v) in the present case . In fact, provid ed 
t hat the factorization is feasible, on e can learn with a little practice how to write down integral 
representations of the solu tion (e .g., those of subsection 2.1) at once without r esorting to t he 
usual <Lnalytic procedures encoun tered in the early applications of the Wiener-Hopfmethod. 
Such a n approach is exemplified in t he papers by J. Bazer and S. N. K arp [1956] and S . N. 
Karp [1957]. Now as is well-known, formulas for t he factors of a rather large class of fun ctions 
have been given by N. Wiener and E . Hopf [1931] . The existence of factors with the desired 
properties is t hus assured. However , t hese formulas express t he factors in term s of rather 
complicated integrals involving con tours of infinite extent and it is often found , for t hi s reason, 
t hat the behavior of the fa ctors in regions of in terest is obscured . Thus, alLhough possib ili ty 
of factorization is in prin ciple guaranteed, t he problem of transforming t he original vViener­
Hopf formulas into a more tractable form remains. Thi s t ransform ation was described in 
detail by Bazer and K arp [1952] for t he fun ction 

(T (v)= 1+ [ali(k2-v2) } ]. (2.5) ' 

H ere, only the end results of this transform ation will be presented and some direct consequences 
of these results will be summarized . 

Fi rst, it is t o be no ted t hat 
1 

(2.15) 

can be shown to hold for all v so t hat it is enough to give the form of (T+(v). For t hi s purpose, 
let the functionsf(v ) and L' (v ) be defined b.\T 

1 [7r . ( jk)] 1 .[ ~+ oJ [ iv+ W-V2) }]} = arc cos (vile) 
fCV) = W_ V2) t 2-arc sm v (k2-v2)t l 2 ~ og k (k2- 1/)~ , 

(2.16) 
a nd 

L ' ( )=-i7r _ [ f(v)-f Cb)+}(v)-f (·- b)] 
- v v+ k a v- b v+ b ' 

(2,17) 

where 
1m b> Oo (2.18) 

In "eq (2.16), the principal values of the inverse t rigonometric function and of t he logarithm are 
intended and the branch of (P - v2)! is specified as in eq (2 .10). In terms of these functions, 
(T+(v) may be expressed as 

where 
(T+ (0) = [i + ajik j1 . 
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SinceJ(v) is regular at all points of the v-plane except at the lower branch cut of (k 2 - V2)t [ef. 
figure 2], it follows, in virtue of eq (2 .17) that L' (v) is regular in this region. The same is 
therefore true of o'+(v) which may now be shown to have all the properties required of it in 
subsection 2.1. 

The formulas for the far fields of problem P s, P I, and P n involve the values of O'+(k cos 0) 
as 8 varies in the interval 0 ~8 ~ 71'. It is therefore desirable to obtain a reliable approximation 
for CT+ for 0 in this range. That it is possible to do so is a consequence of the fact that L' (n = 
L '[.\, (a/k)] (see eqs (2. 16)-(2.18) ) is a regular function of a/k when -l<Uk~ l and the fact 
that la/kl ~0.1 (see eq (1.8)). Expanding the exponential term in eq (2.19) as a power series in 
a/k, one finds that 

O'+(k cos 8,a/lc)= O'+ (O,a/k) { l-[:i G-si~ 0)] (a/k) 

1 [1 ('If 0)2 1 cos 0] 2 + } 
-2 'lf2 2-sin 0 +4 cos2 (0/2) (a/k) + R (O,a/k) , 

where R+(O ,a/lc) is the remainder of the series within the braces. In the same way, it is found 
that 

. 1 { [1 ('If X)] 1 [1 ('If X )2 O'-(k cos O,a/lc) = 0'+ (0 , a/lc) 1+ 'lfi 2-sinx (a/lc)-2 'lf2 2-sinx 

1 cos X] 2 _ } -4 cos2 (x/2) (a/k) + R (x ,a/k) , (2.22) 

For 0 and X in the indicated range greater accuracy could be achieved by including more terms 
of the power series. However, in deriving the air-land boundary conditions relative errors in 
the fields of the order of magnitude of 0 .01 are neglected. Greater accuracy would therefore 
be physically meaningless. 

Bazer and Karp [1952] hlwe shown that 

10'+ (O,a/k) 1 IR +(O,a/lc) I < 0 01 0~0~140°, 
IO'+(kcosO,a/k)! . , (2.23) 

IR -(x,a/k) 1 < 0 OJ 0< <140° 
IO'+(O,a/lc) II O'-(-k cos x,a/k)1 ., _X_ . 

(2.24) 

From the relation O'+(k cos 0) = (a+ ik sin 8)O'-(k cos O)/i sin 0 (cL eq (2.5)) , it follows easily 
that t he relative errors in 0'+ and 0' - when calculated by means of eq (2.28) and (2.24) are less 
than 0.01 t lll'oughout the angular range 0< 0< 7r. 

Formulas for O'+(v) of the type given in (2.19 ) have also been derived by T . B . A. Senior 
[1952] and A. E. Heins and H. Feshbach [1954]. A derivation is also given in B . Noble's book 
[1958], pp. 91- 92. It does not appear to be generally known, however, that V. Fock had 
already given the following com pact formula for O'+(v) as early as 1944 [Fock, 1944, p. 45]: 

O'+(k cos 0)= Icos 8+ cos a exp {_~ ( Ha ~ dU }. 'V l + cos 0 2'1f)e_a S111 U 

Here, the angles 0 and a are defined by 

v= lc cos 0, 

sin a= ia/k. 

(2.25) 

(2.26) 

(2.27) 

Focle merely states the result; but it is not difficult to show that this expression follows directly 
from eqs (2. 19) and (2.17 ) on substituting cos 0 for v/k and sin a for ia/k (ef. eqs (2.26) and 
(2 .27)). 
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It should be stressed finally that, in the problems under discussion, the constant a is 
assumed Lo haNe nonvanishiog imaginary part (see eq (1.6)). If a is real then the absolute 
values of (J+(k cos fJ) and (J- (k cos fJ), O ~fJ~ 7r , reduce to simple expressions. For, in this case, 
Lhe angle a in eq (2.27) is purely imaginary and fJ - a, the lower limi t of integration in eq (2.25), 
is the complex conjugate of fJ + a in the upper. It follows easily from this fact and eqs (2.15), 
(2.25)-(2.27) that 

I cos fJ-l I I v-k I 
cos fJ - cos a = v-~F+a2 ' 

(2.28) 

whenever v/k is real and Iv/kl ~ 1. These formulas were fiTst derived by A. F. Kay (1957, eq 
66]. K ay incorrectly implies that this simplification is valid for no ureal values of a, specifically, 
that eq (2.28) is also applicable to th e problems di cussed here. 

3 . The Far Fields-Coastal Refraction 

3 .1. The Far Fields 

For the ake of brevity, only problem P s will be discussed . The corresponding results 
for the remaining problems are given by Bazer and Karp in their report (1952]. 

Write 

x= p cos fJ, y = p sin fJ , (3.1) 

and introduce the new variable of integration 

.8= arc cos (vlk) , (3.2) 

in to eq (2.7)+. The result is 

P i :hs= exp (ilep cos (fJ - fJo) ]+ exp (ilcp cos (fJ + fJo)] 

+ a r exp (ilcp cos (/3 - fJ) ](J+(k cos /3) sin /3d/3 (3 .3) 
7ri (J+(m) J c (cos /3- cos fJo) (a+ilc sin .8) , 

where t he co ntour 0 is the image in the /3-plane of the contour 11ll v=o in the v-plane. It is 
easy to verify that 0 is essentially the co ntour shown in figure 3. 0 is symmetric with respect 
to the point .8 = 7r/2, and as 1m /3 -'7im on 0, R e /3-'7o= arg le. The lower portion of the upper 
cut in the v-plane goes over into t he upper half of t he line R e .8 = 0 (darkened in the figure ), 
whereas t he upper port ion of the upper cu t goes into the lower half of the lin e R e /3 = 0. The 
segment traced from 0 to + lc in t he v-plane goes over into the arc traced from 7r/2 to 0 in the 

FIGURE 3. The complex {3-plane. 
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iJ-ph1l1e. Symmetry with respect to iJ= 7r/2 determines the rest of the figure . The deviation 
of C from the darkened rectilinear path, which is due to the presence of a small imaginary 
part in k, has been greatly exaggerated for the sake of clarity. The poles in the integrand 
of the P; representation are at 13 = 80 <S: 7r/2 and at iJb = arc sin (ia/k )", (ia/k) =la/k l exp (i37r/4). 
These poles are shown enclosed in full circles. One might expect a pole at 13"-'71'- (ia/k ). 
However, on substituting v= k cos 13 into eqs (2.5) and (2.6 ) it is found that 
i sin 13 (J+(k cos 13) / (a+ik sin iJ) = (J- (k cos iJ). Thus the integrand in the P; representation is 
regular near iJ = 7r (since (J-(k cos iJ) has this property) . Note, since arg (ia/k ) "'371'/4, f3b is out­
sidethestripO<S:ReiJ<S:7r. Nevertheless, this pole makes its presence felt owing to its prox­
imity to the saddle point at 8= 0. 4 

Now that the positions relative to C of the poles at f3 = 80 and iJ= arc sin (ia/k ) have been 
established, it will be supposed, for the sake of simplicity, that o= arg k is equal to zero. The 
path C then becomes the heavy rectilinear contour of figure 3 except at the pole iJ = (}o 'which 
it avoids by means, say, of a small semicircular arc. The shaded portions of the figure are 
those regions where, for fixed (), 1m [i cos (13- 8)]< 0; one may therefore deform the contour 
freely in this region. 

The steepest descent contour 8(8) (see fig. 3) is defined by the equation 

(3 .4) 

where s is real. Solving for s in terms of 13 one finds on selecting the proper branch that 

s=+2~exp (i7r/4) sin [(f3-(}) /2]. (3 .5) 

By deforming C into 8(8) one obtains from eq (3.3), in addition to the appropriate com­
bination of incident and r eflected waves, an integral term of the form 

J (8)= r exp [ikp cos (f3- 8)]A(f3)diJ J S ( O) 

which, in virtue of eq (3.4), becomes 

where 

B (s) 
cos [(iJ(s) - 8)/2]' 

A [iJ (s)] 

(3.6) 

(3.7) 

(3.8) 

Let k be assumed fixed and let kp> > 1 when p'2, Po; here Po is a sufficiently large positive 
number. Then, in the evaluation of the integral term of eq (3 .7 ) only the values of B(s) in 
the neighborhood of s= O are important owing to the presence of the exponential factor 
exp (- kpS2). To obtam a reliable and tractable approximate expression for J ((} ), on e there­
fore is led to replace B (s) by an approximation chosen so as (1) to represent B (s) well near the 
origin and (2) to make the resulting termwise integration simply evaluable in terms of known 
functions. Suppose first that B (s) is regular in a sufficiently large neighborhood of the origin. 
In this case a power series expansion for B (s) meets the above requirements, sin ce it leads to 
integrals of the form 

which can be evaluated in terms of inverse powers of kp with gamma-function coefficients . 
The leading term of this expansion gives the same result as the usual saddle point approxima­
tion [s = O corresponds to the saddle point at iJ = (}, since s= (l + i) sin !(iJ-8)]. On the other 
hand, suppose B (s) possesses a pole at S= So, where Isol may be made arbitrarily close (or even 

4 It shoulu be recalled here that la/kl <1/10 in the range of frequencies studied (see eq (1.8)). 
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equal) to zero. H ere, for fixed kp '2. lcpo> > 1 a series expansion may possess too small a r adius 
of converaence to extend r eadily into the r ange where th e influen ce of t h e exponential deca~~ 
of exp (- lcpS2) is felt. In this case, following the m ethods of H . Ott [1 943] and B . L. Van del' 
Waerden [1951]' one isolates t he pole in a suitable fashion. The method of Ott differs f rom 
LhaL of Van del' Waerden in the manner of isolating the pole. In their repor t [1 952], the au thors 
employ the procedure of Van del' vVaerclen . The following is a summary of the end results 
of thi s procedure for problem P s• 

3.2. Summary of Results 

a . Characterization of the Regions of Figures 4(a) and 4(b) 

The poles at {3 = 00 and (3 = {3b are th e poles which playa role in t he far field formulas . A 
careful examination of the relative positions of S(O) and (3h r eveals tha t S(O) weeps ove r 
(3h as 0 approaches zero.l The value of 0 for which S(O) actually passes through {3h is called Oil. 
E xpressed in terms of the variable s, th e poles at {3 = 0[ and {3 = {3h are located r espect.ively a t 
(see eq (3.5». 

SO=21 exp (i7r/4) sin [(00- 0)/2] (3.9) 
and 

(3.1 0) 

Let kp '2. kpo> >1. Then th e value exponential term is appreciable for those valu es of 0 such 
th at Icps~< < 1 and t he Van del' W aerd en procedure applies . L et it be assum ed for t he presen L 
that OO~ O . The region included within Lhe parabola (see figure 4 (a» 

B: (3. 11) 

is call ed r egion B. Similarly, th e equation 

D: (3.12) 

defll1es a parabola-like r egion D in th e vicin ity of 0= Ob. In figure (4a) the region D is indicated 
roughly by t he shading above the posit ive x-axis . Since {3b h as a mall imagin ary par t , thi 
region , unlike r egion B, cannot extend to infini ty. The r egions A and C of figure (4a) n,r e 
defined by t he r elations 

A: 

C: 

7r '2. 0'2. 00 + L\00 

Oo- L\Oo'2. 0'2. Ob+L\Ob 

(3. 13) 

(3. 14) 

wh ere L\00 and L\Ob are small posit ive angles. Sin ce {3 is bounded away from t he poles when 0 
lies in A or C it is possible t o choose Po so large that 1 (2Icp ) sin [(0- 00)/2]1> > 1 and 1 C2lcp)t 
sin [({3 b- 0)/2]1> > 1 when ever p '2. Po· In t hese r egions the usual saddle point approximation 
applies. 

DIRECTiON OF 
REFLECTED RAYS 

l' 
/ 

/ 

DIR ECTION OF ~-'--­
INCIDENT WAVE 

SEA LA ND 

FIGUR E 4(a) R egions A, B, C, D- characterized uy 
differing asymptotic field behaviors. 

T he excitation is assumed to origin<1te over the sea and to make an 
angle of 00, 0<00<,,/2 with the posit ive x·axis. 

; This fact is proved as follows. Let !3 ,=x,+iy" X" Yb real and write !3 =xo+iyo lor th at point on S(O) wllieh has the same ordinate a~ !3 b, so 
that yO=Yb. It is then easy to show that XO<Xb. 
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80 =0 FIGU RE 4(b) Regions A' and B'-charactel'ized by 
differen t asymptotic field behaviors . 

A' 
DIRECTION OF 
INCIDENT WAVE 

T he excitation progresses parallel to the sea to \l'a rds the shoreline. 

SE A 

Figure (4b) is obtained from figure (4a) by setting eo= o. R egions A' and B ' are defin r.d 
byeqs (3. 13) and (3. 14) with eo= o. 

b . Notation 

The following notation will b e employed in t he next two sections. 

({3 e e ) _ _ 2t exp (i7f/ 4) (a- i k sin (3) rr+ (k'cos (3) sin {3 cos [({3 + eo- 2e) /4] 
gl ,,0 - 2 cos [({3- eo)/4] sin [({3 + eo)/2] cos [({3 - eo)/2] 

b1= b1(e,eo)= 2! exp (i7f/4) sin [(eo- e)/2], 

Z!=l1Co,Oo) = 21 exp (i7f/ 4) 1 sin [(eo- O) /2] 1; 

g2({3 ,0,00) 2t exp (i7f/ 4) cos2 ({3/2) rr+ (k cos (3) sin f3 cos [({3 - 20+ {3b)/4] 
i k cos [({3 - {3b)/4)] cos [({3 + {3b)/2] cos~ [ ({3- 0) /2] , 

b2= b2(0,{3b)= 2! exp (i7r/4) sin [({3b-O)/2], 

W + a2)! 
sin f3b=ia/k , cos {3b k ' 1m cos {3b>O, 

t t ., { - when e> ob} l2- l2(e,{3b) = =t= 2! exp (1,7r/4) S111 [({3b-O)/2], + when O< Ob ' 

l (x)= ~ l ,x>O 
1... 0'x< O 

The constants c and l' are defined by t he equations 

1'= (ik sin eo-a)/(ik sin eo+ a) . 

The function erfc (zt) , wit h z complex, is defin ed by 

where z! is defined to be posi tive on the positive par t of the R e (z) axis. 

(3. 15) 

(3.]6) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3. 25) 

The far field expressions given below will be expressed in terms of rr+(k cos e). When 
e----77r , rr+(k cos e) is singular. It is often usefu l, in this case, to make the substitu tion (see eqs 
(2 .5) and (2.6)) . 

rr+(lc cos e) = [1 + (a/i lc sin e)]rr - (7c cos 0) . (3.26) 

Power series expansions of rr+(k cos O)= rr+[k cos 0, (a/k )] and rr- (k cos O)= rr- [k cos e, (a/k )] 
in terms of (a/k ), l(a/k )I< O.l , are given in eqs (2.21 ) and (2.22). 
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c. Far Fields- Problem P s(O< 05, 7r) 

In this case, the incident wave originates over the sea. The angle 00 between the direc­
Lion of incidence and the positive x-axis (see figure 4a) is assumed not to vanish; horizontal 
incidence is therefore excluded . 

R egion A: 1(2kp)J sin [(0- 00)/2]1» 1; 

hS ", {exp [ikp cos (O- Oo)] + exp [i lcp cos (O+ Oo)J) 

2au+(1c cos 0) sin 0 cxp [i(1cp - 7r/4)] 
i u+(lc cos Oo)(cos O- cos Oo)(a+ i lc sin (0) (27rkp)1 

(3 .27) 

The term in braces is the sum of the incident plane wave and the plane wave which is 
reflected from the sea . The last t erm is obtained by a standard saddle point evaluation. 

Region B: 1(2lcp)l sin [(0- 00) /2] 15, J(1« 1 

hS", {exp [ilc p cos (0- 00) ] + exp [ikp cos (I:I + Oo)]} 
(2a) 1 (00- 0) . 

+ 'J, . 0 exp [~lcp cos (1:1 - 00)] a ~ C S111 0 

+ p2u+ (lc cos 0) sin 0 (cos l:I + cos 1:10) exp [i (lcp- 7r/4)] + 2c[ gl (0,0,00) - gl (00,0,0)] exp [i(lcp - 7r/4)] 
c u+(lc cos ( 0) (a+ i lc sin 0) (27r1cp)} i u+(lc cos Oo) bl (I:I ,Oo) (27rlcp)} 

+iu+ ~~C~~~I:I~~~':;~I:I , Oo)Xexp [i (lcp-~)J exp (ll lcp) li(O,Oo) erIc [(l1 (O,l:Io) lcp )l ]. (3. 28) 

The first , third , and fourth term s in this expression are continuous across 0= 00 , On th e 
other hand, the second and fifth are discontinuous across 1:1 = 1:10 because of the presence factors 
1(1:1- 00) and [It(0,00)/b1(0,00) ] respectively (see eqs (3.16), (3. 17)) . If we write 

sec eq (3. 25)) , then i t is easy to show tha t the discontinui ty in the second tel'm is just com­
pensated b.\~ that in the fifth t erm. It should also be mentioned that at 0= 1:10 th e expression 
for h' is independent of (T+(lc cos (0) or u- (lc cos (0), 

R egion c: 1(2kp)J sin [(0- 00)/2]1» 1, l:Io +~1:I02 0 2 0b+:l l:l b 

hS"' exp [ikp cos (1:1 - 1:10) ]+ 1' exp [ikp cos (0+ 00)] 

+ 2a(T+(k cos 0) sin 0 exp [i (lcp- 7r/4)]. 
i(T+ (k cos (0) (cos O- cos (0) (a+ i 1c sin 1:1) (27rlcp)~ (3 .29) 

The expression within the braces is the sum of the incident plane wave exp [ik p cos (0- 1:10)] 
and the plane wave exp [ikp cos (0+ 00)] which is reflected off the land; l' is the reflection coeffi­
cient appropriate to the land (of. eqs (3.24) and (2.2 )) . 

R egion D: 1 (2kp)! sin [(i3b-0)/2] 1< < 1, O",Ob"'O 

hS = {exp [ilcp cos (0- 00)]+1' exp [ilcp cos (O+ Oo)J) 

+ 1 (0- 0/i) 2a sin i3bu+(lc cos i3b) exp [ikp cos (i3b-O)] 
i lc(T+(k cos Oo)(cos i3b- COS Ob) cos i3b 

2cu+(k cos 0) sin O(a-ilc sin 0) exp (i(lcp- 7r/4)] 
i(T+(lc cos Oo)(cos O- cos (0) (27rkp)t 

+ 2CJc2[g2 (0,0,l:Io) - g2(i3b,0,00)] exp [i(lcp- 7r/4)] 
i (T+(lc cos (0)b2(1:I,i3b) (27rkp)t 

+ i)~,;C;~~2~~bb~ (~:~b) exp [i(lcP- 7r/4)] exp (l2lcp)lHO,i3b) eric [(l2(0 , i3b) kp)~]. (3.30) 
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This expression remains valid in region C. Note that the last term contains the factors 
exp (ikp) exp (l2kp )= exp (ikp[1 - 2 sin2 [(/3b- 0) /2]]} = exp [ikp cos (/3b- O)]. As 0 passes through 
Ob, l~(O,/3 b) changes sign (see eq (3.2 1» . From this fact, and eq (3.25), one finds that the jump 
in the third term of eq (3.30) is just compensated by the jump in the last term, the remaining 
terms being continuous 3cross O= Ob' 

d. Far Fields- Problem Ps- (Oo= O) 

Again t he incident wave originates over the sea, but in the present case the direction of 
incidence is horizontal. 

Region A': 1 (2kp)t sin (0/2) I> > 1, 7r ~ 0 ~ Ob+~Ob 

1 2' a(J+(k cos 0) exp li (kp + 7r/4)] 
2h "-'exp(~kpcosO)+i(J+ (k) tan (0/2) (a+ ik sinO) (27rkp)~ (3.31) 

This expression follows from a straightforward application of the saddle-point method. 

Region B': [(2kp)! sin (0/2) 1 ::;K3< <1 fL nd 1 (2kp)} sin [(/3b-0) /2] 1 ::;K4< < 1 

1 Is ,('k 0)+[91 (0,0,0)-9(0,0,0)] exp [i(kp- 7r/4)] 
2/1, "-'exp ~ p cos ai(J+(k)b)(O,O) (27rkp)t 

+ ai!7(k~b~'~0) exp [i(kp-7r/4)] exp (l[(O,O)kp)lj(O,O) X erfc [(l[(o,O)kp) t] 

+1 (O-Ob) 2lk::i~krO) exp (-i7r/4) exp [ikp cos (/3b- O)] 

+F[g2(0,0,0) - g2(/3b'0, 0) ] exp [i(kp- 7r/4)] 
ai(J+(k )b2(0,/3b) (27rkp)} 

+ i:::rk)(~:(~',ib) exp [i(kp-7r/4)] exp (l2kp) l~(O,{3b) X erfc [(l~(O,/3b) kp) l]. (;) .32) 

This expression gives the far field for hS in region AI also and reduces to the expression given 
in eq (3.31) when 1(2kp)t sin (0/2) 1» 1. 

Important simplifications occur when O= O- i.e. , on the land surface. If the influence of 
t he complex pole at /3=f3b is neglected or equivalently if it is assumed that kpo is so large that 
1 (2kPo )t sin (/3b/2) I> > 1 then the last three terms are 0[(kpO)-3 /2] whenever P> Po. Furthermore, 
the third term just cancels the first term. As a result, it is found that 

(3.33) 

Here, A is the wavelength in air and d2 is defined in eq (1.7). This formula was fiTst obtained 
by Grunberg [1942,1943]. Note that this result is independent of the function (J+. 

On the other hand, when 0= 0 and 1 (2kp)t sin (/3b/2) I, with p> Po, is small compared to 
unity, all the terms of eq (3.32) must be taken into account. The result is 

(3 .34) 

(The terms four and six in eq (3.32) lead, with the help of eq (3.25) to the second term above 
and the remaining terms of eq (3.32) yield t he first term above.) Since cos f3b = [1 + (a/k )2]t 
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fLnd [(al k) [ ~O.I, we JUlve the fo llowing estimate for hS(p,O) on the land 

] [ 2 J' (kp)~( l +i) sin (fJb / 2 ) ] 

2 hS( p,O) "-'exp [ipW + a2)l] 1+ (7r)! 0 exp (-r2)dr +O(a/Ie)+Ol(lcp)-3/2j' (3.35) 

Thus for sufficiently small [(2kp)! sin ((3b/2) [, hS(p,O) is a ground Wf\,ve (cf., eq (1.11)) . 

3.3. Some Comments Regarding Coastal Refraction 

As was pointed out by Bazer and KfLrp [1952], hfLd problem P , beell fo rm ulated in terill s 
of E y , the vertical component of the electri c field , instead of h (see eqs (1.1 )- (1.3)), it would 
have been possible to treat the case of an exciting plane WfLve incident pan,Uel to t ile sec, but 
making an angle, j7r- </> say (0~</>< 7r/2 ) with the shoreline. (In fact, it was in LeJ"lll S of l.lt e 
angle </> that G. A. Grunberg [1942 , 1943] fOl"lnuhted his discussion of the problem of coastal 
refraction (see section 1) .) It would then have been found, employing the method of t he 
paper, that Ey varies as (cos </» t hS(p,O) for [[(Ie cos </»pl~ sin ({3b/2) [> >1 on the land, 6 ,1 di silLllee 
p from t he shoreline . Here h' is the expression ill eq (3.33). This result is in complete agree­
ment with Grunberg's and shows, a,t least within t he' prese nt theoret ical context, t hat t here is 
no r efraction H,t large d istances from t be shorelin e. The possibility of coastal refmcLion still 
exists, 11Owever, when [(lep cos cf» ~ sin ({3b/2)[< < 1, since, in t ili case, the presence of a ground 
WfLVe of the form exp [i p .. /P cos2 cf>+ a2+1e cos cf> z] would be felt (sec eq (3 .35)). The fLttention 
of t he fl,ut hors was drawn to this mnge by H. G. Booker,1 to whom the~T are further indebted 
for bringing to their notice an early work by Eckersley [1920] which bears directly on this 
problel11 . To sum up , the appearance of a ground wave for "moderate" vf,lues of (Ie eos cf»p 
leads us to beli eve t hat coastal refraction may be explained by an extension of the methods 
of our paper. What is required is a vector treatment of the problem for the case of oblique in­
cidence and a cu.reful investigation of the ClTOl" terms in the oblique-incidence fLnalogs of the 
resu lts presented in the n.bove SUIII Ill fLry. 
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