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The problems of the diffraction of homogeneous plane waves and ground waves by a
linear shoreline in a planar land-sea surface are discussed. The direction of propagation
of these incident waves is assumed perpendicular, and that of their magnetic vectors parallel,
to the shoreline. At the air-land interface, the customary impedance boundary condition
is imposed while the sea is treated as a perfect conductor; atmospheric and ionospheric
effects are ignored. Exact integral representations of the solutions are presented. In
the case of homogeneous plane-wave excitation originating over the sea, the integral repre-
sentations are employed to obtain expressions for the geometrical optics field and for the
far-field form of the remaining scattered field, transition regions included. The possibility
of coastal refraction is discussed.

1. Introduction

The first version of this paper appeared in July 1952 as a report [Bazer and Karp, 1952]
which, however, has been out of print since early 1953. The present version has been solicited
by the editor, who felt, in view of the continuing interest in the subject matter, that it would
prove useful to make the essential contents of the report more generally available. At the
suggestion of the past editor, the authors have extended their original historical survey to
include mention of subsequent work by other authors on the same problem, and on some closely
related problems. They have not, however, attempted to improve upon their own results; this
paper is simply a survey of the results of their report.

The problems treated arise from the following model for propagation over a land-sea
surface. The surface of the earth is taken to be the X=7 plane and the region y >0, the air
(see fig. 1). The Z-axis (normal to the plane of the page) is taken to be the shoreline and
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the half-planes 2>0, y=0, and 2<C0, y=0, to be the air-land and air-sea interfaces, respectively,
of the earth-sea surface. It is assumed that this system is excited by plane waves—specifically
by planar ground waves originating at z= = or by homogeneous plane waves originating over
the land or sea. It is further assumed that these plane waves are polarized with the magnetic
vector parallel, and with the direction of propagation perpendicular to the shoreline so that
the total field may be taken to be “two-dimensional.” This field is specified by two vectors,

1 The research in this paper was supported by the Geophysics Research Division of the Air Force Cambridge Research Center, under Contract
No. AF 19(122)-42.
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an electric vector E?=E?(z,), parallel to the X-=1" plane, and a magnetic vector M=/ (z,y)Z,,Z.,
being the unit along the Z-axis. It follows from Maxwell’s equations that 2

o*h . O*h
arg-l—ay;_{— kzh 0 ——oo<,[<+oo, 0<?/<°°7 (]1)
where
= [ue—|~(47rmn/w 12— |k| exp (26), 0<6<<1 (1.2)

and that E? is related to A by

e-{—(41r<77/ Hz(,XV,,lz(x ). (1.3)

In these equations, e and p are the electric and magnetic inductive capacities; ¢ is the conduc-
tivity of air; o is the angular frequency; ¢ is the velocity of light; and V, is the operator
X,0( )/oz+Y¥,0( )/oy, X, and ¥, being unit vectors along the X and ) axes. The total
field is evidently determined, once A(z,y) is known.

The sea is treated as a perfect conductor; this assumption leads to the boundary condition

oh(x,y)

— 2<0. 1.4
S 2 (1.4)

Further, if, as is here and hereafter assumed, the modulus of the ratio k/k; of the propagation
constant k of air to that of the land %, is small and the conduction current is much larger than
the displacement current in the earth, then the usual conditions on the transition of the tan-
gential components of the electric and magnetic vectors through a surface of discontinuity
lead to the following impedance boundary condition at the air-land interface:

Oh(xy)| _ X
5 | Fah(zy) yw—(), x>0. (1.5)

lzlo

) . .o .
The quantity @ is a complex constant whose argument is Z+ 0, 1.e.,

7=l

exp [1(r/4+9)]. (1.6)

In terms of the electromagnetic constants €, pu, o and €, p;, o; of the air and land respec-
tively, @ is given by
a=ndu ‘w2 exp [2(r/4+6)], (1.7)
where
d=c(2rwu,0;) "2=\Ny/4nn,0,) "2, w=2my. (1.77)

Here, X\ is the wavelength in air, d the “skin depth’ of the land, and » the frequency of
the exciting field. If » is less than or equal to 1,000 ke/s and ¢; is the conductivity of wet
earth, one can easily verify (cf. Bazer and Karp [1952], Griinberg [1942, 1943]) that the approx-
imations leading to the impedance boundary condition are valid. Furthermore, it can be
shown that the ratio

|(a/k)|<1/10, (1.8)

and is 0(»*) for »< 1,000 ke/s. It should be added that the boundary conditions of eqs (1.4)
and (1.5) are not strictly valid in the neighborhood of the shoreline, so that one should not
expect the fields derived from A (z,y,) to describe the physical situation in this vieinity.

2 The time dependence exp (—iwt) and the Giorgi MKS system of units is employed throughout.
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As indicated above, homogeneous plane and ground-wave excitation will be treated. For
excitation of the homogeneous plane-wave type that originates over the sea, an incident
magnetic field Agy(z,y) of the form

Iy () =exp [ik(x cos 6,—y sin 6,)], 0<6y< = (1.9)

0oy

is assumed. For excitation of the same character originating over the land, an incident mag-
netic field of the form

hi(x,y) =exp [—ik(x cos 6,y sin 6y)], 0<00Sg (1.10)

is assumed. For excitation of the ground wave type,® propagating in the negative a-direction
from 2= to the shoreline, it is assumed that

B (ay) —exp { —[ia(+a?)+ayl},  Tm (k*-+a?)>0. (1.11)

In all eases the corresponding electrical excitation is to be determined from eq (1.3).

To complete the formulation of the problem, it is necessary to specify appropriate condi-
tions at the shoreline and at infinity. At the shoreline one assumes, whatever the excitation,
that the total magnetic field & (z,y) satisfies

Oh(p cos 6, psin )

o 2
5 pdo=0. (1.12)

Limf h*(p cos 6, psinf)
0

p—0

Here, 1* denotes the complex conjugate of i, and z=p cos 6, y=psin 6, 0 <O<x. This condition
is equivalent to the statement that electromagnetic power is neither radiated nor absorbed at
the shoreline.

Since it has been supposed that the air is slightly conducting (see eq (1.2)), it is to be
expected, on physical grounds, that no scattered power will reach infinity.  Writing

h(z,y) =ho(z,y) +o(2,y), (1.13)

where hg(z,) is any one of the incident waves described above, one finds easily that no
scattered power will reach infinity if the following requirement is met:

ov(p cos 6, psin )

op pd6=0. (1.14)

2
Limf v*(p cos 0, psin )
0

p®

The problem is therefore to find solutions £ (z,y) of the form given in eq (1.13), which cor-
respond to the various excitations introduced above and which satisfy: (1) the time-reduced
wave equation (1.1), (2) the boundary conditions of eqs (1.4) and (1.5), and (3) the conditions at
the shoreline (eq 1.12) and infinity (eq 1.14). It has been shown by Bazer and Karp [1952]
that such solutions are uniquely determined. Here, it may be mentioned that neither existence
of the solutions, nor questions of uniqueness depend critically upon the fact that arg (@)=
(r/4)-+6. For the unique existence of the solutions, it is sufficient to require merely that arg ()
be restricted to the range 6<Zarg (a)<w+é. Similarly, the small positive imaginary part of
k|, k, namely |k| sin 6 (cf. eq (1.2)), may be dispensed with and (1.14) replaced by the Sommer-
feld condition. It is, however, retained here because its presence shortens the analysis.

For plane wave excitation originating over the sea, the formulation sketched above is a
variant of that given by G. A. Griinberg [1942, 1943]. In these works he considers only the

. . . . . oh.
vertical component of the electrie field, £,, which from eq (1.3) is proportional to our 5

3 The concern here is only with the mathematical possibility of such excitation, not with its physical realization.
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E, clearly satisfies the wave equation and the same boundary conditions as h. Griinberg
reduces the problem of finding £, to that of solving an integral equation of Wiener-Hopf type.
While recognizing the possibility of exact solution by the Wiener-Hopf technique, he prefers
an approximate method which leads directly to an expression for the far field of £, on the land
and to the conclusion that there is no refraction at large distances from the shoreline.

Problems closely related to those formulated above have been treated by several investi-
gators, all employing the Wiener-Hopf technique. Among these are works by S. Edelberg
[1952], T. B. A. Semor [1952], A. E. Heins and H. Feshbach [1954], and A. F. Kay [1957].
Edelberg’s work relates in part to the diffraction of a normally-incident plane electromagnetic
wave by an imperfectly conducting half-plane. Senior treats the same two-dimensional
problem but allows arbitrary angles of incidence. Kay’s investigation is a generalization of
the present one in the sense that he employs the impedance boundary condition 0h/0y+ ah=0,
a,#0 when z<0 and oh/oy+ah=0, a;#0, a,7#a, when 2z >0. Kay, however, assumes that
a, and a; are real, whereas here the analog of a;, namely a, is complex and @, vanishes. Heins
and Feshback [1954] discuss the coupling of two half-planes. The common feature of all of
these works is the “factorization” of a function ¢(») the form ¢ (v)=1-4«/\/k2—»* (see section 2)
where » is a complex variable and « is a suitable constant.

Cloncerning treatments of the land-sea problem not using the Wiener-Hopf technique,
mention may be made of the works of P. C. Clemmow [1953], H. Bremmer [1954], K. Furutsu
[1955], J. R. Wait [1956, 1957a, b, ¢, 1958], E. L. Feinberg [1959], and T. B. A. Senior [1956].
The reader is referred to these papers for additional bibliographical material and for the latest
developments in the subject.

In the next section, solutions of the problems formulated above are given. These solutions,
which are expressed in the form of integral representations, were originally derived by Bazer
and Karp [1952] by a variant of the Wiener-Hopf procedure (see, in this connection, the work of
S. N. Karp [1950a, b]). Here, for the sake of brevity, only the end results of the procedure,
the integral representations, are presented. It is then verified by standard function-theoretic
techniques that the integral representations actually do furnish solutions of the problems con-
sidered. An excellent survey of methods based on the Wiener-Hopf technique for the solution
partial differential equations has been given by B. Noble [1958].

In section 3, the last section, formulas for the far field resulting from plane-wave excitation
over the sea are summarized. In the special case of horizontal incidence, the far field on the
air-land interface is shown to agree with that obtained by Griinberg in the works cited above.
Tt is noted, in addition, that the behavior of far fields on the land for intermediate distances
indicates the possibility of coastal refraction. All comments on this subject are, however,
necessarily of a tentative nature, since, among other things, the vector character of the fields
is not taken into account in the present two-dimensional treatment. For a thorough discus-
sion of coastal refraction and related phenomena, based on methods which do not make explicit
use of the Wiener-Hopf technique, the reader should consult the papers of P. C. Clemmow,
E. Li. Feinberg, and T. B. A. Senior, that were mentioned above.

2. Integral Representations of the Solutions—the Factorization
2.1. The Integral Representations

Hereafter, the symbols P, and P; will be used for abbreviated reference to the problems
associated with homogeneous plane-wave excitation originating over the sea and land, respec-
tively (ef. eqs (1.9) and (1.10)), and P, will be similarly employed for the problem associated
with ground-wave incidence. Let m, 7, t, and b be defined by the equations

m=rFk cos 0, 0<6,<7/2 (2.1)

ik sin 6,—a
="
2k sin 6,+a
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ke sin Bya
—o— 2 22t =
=21 (1—r) (k®*—m?) A (2.3)

=([E ), Im (k*4-a*)'?>0. (2.4)
Let, in addition, ¢*(») and ¢~ (») denote the ‘“factors” of the function
o(v) =1-+|a/i(k*—»*)"?], (2.5)
in the sense that
ZJ: E:; =aq(»). (2.6)

Explicit representations of these factors will be given later. For the following, it need only be
required that ¢"(v) and ¢~ (v) enjoy the following properties: (1) o (») is regular, zeroless, and
uniformly bounded in the (upper) half-plane defined by Im (v) >—|k| sin 6; (2) ¢~ (») is regular,
zeroless and uniformly bounded in the (lower) half-plane defined by Im (»)<Z|k|sin 6. Then, in
terms of these quantities, the integral representations of the solutions may be expressed as
follows:

exp {i[vz+y(k*—»")}]}
(v—m)[i(k*—»*)1]

exp {i[va+y(k*—»")}]} ) ’
e (—m)[at+i(2—r?)}] ot P)dv; (27)*

P; :hi=exp (—imz) {exp [—1y(k*—m?)*+r exp [ty(k2—m?)]}

(‘\pu ety k=) . o
i (—m)f GtmEGE—n) (wdv; (2.8)
Pi :hi=exp (—imz) {exp [—iy(k2—m?)}]+r exp [iy(k*—m?*)}]}

t ® exp {i[vat+y(k2—»*)]}
T rie (—m) ). Fm)ati(E— %)

dv; (2.7)~

" hi=2exp (imx) cos [y(k*—m?)3]— it (m)f

Pk =2exp (ima) cos [y(k*—m?*)!]— 7rw+(m)J

ot ()dv; (2.8)F

P; :hs=exp [—(iba-tay)+25 D [* X l(ﬂ““b;r(’lfbﬁ‘_z ;)”2)” o= () dv; (2.9)

P{:hf=exp [— (ibz+ay)]— (; (]b> _mm OZfJib[;Eliﬁl]; >) 1} ot (v)dv. (2.9)*

In these equations, the P representations are obtained from the corresponding P~ repre-
sentations simply by replacing ¢ (») by the equivalent expression ot (»)[1+a/i(k*—v*)"]"" (see
eqs (2.5) and (2.6)). In each equation, the terms in the right member consist of an incident
wave and when reflection is possible (as is the case in the P, and P; representations) a suitable
reflected wave. Thus, in eq (2.7), the term 2 exp (imz) cos [y (k*—m?)*]is a superposition of the
incident wave hg:exp [ik (z cos 6,—vy sin 6)] (cf. eq (1.9)) and the wave exp [tk (2 cos 6,--1/sin 6],
reflected off the perfectly conducting sea. In eq (2.8) the first term is the incident wave
originating over the land and the second term is the wave reflected off the imperfectly conducting
air-land interface, the coefficient 7 being the reflection coefficient at this boundary. The
exponential terms in the integrands of eqs (2.7)-(2.9) are factors of product solution, obtained
from the wave equation by means of the standard separation-of-variables procedure. The
remaining factors in the integrand are chosen so as to meet the boundary conditions at the air-
sea and air-land interface (see eqs (1.4) and (1.5)).

To insure convergence of the integral representations and at the same time to satisfy the
“damped radiation condition” at infinity (see eq (1.14)), it is necessary to fix the branch in such
a manner that exp [iy(k?—»*)"] is exponentially damped whenever » is on the contour,
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—o<Re »<w, and [y ex

y=0 by requiring that

/. For this purpose, one fixes the value of (k*—»*)" at

k2— )Y, _o=+k. (2.10)

Choosing the branch cuts along the rays which go from 4k to @ exp (i6) and —k to —=exp (id),
one may then write
V——k’:h exp [7:(‘)’1‘{'_6)], 0<71S 27!';

V+IC:7‘2 exp [’i(72+5)], —1r<7237r, (2.11)
where
rn=|p—k|, vi=arg (v—k)—arg o,

ro=|v+kl, yo=arg (v+k)—arg o. (2.12)
From eq (2.11), it then follows that
. : 0< 1, < 2, .
(k2 —9)b=(rira)} exp [ (vaF-72+37/2-+9)), _é:l;f 213)

It can now be verified that arg (k2 —*)*~=/2 for » real and lv|>k. The behavior of arg (k?—»?)*
on the Re (v)-axis and unmedutcly above and below the cuts is depicted in figure 2

It has thus far been assumed in the P, and P, representations that 6, 7/2. Physically,
this angle 6,==/2 corresponds to plane-wave excitation incident normally on the land-sea
surface. This restriction may be removed as follows. Starting with the P, -representation of
eq (2.7)F, one allows 6, to increase to /2. The pole in the integrand at v=m=Fk cos 6§, then
approaches to contour, on the Re » axis from above. In the limit as is well-known, half the

residue of the pole at y=Ilim m=0 is split off and the resulting integral is taken as a principal-
60->/2

value integral with respect to the pole at »=0. Letting A”(z,y) be the limiting solution, one
obtains the following integral representation :
a exp (iky) a “exp {i[va+y(k*—v?)Y]}
+ e hn__9 P i it - T S - : -+ 2 45
122sih cos ky (atih) e (0)). ati(F—)] ot dv, (2.14)

the principal value being taken with respect to the pole at zero. P, refers to the problem
associated with normal incidence and the function ¢ (v). Writing ¢ (») in terms of ¢ (») by
means of eqs (2.5) and (2.6), one then obtains the alternative P, -representation; namely,

T2— 32
Py :h"=2 cos ky— e kexp (iky) — +(0)f equ[Vi;Z(yz) JV) o (W)dv. (2.14)

It can be shown, using a similar procedure, that the same results are obtained when the P, -
representation is taken as the point of departure.

It is now a simple matter to verify that the integrals appearing in eqs (2.7), (2.8), (2.9),
and (2.14) are properly convergent and admit all operations under the integral signs, neces-
sary for proving that the boundary conditions and the wave equation are satisfied. First,
taking into account the boundedness of [¢*(»)| and [¢=(v)| on the contour (see properties (1)
and (2) in the neighborhood of eq (2.6)), the behavior of (k*—»%)* on the contour, one sees that

Imv
vV PLANE
L
" z
uﬂl o
s T 12 ’fl
o9 ~2 “"‘ Fraure 2.  The cut v-plane.
el 7ot o 8 arg/ki—y ZN% ReV
Z-v'=z e
° 344
/ﬁ‘ Z
of9
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the integrands are at worst 0(r?) as |[y|—==, independently of z and y. It follows that all the
integrals converge uniformly for all  and y in the ranges — o <z<» 0 <y< e« and that taking
the limit #—0 under the integral signs is permissible operation. Next, when ¥ is positive, the
function exp [iy(k*—v*)}| decays exponentially as > on the contour. This implies that
one may differentiate any number of times under the integrals signs and still retain the ab-
solute convergence of these integrals for all z and y, —o <z<w, 0<y< = ; the reduced-wave
equation is therefore seen to be satisfied. Finally, if in P*(F~) representations, all contours
are bent upwards (downward) slightly so that, as | on the contour, the relation 0<_ITm »<_
k| sin 6(0 >Im v>|k| sin §) is satisfied, then for #>0(2<0) the function exp (irz) is exponen-
tially damped. It follows, in all cases, that differentiation under the integral signs is a per-
missible operation for all =0 ])IOVI(I(‘(I [z >0. Employing the P representations when
z >0 and the P~ representations when 2< 0, it is now a routine matter to verify the boundary
conditions.

2.2. The Factorization

The crux of any boundary-value problem which is solved by the Wiener-Hopf technique
is, as a rule, the factorization of a suitable function—a¢(») in the present case. In fact, provided
that the factorization is feasible, one can learn with a little practice how to write down integral
representations of the solution (e.g., those of subsection 2.1) at once without resorting to the
usual analytic procedures encountered in the early applications of the Wiener-Hopf method.
Such an approach is exemplified in the papers by J. Bazer and S. N. Karp [1956] and S. N.
Karp [1957].  Now as is well-known, formulas for the factors of a rather large class of functions
have been given by N. Wiener and E. Hopf [1931]. The existence of factors with the desired
properties is thus assured. However, these formulas express the factors in terms of rather
complicated integrals involving contours of infinite extent and it is often found, for this reason,
that the behavior of the factors in regions of interest is obscured. Thus, although possibility
of factorization is in principle guaranteed, the problem of transforming the original Wiener-
Hopf formulas into a more tractable form remains. This transformation was described
detail by Bazer and Karp [1952] for the function

o(»)=1-+[a/i(k2—»?)}]. (2.5)

Here, only the end results of this transformation will be presented and some direct consequences
of these results will be summarized.
First, it is to be noted that

o~ (v)= (2.15)

ot (~V)
san be shown to hold for all » so that it is enough to give the form of ¢"(v). For this purpose,
let the functions f(») and L’(v) be defined by

f)= (! l:) arc sin (u/k):l 2,, ot i9+ l:iv—l_(]i_ym:l}::“.EAE(LSVE;{@’

(2.16)
and
() [f(v) fb)+/(v>y—+f§) b7, (2.17)
where
b= (k2+a2)?, Im b>0. (2.18)

Ineq (2.16), the principal values of the inverse trigonometric function and of the logarithm are
intended and the branch of (k>—»*)? is specified as in eq (2.10). In terms of these functions,

o"(v) may be expressed as
ot () =07 (0) exp {271”-. J; L’(()(lg“}: (2.19)

ot (0) =[i+afik]:. (2.20)
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Since f(v) is regular at all points of the »-plane except at the lower branch cut of (k*—»?)% [cf.
figure 2], it follows, in virtue of eq (2.17) that L’(») is regular in this region. The same is
therefore true of ot (») which may now be shown to have all the properties required of it in
subsection 2.1.

The formulas for the far fields of problem P;, P; and P, involve the values of ¢*(k cos §)
as 0 varies in the interval 0 <<z. It is therefore desirable to obtain a reliable approximation
for ot for # in this range. That it is possible to do so is a consequence of the fact that L’(¢)=
L'[¢,(a/k)] (see eqs (2.16)—(2.18)) is a regular function of a/k when —1<¢/k<1 and the fact
that |a/k| <0.1 (see eq (1.8)). Expanding the exponential term in eq (2.19) as a power series in
a/k, one finds that

o+ (k cos 6, afk)=a* (0, a/k){l—[m (~—Sn—w>] (a/k)

[ (2 2 0) —}—40050?;9](a/k)2+li+(f),a/k)}; 0<o<r, (2.21)

where R (0,a/k) is the remainder of the series within the braces. In the same way, it is found
that

o= (k cos 8,a/k)— m{u{% ( g-%{)] (a/h) —4 [J; (I—ﬁ—i)z

cos X

= (x/z)]("/k) G a/’f)} X=r—0, 0<X<w. (2.22)

For # and x in the indicated range greater accuracy could be achieved by including more terms
of the power series. However, in deriving the air-land boundary conditions relative errors in
the fields of the order of magnitude of 0.01 are neglected. Greater accuracy would therefore
be physically meaningless.

Bazer and Karp [1952] have shown that

lot (0,a/k)| |B(6,a/k)|
|ot (k cos 0,a/k)|

IR~ (x,a/k)]
[q+(0,a/lc)[[g—(—k CIOS X,(L/k)! <00]’

<001,  0<a<140°, (2.23)

0<x<140°, (2.24)

From the relation ot (k cos 8)=(a-+ik sin 0)o~ (k cos 6)/i sin 6 (cf. eq (2.5)), it follows easily
that the relative errorsin ¢" and ¢~ when calculated by means of eq (2.28) and (2.24) are less
than 0.01 throughout the angular range 0<_< .

Formulas for o (») of the type given in (2.19) have also been derived by T. B. A. Senior
[1952] and A. E. Heins and H. Feshbach [1954]. A derivation is also given in B. Noble’s book
[1958], pp. 91-92. It does not appear to be generally known, however, that V. Fock had
already given the following compact formula for ¢7(v) as early as 1944 [Fock, 1944, p. 45]:

(T ___[cos 0-{—cosa "*“ .
o (k cos 6) \/ 1-+4cos 6 . %mu (2.25)

Here, the angles 6 and « are defined by

v=Fk cos 0, (2.26)
sin a=1a/k. (2.27)

Fock merely states the result; but it is not difficult to show that this expression follows directly
from eqs (2.19) and (2.17) on substituting cos 6 for »/k and sin « for ia/k (cf. eqs (2.26) and
(2.27)).
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It should be stressed finally that, in the problems under discussion, the constant @ is
assumed to have nonvanishing imaginary part (see eq (1.6)). If @ is real then the absolute
values of ¢"(k cos 0) and o (k cos 6), 0 <0<, reduce to simple expressions. For, in this case,
the angle « in eq (2.27) is purely imaginary and §— «, the lower limit of integration in eq (2.25),
is the complex conjugate of 6+« in the upper. It follows easily from this fact and eqs (2.15),
(2.25)—(2.27) that

v—Fk

V—\’kz+(1r2

1 p—
lot (k cos (r—6)|

cos f—1
cOos —cos «

o= (k cos 6)|= : (2.28)

whenever v/k is real and |v/k|<1. These formulas were first derived by A. F. Kay [1957, eq
66]. Kay incorrectly implies that this simplification is valid for nonreal values of @, specifically,
that eq (2.28) is also applicable to the problems discussed here.

3. The Far Fields-Coastal Refraction
3.1. The Far Fields

For the sake of brevity, only problem P will be discussed. The corresponding results
for the remaining problems are given by Bazer and Karp in their report [1952].
Write

z=p cOs 0, y=p sin 6, 0<6<m, (3.1)
and introduce the new variable of integration
B=arc cos (v/k), 0<B<w (3.2)
into eq (2.7)".  The result is
Pt :ht=exp [ikp cos (0—6,)|+exp [ikp cos (8+6p)]

i a f exp [ikp cos (B—0)]a™ (k cos B) sin Bdp (3.3
miat(m) Jeo (cos B—cos ) (a+ik sin B) » (3.3)

where the contour ('1is the image in the g-plane of the contour Im »=0 in the »-plane. It is
easy to verify that ('is essentially the contour shown in figure 3. ('is symmetric with respect
to the point ==/2, and as Im g—=ie on (; Re g—=d6=arg k. The lower portion of the upper
cut in the v-plane goes over into the upper half of the line Re 3=0 (darkened in the figure),
whereas the upper portion of the upper cut goes into the lower half of the line Re 3=0. The
segment traced from 0 to -k in the »-plane goes over into the arc traced from =/2 to 0 in the

B=8+iD

=(9-Z
o B B=(8 2)+|m

(S s(8)

p-6 B=6+T Ficure 3. The complex B-plane.

B — PLANE

B=(m-8)-i0 p=(9+T)-i0
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B-plane. Symmetry with respect to f==/2 determines the rest of the figure. The deviation
of O from the darkened rectilinear path, which is due to the presence of a small imaginary
part in k, has been greatly exaggerated for the sake of clarity. The poles in the integrand
of the P, representation are at =60, </2 and at 8,=arc sin (ia/k)~ (ia/k)=|a/k| exp (i3w/4).
These poles are shown enclosed in full circles. One might expect a pole at g~=x— (ia/k).
However, on substituting »=Fk cos B into eqs (2.5) and (2.6) it 1is found that
i sin B ot (k cos B)/ (a+ik sin B)=o (k cos 8). Thus the integrand in the P, representation is
regular near == (since o~ (k cos 8) has this property). Note, since arg (ia/k)~3x/4, 8, 1s out-
side the strip 0 <Re g<w. Nevertheless, this pole makes its presence felt owing to its prox-
imity to the saddle point at §=0.*

Now that the positions relative to ( of the poles at 5=6, and g=arc sin (ia/k) have been
established, it will be supposed, for the sake of simplicity, that 6=arg k is equal to zero. The
path C then becomes the heavy rectilinear contour of figure 3 except at the pole g=#8, which
it avoids by means, say, of a small semicircular arc. The shaded portions of the figure are
those regions where, for fixed 6, Im [i cos (3—8)]<C0; one may therefore deform the contour
freely in this region.

The steepest descent contour S(0) (see fig. 3) is defined by the equation

S(): cos (B—6)=1-+1s (3.4)
where s is real. Solving for s in terms of g one finds on selecting the proper branch that
s=-+2% exp (ir/4) sin [(6—6)/2]. (3.5)

By deforming € into S(0) one obtains from eq (3.3), in addition to the appropriate com-
bination of incident and reflected waves, an integral term of the form

J((’):L@ exp [ikp cos (B—6)]A(B)dB (3.6)

which, in virtue of eq (3.4), becomes

©

J () =2* exp [i(kp—r/4)] f i D e (3.7)

where

A[B(s)] :
B = TBo 0 (3.8)
Let k be assumed fixed and let kp>">1 when p>p,; here p, is a sufficiently large positive
number. Then, in the evaluation of the integral term of eq (3.7) only the values of B(s) in
the neighborhood of s=0 are important owing to the presence of the exponential factor
exp (—kps?). To obtamn a reliable and tractable approximate expression for J(), one there-
fore is led to replace B(s) by an approximation chosen so as (1) to represent B(s) well near the
origin and (2) to make the resulting termwise integration simply evaluable in terms of known
functions. Suppose first that B(s) is regular in a sufficiently large neighborhood of the origin.
In this case a power series expansion for B(s) meets the above requirements, since it leads to
integrals of the form
f exp (—kps?)s?"ds
which can be evaluated in terms of inverse powers of kp with gamma-function coeflicients.
The leading term of this expansion gives the same result as the usual saddle point approxima-
tion [s=0 corresponds to the saddle point at =6, since s=(1+41) sin 3(3—#0)]. On the other
hand, suppose B(s) possesses a pole at s=s,, where [so] may be made arbitrarily close (or even

4 It should be recalled here that |a/k] <1/10 in the range of frequencies studied (see eq (1.8)).
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equal) to zero. Here, for fixed kp>kp, > _>1 a series expansion may possess too small a radius
of convergence to extend readily into the range where the influence of the exponential decay
of exp (—kps?) is felt. In this case, following the methods of H. Ott [1943] and B. I.. Van der
Waerden [1951], one isolates the pole in a suitable fashion. The method of Ott differs from
that of Van der Waerden in the manner of isolating the pole. In their report [1952], the authors
employ the procedure of Van der Waerden. The following is a summary of the end results
of this procedure for problem P..

3.2. Summary of Results

a. Characterization of the Regions of Figures 4(a) and 4(b)

The poles at =6, and 8=g3, are the poles which play a role in the far field formulas. A
careful examination of the relative positions of S(f) and B, reveals that S(0) sweeps over
B, as 6 approaches zero.l The value of 6 for which S(6) actually passes through g, is called 6,.
Expressed in terms of the variable s, the poles at B=6[ and =4, are located respectively at
(see eq (3.5)).

so=2% exp (im/4) sin [(6,—6)/2] (3.9)
and

So=2% exp (m/4) sin [(8,—6)/2]. (3.10)

Let kp>kp, > >1. Then the value exponential term is appreciable for those values of 6 such
that kps;<_<_1 and the Van der Waerden procedure applies. Let it be assumed for the present
that 6,0. The region included within the parabola (see figure 4 (a))

B: | (2kp)? sin [(6—0)/2]| =K, <<1 (3.11)
is called region B. Similarly, the equation
D: [(2kp)? sin [(B,—0)/2]| =K,<<1 (3.12)

defines a parabola-like region D in the vieinity of 6=6,. In figure (4a) the region 1) is indicated
roughly by the shading above the positive z-axis. Since 8, has a small imaginary part, this
region, unlike region B, cannot extend to infinity. The regions A and € of figure (4a) are
defined by the relations

A: 7> 0> 60+A6, (3.13)
O: GO—AOOZ 02 Gb—l—Aﬂb (3.14)

where A6, and Af, are small positive angles. Since 8 is bounded away from the poles when 6
lies in A or (it is possible to choose p, so large that [(2kp) sin [(0—8,)/2]| > >1 and [(2kp)*
sin [(8,—0)/2]| > >1 whenever p>p,. In these regions the usual saddle point approximation
applies.

DIRECTION OF
REFLECTED RAYS
”

/ 8=6,-06,
3 oen )%’in[(e-e‘,m“ - Ficure 4(a) Regions A, B, C, D——characterized by
7\ il 2 ' differing asymptotic field behaviors.
DIRECTION OF
INCIDENT WAVE The excitation is assumed to originate over the sea and to make an
A 8=6y+ 48y angle of 6y, 0<6o<"w/2 with the positive z-axis.
SEA o LAND X

5 This fact is proved as follows. Let By=zv+iys, 23, y» real and write 8=zo+iyo for that point on S(0) which has the same ordinate as 85, so
that yo=ys. It is then easy to show that z0<zs.
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96=0 . Ficure 4(b) Regions A’ and B’'—characterized by
different asymptotic field behaviors.

7 L [(B,-8
[ 0":|(2kp)? sin [ 5 }[:m«u o )

DIRECTION OF The excitation progresses parallel to the sea towards the shoreline.
INCIDENT WAVE { .
il Lo A 6=60,

: 6=

8 Jes ey b

2 Ly 6-65=0

SEA o 1 LAND X
. Pl
81| (2kp)sin(-Z) | < Ky <<

Figure (4b) is obtained from figure (4a) by setting 6,=0. Regions A’ and B’ are defined
by eqs (3.13) and (3.14) with 6,=0.

b. Notation

The following notation will be employed in the next two sections.

2% exp (im/4) (a—1ik sin B)a ™t (k'cos B) sin B cos [(B-+0,—26) /4]

HEHM=""""5 cos 18—/ sin ((B100)/2] cos [(B—00 2 €
by =1b,(0,60) =2% exp (ir/4) sin [(6,—0)/2], (3.16)
1i=1}(6,80) =2! exp (ir/4)[sin [(6,—6)/2] ; (3.17)
2% exp (im/4) cos? (8/2)a* (k cos B) sin B cos [(B— 20+5b)/4] §
02 B0, = oS TB—B0) )] cos[(B+B»)/2] cosl[(B—8) 2] (8.18)
b2=b.(6,8,) =2 exp (in/4) sin [(8,—6)/2], (3.19)
sin B,=1a/k, cOos fB,= (kz—'—az) Im cos 3, >0, (3.20)
1 - l 7 0 0[,
t=14(0,6) = F 2! exp (im/4) sin [(B,—0)/21,4 | o ,,zab}; (3.21)
_ [1,2>0
1@= {0, 20 (3.22)
The constants ¢ and 7 are defined by the equations
c=a/(a*+k? sin 6) (B823))
r=(ik sin 6,—a)/(ik sin 0,-+a). (3.24)
The function erfe (z), with z complex, is defined by
3
erfe (z})=1—erf (2%):%—1“%] exp (—¢)dg, (3.25)
0

where z' is defined to be positive on the positive part of the Re (z) axis.

The far field expressions given below will be expressed in terms of ¢ (k cos ). When
0—m, o (k cos ) is singular. It is often useful, in this case, to make the substitution (see eqs
(2.5) and (2.6)).

ot (k cos 0) =[1+(a/ik sin 6)|o~ (k cos 6). (3.26)

Power series expansions of ¢ (k cos ) =o"[k cos 0, (a/k)] and o= (k cos 6)=qo"[k cos 0, (a/k)]
in terms of (a/k), |(a/k)|< 0.1, are given in eqs (2.21) and (2.22).
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c. Far Fields—Problem P (0<0<)

In this case, the incident wave originates over the sea. The angle 6, between the direc-
tion of incidence and the positive z-axis (see figure 4a) is assumed not to vanish; horizontal
incidence is therefore excluded.

Region A: [(2kp)t sin [(6—00)/2]| >>1; > 0>0,-+A0,
hi~ {exp [ikp cos (0—0,)]+exp [ikp cos (646,)]}

. 2act (k cos ) sin 6 exp [i(kp—m/4)] (3.27)
1ot (k cos 6;) (cos §—cos 8,) (a+ ik sin 6;) (2mkp)? o

The term in braces is the sum of the incident plane wave and the plane wave which is
reflected from the sea. The last term is obtained by a standard saddle point evaluation.

Region B: [(2kp)?sin [(0—6,)/2]| < K;<<<1

(2a)1(8,—0)

s ~ {oxn [ . c 2o cos p -
hi~ {exp [ikp cos (0—0,)]+exp [ikp cos (046)]] LTk sin 0,

exp [ikp cos (6—6,)]

220" (k cos 6) sin 6 (cos 6+-cos 6) exp [i(kp—m/4)] | 2¢[g1(0,0,00) —G:1(6,,0,0)] exp [i(kp—m/4)]

ot (e cos 0y) (a+1ik sin 6) (2mhp)* ot (k cos 6,)b,(0,0,) (2nkp)t

230.(11(00)070()) o [/- A _E)] A 3 ik A 1 ¢ o)
el L<A,p T) [ exp (ko) (0,00 exfe [(4L(0,00kp)1].  (3.25)

RIRCI

The first, third, and fourth terms in this expression are continuous across 6=6,. On the
other hand, the second and fifth are discontinuous across 6=46, because of the presence factors
1(0—6,) and [/i(6,0,)/b1(6,6,)] respectively (see eqs (3.16), (3.17)). If we write

(Lkp) E

erfe [(1, (9,00)/{,'p)1']:’16——7r‘ij exp (—¢3dg,

0

see eq (3.25)), then it is easy to show that the discontinuity in the second term is just com-
pensated by that in the fifth term. It should also be mentioned that at 6=6, the expression
for 4 is independent of o (k cos 6,) or ¢ (k cos 6,).
Region C: [(2kp)? sin [(0—6,)/2]| >>1, 8p+A0, >0 > 6,+A8,
hs~exp [ikp cos (0—0o)|-+7 exp [ikp cos (6+6,)]
n 200" (k cos 6) sin 6 exp [i(kp—m/4)]
1ot (k cos 0,) (cos 8—cos 6,) (a—+1k sin 6) (2mkp)?

(3.29)

The expression within the braces is the sum of the incident plane wave exp [ikp cos (6—6,)]
and the plane wave exp [ikp cos (6-6,)] which is reflected off the land; 7 is the reflection coefi-
cient appropriate to the land (ef. eqs (3.24) and (2.2)).

Region D: [(2kp)? sin [(8,—6)/2]|<<<1, 6~6,~0
he={exp [ikp cos (0—0,)]+r exp [ikp cos (646,)]}
| 1(6—6,)2a sin Byt (k cos B,) exp [ikp cos (8,—0)]
o ko™ (k cos 6,) (cos B,—cos 6,) cos B,
_ 2cat (k cos 6) sin §(a—1k sin §) exp [i(kp—m/4)]
1ot (ke cos ;) (cos 6—cos ;) 27k p)?
+2Ck2[92(9>‘9,00)—!]2(ﬁb;0x00)] exp [i(kp—m/4)]
10T (k cos 00)b,(6,8,) (2rkp)?
282ck?g, (50,9,90)
’iU+(k cOos 00) b2(0;ﬁb>

exp [i(kp—m/4)] exp (Lo p)l3(6,8s) erfe [(1:(0,8)kp)t].  (3.30)
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This expression remains valid in region (. Note that the last term contains the factors
exp (ikp) exp (Lkp)=exp {ikp[1—2 sin® [(8,—6)/2]]} =exp [ikp cos (8,—0)]. As 6 passes through
6,, 13(0,8,) changes sign (sce eq (3.21)). From this fact, and eq (3.25), one finds that the jump
in the third term of eq (3.30) is just compensated by the jump in the last term, the remaining
terms being continuous across 6=46,.

d. Far Fields—Problem P,—(6,=0)

Again the incident wave originates over the sea, but in the present case the direction of
incidence 1s horizontal.

Region A’: [(2kp)? sin (0/2)|>>1, #>60>0,+A0,

ac ™t (k cos ) exp |i(kp+m/4)]
an (0/2) (a-+1ik sin 6) 27k p)?

1., b @ : :
5 h?~exp (tkp cos 6)+io+(k) : (3.31)

This expression follows from a straightforward application of the saddle-point method.

Region B’: |(2kp)? sin (/2)| <K< <1 and [(2kp)?* sin [(8,—6)/2]| <K< <1

1 8 LY g [01(0.0,())_(/(0,0,0)] “/Xp [L(]Cp‘ﬂ'/‘i)]
P R LR @aip)!
244,(0,6,0)

+m exp [i(kp—m/4)] exp (11(0,0)kp)2}(0,0) Xerfe [(£:(8,0)kp)?]

+1(0—6,) %ﬁ;ﬁ’f’m exp (—im/4) exp [ikp cos (B,—0)]

+k2[g2(0,0,0) —2(85,6,0)] €xXp [1(kp—m/4)]

aiat (k) by (0,8,) (2rkp)? -
22415 (8,,0,0 . , l .
+E%I{T(EWB)D) exp [i(kp—m/4)] exp (lokp)l3(0,8y) Xerfe [(14(60,8,)kp)?]. (3.32)

This expression gives the far field for 2% in region A’ also and reduces to the expression given
in eq (3.31) when [(2kp)* sin (8/2)|>>>1.

Important simplifications occur when 6=0-—i.e., on the land surface. If the influence of
the complex pole at 3=, is neglected or equivalently if it is assumed that kp, is so large that
|(2kpo)* sin (B,/2)|>>>>1 then the last three terms are 0[(kp,) 2] whenever p>>p,. Furthermore,
the third term just cancels the first term. As a result, it is found that

%hs(p,()) ~ _Z_k exp [i(kp—m/4)] __iN*"* exp (ikp)

Cukpd - 2rdy ph (3.85)
Here, X is the wavelength in air and d, is defined in eq (1.7). This formula was first obtained
by Griinberg [1942, 1943]. Note that this result is independent of the function o*.

On the other hand, when 6=0 and [(2kp)* sin (8,/2)], with p>>p,, is small compared to
unity, all the terms of eq (3.32) must be taken into account. The result is

ot (k cos B,) cos® (8,/2)
ot (k) cos B,

‘;‘hs(p,m NQCTIC |:1_0+(]f cos By) cos® (8,/2)7] exp [i(kp—m/4)]

¥ (k) cos By kgt T

. 9 (kp)3(1+14) sin (8,/2) ‘ N
S e (i o m>><[1+(7)% | exp (= [+00lkn) 2 (.34)

(The terms four and six in eq (3.32) lead, with the help of eq (3.25) to the second term above
and the remaining terms of eq (3.32) yield the first term above.) Since cos 8,=[1-+ (a/k)?]
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and [(e/k)|<0.1, we have the following estimate for A°(p,0) on the land

1 '(kp)t(l+t) sin (8,/2)
5 1 (p,0) ~exp [ip(k*+a?)}] [1—}—( 3i J exp (— fz)(/§:|+0((1//()+()l (kp) =32 (3.35)

Thus for sufficiently small [(2kp)"§ sin (8,/2)], h°(p,0) is a ground wave (cf., eq (1.11)).
3.3. Some Comments Regarding Coastal Refraction

As was pointed out by Bazer and Karp [1952], had problem P, been formulated in terms
of F,, the vertical component of the electric field, instead of 2 (see eqs (1.1)-(1.3)), it would
have been possible to treat the case of an exciting plane wave incident parallel to the sea but
making an angle, 37—¢ say (0<¢<x/2) with the shoreline. (In fact, it was in terms of the
angle ¢ that G. A. Griinberg [1942, 1943] formulated his discussion of the problem of coastal
refraction (see section 1).) It would then have bven found, employing the method of the
paper, that £, varies as (cos ¢)'h*(p,0) for |[(k cos ¢)p]* sin (Bb/))\>>1 on the land, % a distance
p from the shoreline. Here A% is the expression in eq (3.33).  This result is in complete agree-
ment with Grinberg’s and shows, at least within the present theoretical context, that there is
no refraction at large distances flom the shoreline.  The possibility of coastal refraction still
exists, however, when |(kp cos ¢)* sin (/3,,/‘))’<<1 since, in this case, the presence of a ground

rave of the form exp [ipyk? cos? ¢-+a*+k cos ¢ 2] would be felt (see eq (3.35)).  The attention
Of the authors was drawn to this range by H. G. Booker,” to whom they are further indebted
for bringing to their notice an early work by Kckersley [1920] which bears directly on this
problem. To sum up, the appearance of a ground wave for “moderate” values of (k cos ¢)p
leads us to believe that coastal refraction may be explained by an extension of the methods
of our paper. What is required is a vector treatment of the problem for the case of oblique in-
cidence and a careful investigation of the error terms in the oblique-incidence analogs of the
results presented in the above summary.
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