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Nature offers numerous examples of irregular stratification of the medium for the propa-

gation of radio waves.

between specular reflection and diffuse reflection.

A study of the process of reflection in such a medium distinguishes

The phenomenon of trans-horizon

tropospheric propagation offers an example of the application of such a process, necessary

for the interpretation of experimental results.

Other examples are those of ionospheric

propagation (sporadic-F layer) and propagation over an irregular ground surface (phenom-

enon of albedo).

1. Introduction

This paper discusses the role of partial reflection
in the propagation of radio waves in stratified media.
This work differs considerably from other works by
different authors about the same problem [Epstein,
1930; Feinstein, 1951 and 1952; Wait, 1952; Carroll
etal., 1955; Friis et al., 1957 ; Smyth et al., 1957].

The authors were led to make such a study in the
course of seeking an interpretation of experimental
results obtained in trans-horizon tropospheric propa-
gation for which the classical theory of turbulent
scattering did not appear to give a satisfactory ex-
planation. The process of reflection in irregular
media points to evidence for the existence of two
forms, coherent or specular reflection, and random or
diffuse reflection. These two phenomena, added to
the pheonomenon of scattering, permit one to ac-
count for the ensemble of experimental results ob-
tained in trans-horizon tropospheric propagation.

The existence of stratified irregular media, or of
layers, is far from being limited to the case of the
troposphere. Such layers should, in fact, appear
each time that a field of force along a dominant
direction is exerted on the medium, creating strati-
fication in a perpendicular direction. This is the
case for the troposphere or the ionosphere when
subjected to the gravitational field, as well as the
magnetosphere in a geomagnetic field. In all these
cases, the conclusions reached by a study of the
process of reflection should be found to be applicable.

2. Study of the Phenomenon of Reflection in
an Irregular Medium

Consider a small stratum of thickness, 71, with a
horizontal surface, S, and with an average length, /.
This volume contains irregularities having a mean
surface, s, of average length, /, distributed over the
thickness, /.

1, Translated from the French by P. Guzman-Rivas, Boulder, Colo.

Phenomenon of partial reflection.

FiGure 1.

A plane wave incident at an inclination angle o is
partially reflected by the surface, S, having a reflec-
tion coefficient, p, assumed constant at every point
of the surface of the irregularities, s (fig. 1).

2.1. Elementary Reflected Power

Each element of a surface s has a certain inclina-
tion, so that it reflects an incident ray in a direction
f=a-+B relative to it. The element has a certain
radius of curvature, R, and an elementary effective
reflecting cross section, o, corresponding to the
direction # with which it can be associated (iig. 2).

Let us take a local system of cylindrical coordi-
nates, a, ¢, ¢, such that ¢ is perpendicular to the bi-
sectrix of angle 6 and normal to the surface at a
center point, P, of the element. To a point M(a,)
of the tangent plane {=0, there corresponds an alti-
tude ¢=a*/SR. At this point M, the radiation is
dephased by 2K relative to the center point P, where
K=2/A and A=NX\/(sin 6/2) is the space wavelength.
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A limiting condition for the element of effective
surface, o, will be given, for example, by a dephasing
of less than 7/4. Therefore, for the limiting points,
{=A/4, and a=+RA/2, the value of the effective
reflecting surface, o, is

o=RA/2. (1)

The validity of this expression evidently assumes

that ¢<7s, so that
R<201%A. (2)

The corresponding reflected power, op, in the
direction 6 can then be calculated as a function of
the power incident per unit of surface, py, by a
reasoning analogous to that for antenna theory.
The expression for the gain of an antenna with
surface o, in the direction 6, would be

op 4r .
Poo sin 0/2:V a(sin 6/2)0%
p being the amplitude of the reflection coefficient,
so that

4
op="Dno )\"7; a*p*. (3)

The surface s can be considered as consisting of a
combination of elements of effective surfaces o,
each reflecting an energy 6p in a direction 4. It can
be assumed that the surface s is small and that its
mean radius of curvature £ is large, with the radii
of curvature of the surfaces ¢ approximated by the
average radius R. In the expression for K, the
reflection angles 8 can be approximated by the angle
a, so that 6=2«. One obtains for the radius of
curvature R, if /1 is the maximum height of the

irregularity:
[R={PIfYEL

Hence, we obtain an equation for ép:

4

o, !

and, for condition (2):

H>A/16.

Frcure 2. Reflection by an irreqularity of a surface.

These approximations should not obscure the
fact that the power is reflected into a solid angle
around the direction 2a, which can be characterized
by a vertical angle ¢ and a horizontal angle ¢. These
angles are related to the curvature of the surface
within the latter’s limits, and can be written:

. _H -
d=y=2 ﬁ:b.j’ (5)

if one takes into account small angles ¢ and ¢.
2.2. Total Reflected Power

The stratum with a total surface S and having a
dimension L consists of a series of surface irregulari-
ties with mean dimensions s distributed over a
thickness 7. With each of these is associated a
reflected power 6p along a given direction, and a
phase term characteristic of its position.

Let us take Cartesian coordinate axes x, 9, z from
a central point O in the surface S (fig. 3), where
and 7 are horizontal and z is vertical. Associated
with each surface element ¢ is a phase term Fkr,
where 7 is the distance to the point ). Separating
horizontal and vertical characteristics, one can
write, ¢ being the horizontal distance from O of the
element ¢:

r=t+2z(¢) sin o, (6)
where:

t=ux sin a sin ¢+ sin ¢, (7

with ¢ and ¢ characterizing the direction of observa-
tion 8 by a vertical angle and a horizontal angle
around «, and z(t) describing the position of the
elements . It amounts to restoring them entirely
to a horizontal plane, but conserving for each el-
ement its proper phase term 2Kz(¢). Defining:

7(t):ej2Kz"), <\»)

we obtain a function describing the distribution of
irregularities.

a. Specular Reflection

To calculate the total power reflected in a direction
6, two cases come into consideration, depending on
whether the elementary terms involved are in phase
or not.

5 w
T p
S S
|7
¥ Brgx » 2
= S Y \&
Ficure 3. Reflection by an irregular surface.
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For terms in phase, the reflected power, P, is
obtained by considering elementary energies, i.e., by
squaring the phase terms:

P.,=op [}] e’ 7(t)(12t:|;~ 9)
< S

Since the terms are in phase, one must have kt=2=
or ¢=y¢=0. Reflection in phase occurs only along the
direction of specular reflection §=a. Therefore:

Po—sp E L 'y(t)d?t:r-

Since v(#) is a cissoidal function, for an approximate
value of its integral over S, one can take:

(10)

_sinw
u

’ (11)
where:

u=2KH (12)
and # is the maximum height of the irregularities
2(t). Hence, for specular reflection,

2
I)‘\=67) —8—2— 72.

(13)

b. Diffuse Reflection

For terms whose phases differ, it is necessary to
resort to a reasoning analogous to that which is used
in the theory of scattering, and to take into account
the random character of the distribution of reflecting
elements. In considering two elements correspond-
ing to ¢ and t4-4, the reflected power will be:

szapéfe”"y(f)d?f »}fefk<'+6w(t+a)(12(r+a). (14)
S $Js
This expression can be transformed into:
P=spl f ¢ [l J 7(t)—y(t—i—5)(l2t:| &5, (15)
SJs SJs

In this form, the correlation function of ~(#) is
shown as:

1
@)= | HOn+or, (16)

and its Fourier transform:
r(k):% f 75y (8) . (17)

S

However, since the functions v(#) involved are
cissoidal functions, it is possible to make an approxi-
mation, and to replace the integralin (17) with unity.
It should be observed that the reflected power
corresponding to the terms in phase appears formally
in eq (15). It is necessary to take into account that
this power has been selected so that instead of unity
one takes (1—+?).

Diffuse reflection is therefore written as:

S
szépg (=521 (18)

c. Solid Angle of Reflection

Coming back to the physical meaning of this
mathematical analysis, a certain number of elements
are distributed at random in a stratum, each element
reflecting a certain power into a solid angle, w,
around the direction of specular reflection (fig. 1).
The distribution of these elements is analyzed by
their spectral distribution, I'(k); i.e., with the
space wavelength, A, in the direction of propagation,
and the wavelength, X\, in the transverse direction.
Elements whose phases are random give a diffuse
reflection in an angle equal to the angle w.  Elements
in phase give a more intense reflection in a much
smaller angle .

The preponderance of one phenomenon or the other
depends on the size of the irregularities. By fixing a
limit, u=m/4, Rayleigh’s criterion for an irregular
surface 1s found:

> A/16,

this corresponding to condition (2).

The solid angles involved have limits fixed by
the phase variation. In the vertical plane, the
phase term, within limits of the surface, is K/ sin ¢,
for diffuse reflection, where the surface s is involved,
and KL sin ¢ for specular reflection.

The phase varies from = for small angles equal to:

®,=A/L b,=A/L. (19)
In the horizontal plane, the phase is A7 sin ¢. For
a variation of

These limits are stricter than the geometrical
limits of formula (5) if /7 >A/S. We note also that
reflection creates a lobar structure, as in the case
of antennas, and that the results involve only the
main lobe.

Several remarks can be made concerning the
approximations used. Introduction of the approx-
imation v instead of y(¢) in (11) is tantamount to
considering the correlation function »(8) in (16)
equal to 1 when 6</, and equal to v as an average.
However, since the characteristic function of the
irregularities, z(f), appears as an exponent, the choice
of the correlation function is not critical. The
minima of v(u) will be introduced by the approxima-
tion and it is preferable to replace v* by its mean
value 1/2, since u_>3=/4, or H >3A/16.

d. Total Reflected Power

Total reflected power can be put in the following
form:

47 s1

2 2
P—p T[Sl u-m ] e
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This equation shows the number of reflecting
elements which enter into the second power in
coherent reflection.

Limits must be considered in the real surface of
reflection (fig. 4). For specular reflection, the
hypothesis of a phase phenomenon introduces a
Fresnel’s ellipse when we no longer have a plane
wave. If D is the emission-reception distance, its
dimensions are:

Li=v\Djsina  Li=y\D. (22)
Only that zone of S in the Fresnel’s ellipse (viz, S,)
will be involved.

In the case of diffuse reflection, the maximum in-
clination (small) 7 of the elements will be involved.
This corresponds to a width, L,=D sin ar, where

r~H/[. The possible transverse limit for S, then is:
=) [TI sin a. (23)

Hence, the reflected power (21) should be written

in the form:
ydrsinfa L, [S? S, , .
P,*‘[)(»P' gy O I:‘Nz 'YZ \”l (1 —'Yz)]‘ (.24)

3. Process of Reflection in Trans-Horizon
Tropospheric Propagation

3.1. Characteristics of the Propagation Media

As a consequence of gravity, the atmosphere has a
general tendency to become horizontally stratified.

A consideration of movements in the atmosphere
shows the possibility of two processes, a laminar flow
and a turbulent flow [Misme, 1958]. The limit
between these two processes is clearly marked and
depends on atmospheric stability.

In a zone of laminar flow, a stratification of the
atmosphere appears which can be characterized by
layers of a stable nature, with highly variable hori-
zontal as well as vertical dimensions.

In a zone of turbulent flow, elementary unstable
blobs appear, which are more or less organized
depending upon the thickness of the zone.

A highly plausible representation of the atmos-
phere would show a spatial superposition of laminar-
flow zones (or stable strata) and turbulent-flow
zones (or turbulent strata).

Stable strata can be characterized by a dis-
continuity in the gradient of refractive index,
corresponding to a variation én of the indexin a very
small thickness, e.

The structure of the stratum is subject to the
influence of turbulent flow in neighboring strata and
to mechanical vertical movements of the atmo\phmo
The corresponding irregularities could be expressed
by horizontal and vertical mean dimensions / and £,
corresponding to a mean surface s, for irregularities
of the first order (turbulent-flow) and by average

dimensions [, and /&, (corresponding to a mean
surface s,), for irregularities of the second order
(me(‘hdm(al movements), as in figure 5.
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Ficure 4. Surface of reflection.
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Ficure 5. Schematic of the troposphere.
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The stratum has a total thickness, 77, comprising
all such irregularities. 71 could be considered the
same as h; with a total dimension L, corresponding
to a surface S.

The orders of magnitude of these different charac-
teristic parameters of the stratification, as far as
they can be deduced from experimental observations,
are the following:

Discontinuity ON~10"2N e~10 cm

Dimensions L~10 km H~10 m

[rregularities [~10 m h~1m
li~1 km hy~10 m

A simplified schematic of the stratification is that
wherein irregularities with mean dimensions / and &
are distributed through a stratum of dimensions L
and H. Such a simple model is considered in the
preceding study.

[t should be noted that observations of the upper
surfaces of cloud layers give evidence frequently of the
existence of irregularities such as those recorded here
[Misme, 1960].

3.2. Propagation by Reflection in Tropospheric
Strata

In the case of trans-horizon tropospheric propaga-
tion, angles of inclination a are always small so that
one may take the angle for the sine.

a. Reflection Coefficient

For a discontinuity of the index dN, small com-
pared to an angle of inclination «, the coefficient of
reflection of an element, according to Fresnel’s
formula, can be written:

dp=dN/202, (25)

For a discontinuity thickness ¢, the coefficient of

reflection is:
p:J “dN pI2K2
3 9 W
0 207
or, upon introducing the index gradient g(z)=dN/dz:

o 2a?

(26)
A limited development permits one to write:
1 sy 9 g 2K 2
Pzzaz{[-' skt Ry eryt |
(27)
For a very small thickness, ¢, e< <A, we will con-

sider a discontinuity gradient g=6N/e and write:

_ N
P= nad

(28)

b. First Order Irreqularities

Irregularities s(/,h), comprised in a surface s, give
rise to a specular reflection, p;, and a diffuse reflec-
tion, piq:

0 a2 2 /-2<- g
Prs=Dop" —7)'\-_)— a° J;z v (29)
, dma® sy, ) .
Pu=pop’ —5 o — (1—v) (30)

where y=sin u/u and wu—=4rall/x. The effective
reflecting surface, o, defined by (1), can be written:

o=\*/2hae. (31)
The mean surface of the irregularities, s, would then
be:

= (1 (32)
The total surface of diffuse reflection is equal to s,
this being small:

siu=13. (33)

The total surface of specular reflection is limited

transversely in general by the small diameter of
Fresnel’s ellipse, L=y \D, if D is the total length of
the path:
VAD

o4

s1,=0LVAD,AD< [, < (34)

The expression for the reflected power can be given
in relation to the corresponding free-space power, P,
instead of the incident power per unit of surface, p,.
Then:

po=Pod/xD, (35)
if [)is average distance, close to actual distance, d

such that: ’

1/D=d/4d,d,, (36)

where d; and d, are the distances from the reflecting
element to the extremes of the path close to d/2.
Equations for reflected powers are, therefore:

o li , N

Pu=Lotn " a7 3 (37)
, on? Pl . A2
]’1(1:])0(11(1? h{l (=37 D2 (38)

with numerical values a;,~6.2 1073 and a,; ~6.2 1073,

c. Second Order Irregularities

Over a total surface, S, of a stratum, we assume
irregularities s,(/,,/1) superposed upon irregularities
s(L,h). The power of diffuse reflection, p,,, due to
an irregularity s;, can be considered as playing the
role of an element of reflected power. Then the sum
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of these powers will cause a total noncoherent reflec-
tion to appear, which will be the total power of
diffuse reflection from the surface S, and a total
coherent reflection, which can be considered as being
the total power of quasi-specular reflection of the
surface S.

The first can be written:

P 1a=p1aSa/s1a- (39)

The surface of diffuse reflection will be limited
transversely by the maximum inclination, 7, of the
elements of surface s, i.e., by a transverse dimension
Lys=Dar. With the approximation 7=FH/l;, we have
for Sg;:

S,— LDaH/l,. (40)

Then the equation for diffuse reflected power is:

on® LILH

o A2
Pr{l:PO g ;2— T (1_')’2) aTD’ (41)

with a numerical value a;~6.2 1073,

For total power of quasi-specular reflection, one
must consider the power p;; as an element of power
corresponding to an effective surface o; associated
with s; and no longer to ¢ associated with s. The
expression for reflected power, therefore, will be:

2 Q2
a; S; .
I)rs:pld 7%2 w2 (1_72) . (42)
0" Sia
For the effective surface o;, we have:
o1=MN}/2Ha. (43)

As far as the total surface of reflection, S;, is
concerned, the transverse dimension of Kresnel’s

ellipse, L=y\D will, as before, be involved.
Hence:
S,=L+/\D. (44)

The expression for the power of quasi-specular
reflection will be:

on? L322 X
o e ) gy

Prs:POa's (45)

with a numerically constant value, a;,~1.2 1072,

d. General Expressions for Reflected Power

Equations (37), (38), (41), and (45) for the dif-
ferent components of power reflected by a stratum
correspond to certain hypotheses dealing, on the
one hand, with the nature of the index discontinuity
characteristic of the stratum, i.e., the reflection
coefficient; and, on the other hand, with the respec-
tive dimensions of the different intervening surfaces.
It is only in the form of expressions (29), (30), (39),
and (42) that the generalization is maintained.

Other assumptions would lead to equations a little
different from the role played by the different pa-
rameters. Moreover, the characteristics and dimen-
sions of atmospheric strata and their irregularities
can be markedly variable in time and space. If,
then, the assumptions which have been made cor-
respond to average orders of magnitude, the equa-
tions which result from them should be considered
as having limits in their application for a particular
case.

It is essential to keep in mind that reflection
phenomena in an irregular medium involve two
components: a reflection with coherent character,
affecting a limited surface of the stratum and appear-
ing dominant if the irregularities are dimensionally
small relative to the space wavelength; and a reflec-
tion with diffuse character, involving a large portion
of the surface of the stratum, and all the more
marked as the irregularities are more important.
Rayleigh’s criterion gives us the limits within
which one or the other component will be pre-
ponderant. One other significant characteristic of
the propagation by reflection is the fine structure
of the phenomenon involving a limited number of
reflecting elements.

Some numerical examples permit one to account
for the orders of magnitude involved, and the limits
of approximation used.

For a distance V=200 km, the minimum value for
the angle of inclination is about «=12.5-107% rad; for
D=400 km, a=25-10"% rad. The space wavelengths
for radiation of wavelength A=1 m or A=10 cm are,
respectively, for 200 km, A=800 m or A=80 m; for
400 km, A=400 m or A=40 m.

For a discontinuity thickness, ¢e=2 or 3 m, we
have always e< < A/8, and formula (28) for the
reflection coeflicient is generally valid.

Rayleigh’s eriterion for an irregular surface shows,
on the contrary, that it is sufficient that the thickness
of the irregularities of a stratum, /, be greater than
10 m for the surface to appear irregular to radiation
of A=10 e¢m. However, the thickness has to be
greater than 50 or 100 m, according to the distance,
for the surface to appear irregular to radiation of
A=1m.

The dimensions of Fresnel’s ellipse vary from
L,=38 km and L.=450 m for D=200 km and
A=1 m, to L,=8 km and L.=200 m for =400
km and N\=10 c¢m. For stratum dimensions on the
order of L=1 km, the assumption that L < L<L;
is, therefore, no longer valid.

An inclination of an irregularity in the stratum
of 10° relative to the horizontal, i.e., 7=0.17 rad,
results in a transverse dimension of the diffuse
reflection surface of L,—400 m at 200 km, and
L;=1,700 m at 400 km. It should be remarked
that generally L; >L,. The assumption that L;<L
is less general than L)< /L, and the actual surface of
diffuse reflection is much larger than the real surface
of specular reflection. Note that an inclination
of 10°, corresponding to a ratio of stratum thickness,
H, to irregularity dimension, /, close to H/l=0.2, is
plausible. It results in //=20 m for /=100 m, and
H=200 m for /=1 km.
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3.3. Consequences of the Reflection Theory
a. Effect Due to Frequency

Equations (37) and (38), or (41) and (45), for
specular and diffuse reflection powers point to
evidence that there exists a decrease of specular
reflection with frequency (N\*) more rapid than the
case involving diffuse reflection (A?).

It must, however, be remarked that, while the
frequency increases, irregularities of the medium
become more apparent under radiation, to the detri-
ment of specular reflection. On the other hand,
eq (28) for the coefficient of reflection ceases
to be valid for frequencies that are too high, and the
ensuing terms of the development introduce much
higher exponents of \.

b. Effect Due to Distance

Upon admitting a proportionality of « to distance,
the expressions for reflected power point to an evident
and rapid decrease of specular reflection with dis-
tance as compared to diffuse reflection. If one, how-
ever, takes into account the fact that the dimensions
of the strata appear to increase with altitude, diffuse
reflection will tend to be dominant at very great
distances.

c. Statistical Properties of the Signal

Fluctuations of signals are due essentially to in-
stantaneous interference between signal components.
The differences in path lengths can be more signifi-
cant, therefore, the greater the dimensions of the
atmospheric zone which are involved. It can be
seen that the limits of the useful surfaces differ for
specular reflection (S; transversely limited by
Fresnel’s ellipse, L,=+/\D) and for diffuse reflection
(S; limited transversely by the inclination of reflect-
ing elements, L,=Dar). In thickness, the atmos-
pheric zone is limited by the thickness, 77, of the
stratum.

The result is that the fading range will be less than
with Rayleigh’s law. Upon considering the number,
n, of reflecting surfaces, equation (21) for reflected
power could be put in the form:

P,=P[n+n(n—1)y2. (46)

This form corresponds to the expression for the
distribution of a vector sum, whose phase is distrib-
uted in a random manner between two limits, w
and —w [Beckmann, 1957], with:

y=sin w/w.

the velocity of

The fading rate is a function of
elements, each

relative displacement of reflecting
relative to the others, resulting in average move-
ments, of velocity %, and vertical movements, of
velocity », of the atmosphere. This fading rate can
be expressed by the number N of crossings of the
median level. An approximate expression as a

625829—62

function of the velocity of mean radial displacement,

vy, 18:
N=3712av,/\. (47)
The factor, 7, which is the maximum inclination of
the strata, is introduced by the transverse limits of
the reflection surface.

d. Space Selectivity of Reflected Power

The diversity distance is related to the measure-
ments of the useful zone of the atmosphere, more
exactly, to the angle at which the zone is seen from
the point of emission.

In a transverse direction, diversity distance 6z
would be equal to:

Al

=3 5 (48)

In the vertical direction, however, the small
thickness, 77, of the stratum is involved, hence:
1 \D
0p=y - 9
s’ (49)

increasing with the frequency.
e. Frequency Selectivity of Reflected Power

The dimensions of the useful zone of the atmos-
phere involved, in limiting the bandwidth transmis-
sible by reflection, will be the maximum dimensions
in a horizontal, rather than vertical, plane, by
reason of the small thickness of the stratum.

In this manner, the equation for the bandwidth
Af is in the form:

b 1 -
Af=1y5 (50)
For a correlation sufficiently close to 1, when Af
is descriptive of the transmissible bandwidth, the
value of the numerical coefficient is close to b= 10,
if Afisin Me/s and D is in 100-km units.

f. Fine Structure of the Field

The instantaneous characteristics of the reflected
fields differ sensibly from the character of the scat-
tered fields.

In a rapid spatial analysis, diffusion will appear
only as a large bright zone, depending upon the
dimensions of the scattering volume. Reflection, on
the contrary, can cause very narrow zones to appear,
corresponding to surfaces of reflecting strata. These
will appear as “brilliant points,” by virtue of the
reduced openings of the antenna lobes. Experiences
in rapid swinging of a narrow beam of an antenna are,
in this connection, a confirmation of the possible
existence of these two phenomena of propagation
[Waterman, 1958].

In a rapid frequency analysis, the statistical prop-
erties of the frequency structure will similarly be
different for scattering and reflection. Besides an
increase in the maxima due to differences in the
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transmissible bandwidth, and besides a reduced
fading rate in the case of reflection, it is possible to
relate the spectral characteristics of fluctuations to
the atmospheric zones involved. The existence of
different types of spectral distributions, within the
range of experiments in rapid frequency analysis,
also afford a verification of the existence of several
propagation phenomena [Landauer, 1960 ; Biggi et al.,
1960].

3.4. The Complex Phenomenon of Trans-Horizon
Tropospheric Propagation

Propagation phenomena by scattering and reflec-
tion each play their part in the complex processes of
propagation in a troposphere consisting of turbulent
layers and stable strata.

The phenomenon of specular or quasi-specular re-
flection, which presupposes specific conditions of
regularity in the strata, will appear generally only a

small percentage of the time, and will be weaker as
distance increases and frequency rises. This is the
origin of the high and little fluctuating levels observed
in trans-horizon paths.

The phenomenon of diffuse reflection and scatter-
ing will be essential elements in trans-horizon propa-
gation as long as distance is sufficiently large or fre-
quency high enough to make the effect of the earth
and its relief neglible compared to the effect of the
troposphere.

Although the fundamental characteristics of these
two phenomena are quite close, as long as the phe-
nomena are incoherent, specific properties are at-
tached to each, and it will be necessary to resort to
one or the other in order to interpret all the experi-
mental results [du Castel, 1960].

A comparative study of these principal properties
can be made. Results based on very general hy-
potheses for each of the phenomena are shown in
figure 6.
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Ficure 6. Phenomenon of trans-horizon tropospheric propagation.

Diffusion (broken line), specular reflection (solid line).

Diffuse reflection (dot-and-dash).

a, According to frequency; b, According to distance; ¢, Fading speed; d, Diversity distance; e, Trans-

missible bandwidth; f, Distribution of fading ran

ge,
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4. Process of Reflection in Other Propagation
Media

General considerations concerning reflection pro-
cesses 1n irregular media can be applied to numerous
instances where the existence of a field of force in a
dominant direction leads to some stratification of the
propagation medium. The troposphere is an ex-
ample, but there are others. Following the consid-
erations that have been made in section 3, we shall
briefly consider the case involving the ionosphere.

Moreover, if an irregular stratification leads to a
phenomenon of reflection, the same result will evi-
dently exist for reflection on an irregular ground
surface. We shall similarly deal with this latter case
suceinetly, as another example of application of the
more general analysis.

4.1. Process of Reflection in lonospheric Propagation
(Sporadic-E Layer)

The possible existence in the lower ionosphere of
strata of ionization is, at present, an experimental
fact [Bowles, 1959; Seddon, 1960]. However, in-
terpretations of the phenomenon are not all in
agreement. For some, this stratification would
result from propagation through the atmosphere of
gravity waves, creating vibrations opposite in phase
for points separated by a half-wavelength. Such
vibrations would create strong gradients of hori-
zontal velocity. In transitional zones between two
oppositely directed horizontal currents, the electrified
particles which are transported are subject to vertical
magnetic forces of opposite sense because of the
horizontal component of the earth’s magnetic field.
Thus, a reinforced ionization will result, correspond-
ing ﬁo sporadic-# layer [Hines, 1960; Whitehead,
1960].

Such stratification would not be uniform. Under
the influence mainly of turbulent movements in lower
adjacent layers, structural irregularities would appear
{Voge, 1961].

Let us consider a model sporadic-£ layer, charac-
terized by a gradient of electronic density, corre-
sponding to a variation of density, 6/V (on the order
of 10* electrons per em?), over a small thickness,
e (on the order of 10 m), the average density at the
level under consideration being N, (on the order of
3 X 10® electrons per em?).

Horizontally, the dimension of the stratum is L
(on the order of 10,000 m) and vertically /7 (on the
order of 1,000 m). The surface shows irregularities
of average dimension, horizontally / (on the order of
1,000 m) and vertically A (on the order of 100 m).
The stratum is at a mean altitude 2 (on the order of
100 km).

What is the significance in this case of the reflection
formula of section 2 for vertical transmitting power,
P,, corresponding to an ionospheric sounding?

Tonospheric plasma has a cutoff frequency, f,, such
that:

Fo=Ny(ed/nPme,), (51)

¢, being the electron charge; m,, electron mass; e,
the dielectric constant in vacuum. In practical
units, we have approximately:

foMe/s)=10"24/N(cm™?). (52)

For Ny=3 10 cm™3, f,=0.5 Mec/s. For any frequency
less than f;, the reflection is total, and the reflected
power is:

(53)

At a frequency f higher than f,, the ionization gradi-
ent 6N introduces a partial reflection, corresponding
to an index variation én.

Py=P,(1/4xD?).

We have:
n*=1—13/f> (54)
or, in practical units:
7?=1—10"*N(cm=%)/f*(Mc/s) (55)
so that:
sn=>5.10"% NJf>. (56)

The change in the index takes place over a thickness,
¢, to which corresponds a gradient of index change:

g=aénje.

For example, for 6N=10*cm™3, and e=10m, ¢'=
2.107% at f=1 Mc/s, and ¢°=2.10"7 at f=10 Mc/s.

Consider the term for specular reflection in eq
(24). We will have, for vertical sounding:

1, N 4r NFS?

—T) Al Lo et O e i
P=P. 1 5 9" 542 N 2560 1

(7

The surface of specular reflection involved is
limited by a condition of phase coherence, i.e., a
Fresnel’s ellipse, and has the value:

Ss=AD/4. (58)
Therefore:
)\4

] —6o2 N
(= BBl i

(59)

For the term of diffuse reflection in eq (24), we have
here:

1 2 )\2 47[' >\2Z4 S,[

PP guip 0 fam 37 25602 1

(60)

The surface of diffuse reflection involved is limited by
the inclination of the elementary surfaces of reflec-
tion, and has a value:

S=L(DH/L). (61)
Therefore:
2 2
Pi=Ps.10-% L 2L (62)
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With orders of magnitude as follows: A=100 m,
[=1,000 m, H=1,000 m, L.=10,000 m, the numerical
values indicated in figure 7 are obtained for reflected
power as a function of frequency. Transition
between specular reflection and diffuse reflection
corresponds to a frequency f, such that:

N =2HI/L. (63)
Here, f"=1.5 Mc¢/s. It should be noted that we have
not considered here the term v of section 2, character-
izing the respective importance of the two reflection
terms by:

y=sIn u/u

where w=4xI/\. The term v would introduce a
frequency of transition f* , such that:

N/ =4mh. (64)
Here, f///=0.15 Me¢/s. In fact, frequency f’ involved
is less than frequency f’ because of the dominant
role played by the different actual reflection surfaces,
S; and S;.

In an ionogram, there will appear an occlusion
frequency f,=0.5 Mc/s corresponding to total reflec-
tion, and a limiting frequency f;, corresponding to
thereception threshold, hence dependent upon the sen-
sitivity of the sounding equipment. If it permits
reception with an attenuation of 60 db, then one
would, for example, have fi=3 Me/s, according to
figure 7.

4.2. Diffuse Reflection by an Irreqular Ground
Surface

We shall study the case of an irregular ground sur-
face illuminated by a source at infinity in a direction
making an angle o with the ground. We shall cal-
culate the reflected energy received at a point close

0|
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- |
~
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c | S— o ey 5 S
E l "
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c | \\ \\d
- | | SN
s | \\ ~
< 100y | | P
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2 # b
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Fréquency MH:
Frcure 7. Energy reflected by an irregular sporadic-E layer,

as a function of the frequency.
P, = specular reflection; Pa = diffuse reflection.

to the ground, at altitude Z. This is, for example,
the calculation for the earth’s albedo under the in-
fluence of solar radiation [Spizzichino and Beckmann].

The general schematic of the ground surface will be
analogous to that of models previously adopted, with
irregularities of dimension / and height 4, distributed
over the surface with a thickness /4 (fig. 8).

Each surface element dS, such that its normal is a
bisector of directions of the emitter (at infinity) and
receiver, will reflect energy as given by eq (24):

12

i e U (65)

47r e S
where P, is the incident energy per unit of surface;
r is the distance of the surface element to point of
reception; p is the coefficient of reflection equal to
unity.

The effective surface of reflection has a value
according to equation (1):

o=N\l?/16h sin a. (66)
Eq (65) will then be written:
; 1 ?dS .
Pr=g6 1 = L

It can be remarked that the ratio #/A* is, in effect,
proportional to inclination 7 of the surface elenent
dS on the ground surface, so that (fig. 8):
T=4h/l. (63)
The equation for the reflected energy can then be
written, for the case of a unit incident energy:

1 as

Pr—lﬁfzfs 7

The integration should be extended over all the

real surface of reflection, S, i.e., over all the portion

of the surface of the ground for which the angle

between normal and vertical is less than the angle
of inclination of the reflecting elements, 7.

In order to calculate this surface S, the system
u,w of angular coordinates could be employed, as
defined in figure 9. The equation for the limiting
curve of the surface is then:

(69)

sin »-+sin «
COS ¥ COS a

(70)

2 cos U=c0s v/cos a+tcos a/cos u—tg'r

This curve should be limited by the conditions:

a—2r<v<a+27
or
0<<v<w/2
and

—rlum. (71)
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Ficure 8. Reflection by irregular ground surface.
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Actual surface of reflection by an wrregular surface.

£r

Figure 9.

System of angular coordinates.

The equation for the limiting curve is therefore
of the form:
u=u,a) (72)
and the reflected energy will be:
3
= (1/1672)f w(v,e) cot v dv. (73)
7]

It must be noted that this expression is independ-
ent of the altitude Z of the point of reception.

According to the limits »; and », introduced by
conditions (71), the limits of the surface S can be
very different. Figure 10 gives some idea of cases
which can be encountered, while figure 11 gives the
behavior of variations of the corresponding reflected
energy.

We note that the calculation assumes a plane
ground surface and neglects the earth’s curvature.
The approximation is valid if the altitude of the

=
v — 8

Ficure 10. Different examples of actual surface of reflection

by an irreqular ground surface.

reflection point remains small. However, the actual
surface of reflection should be, nevertheless, limited
to the horizon of the point. A restrictive hypothesis
is equally implied, and the equations for reflected
power cease to be valid when a<r, obliging one
to limit the curves in figure 11 to small values.

5. Conclusions

The general study of reflection in irregular media
(section 2) and the discussion of applications, com-
plete for the case of trans-horizon tropospheric
propagation (section 3), but only summarily made
for other cases (section 4), show the importance of
reflection phenomena in numerous problems of
propagation.

The problems brought up here have been discussed
in different French publications. A series of articles
on the subject, published 1958-60, have been edited
[du Castel, Misme, Voge, Spizzichino, 1960]. A
book studying trans-horizon tropospheric propaga-
tion was recently published [du Castel, 1961].

The authors, within the framework of their work
at the C.N.E.T., envision other applications of this
study, namely, to problems of ionosphere and exo-
sphere propagation of decameter waves.
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Ficure 11. Variation of energy reflected by an irreqular

ground surface.
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