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The bivariate probability distribution for two composite meteor signals displaced in
time is derived theoretically using the Markoff statistical combination technique. Both
the effects of numerous, small meteors and the residual reflections from infrequent large
meteors are treated simultaneously. For the case of exponential decay of component signal
spikes which are themselves distributed as the inverse square of their initial amplitudes, we
find that the joint probability that a composite signal R; is observed at time ¢, and R, at
ts, seconds later, is given exactly by the following expression involving elliptic functions:
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where o=Qvn and » is the average rate of occurrence of meteor signal spikes of all sizes and
7 is the exponential decay time of each initial spike. This result reduces to the usual limit-
ing forms in the case of 7 very large or very small relative to the decay time 7.

1. Introduction

The reflection of VHE radiowave signals from meteor trails in the /¢-region of the ionosphere
is interesting for several reasons. It occurs both as radar backscattering from the trails and
as propagation over oblique paths ranging out to 1,500 km. The latter is significant because
of its communication opportunities, and in that context it is important to know as much about
the signal structure as possible. The composite meteor signal 1s the result of reflections from
both large and small meteor trails, all in various stages of decay. The large meteors are easily
recognized as individual signal spikes in amplitude versus time records. However, the far
greater number of small, indistinguishable meteors also make an important contribution to the
composite signal. The basic problem of understanding the signal structure is to treat the con-
tinuum of trail sizes simultaneously.

The probability distribution for the envelope of a meteor signal composed of reflection
contributions from many trails of various sizes was derived theoretically in an earlier paper
[Wheelon, 1960]. Both the effects of numerous, small meteors and the residual reflections
from infrequent, large meteors were treated simultaneously. For the particular case of expo-
nential decay of initial spikes which are themselves distributed as the inverse square of their
amplitudes, we found that the probability that the composite signal amplitude should exceed

a prescribed level 7 is given by:
1
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where » is the average rate at which echoes of all sizes occur, 5 is the characteristic decay time
of each meteor spike and is set by the diffusive decay of the trail itself. Expression (1.1) be-
haves like a Rayleigh distribution for small amplitude margins ». For the larger, less likely
signals 7, it agrees with the result predicted by elementary analysis of isolated meteor reflec-
tions in various average states of decay.
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Essentially the same result was established by Bain [1960] in Britain and published almost
simultaneously. His treatment goes to somewhat greater lengths to remove a potential diver-
gence for small signal values by renormalizing the constant of proportionality ¢ in the assumed
distribution (¢)/p?*) for the strength of individual spikes p in terms of an effective amplitude
cutoff e. However, it would appear that this procedure is not required, since both (1.1) and
the amplitude distribution corresponding thereto,
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are well behaved for small signal amplitudes. It seems that the statistical combination of
individual signals diseriminates against the small signals, and that the weighted sum is insensi-
tive to the error made in trying to extend the function ¢/p* (which was curve-fitted to the
experimental data) to smaller values of p.

In point of fact, it is the behavior of this assumed distribution for large p which causes
trouble, in the sense that (1.2) does not possess finite moments of any order. This is due to
its behavior for exceptionally large signals,
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which can, in turn, be traced to the mild behavior of @/p* for large p.

The purpose of the present paper is to extend our knowledge of meteor signal structures
by deriving the bivariate probability distribution for composite meteor signals displaced in
time by an interval 7. Such a result is evidently important in communication applications,
since the time that a meteor scatter circuit is open is related to the interval during which all
signals are above a specified threshold. The correlation of signal amplitudes between two
instants is another measure of communication capacity. All of these basic features of a meteor
circuit are derivable from the joint probability,
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that the composite signal assumes a precise value £, at time ¢, and becomes exactly R, at a
time #,, 7 seconds later. The probability density W (R,R,7) will be derived in this paper. A
third paper in this series will use this result to calculate communication characteristics of
meteor scatter circuits.

2. General Expression for Bivariate Distribution

As in the first paper of this series, we shall use the Markoff method [Chandrasekhar, 1943]
to calculate the probability distribution for composite meteor signals. First, a word about
notation and convention. Consider the typical signal history shown in figure 1, where time is
run positively toward the past for analytical convenience. The two instants at which we wish
to estimate the signal probability distribution are denoted by # and #; although #, can and
will later be chosen as the time origin. A large but finite interval 7 is chosen in which N
meteor bursts are assumed to have occurred. N is a statistical quantity, whose mean value is
vT, where » denotes the average rate of meteor occurrence. The limit as 7" goes to infinity
will be taken later in the analysis, after convergence of certain integrals is assured.

e T P
v Fraure 1. Typical succession of meteor spikes with
wnitial amplitude p, indicating measuring instants
. P ty and ty, separation time T, and total interval T.
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The basic statistical problem is to calculate the probability density for observing com-
posite signals R, and R, at ¢, and #, respectively. These total signals are compounded from
the residual signal elements of all prior meteor spikes in the interval 7. All signals received
prior to t, contribute in some residual way to both R, and R.. On the other hand, spikes
received after £, but prior to #, contribute only to £,. Of course, the individual spikes con-
tribute to R, and R, in different measure, because of differential amplitude decay and phase
relationships. However, one can write explicit expressions for the two total signals,
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which has been introduced for analytical convenience. This function allows one to write
-
both R, and R, as formal summations over all /N initial spikes p;, yet ensures that those spikes
received after the individual measuring events are not actually included. This is essentially
a bookkeeping device, but is of considerable utility in organizing the subsequent analysis.
- >

The joint probability distribution for R, and R, is given by Markofl’s general method

[Chandrasekhar, 1943] as a double Fourier transform of the characteristic function Bk k,)
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The brackets indicate that one is to average over the three statistical features of the individual
signals: (1) the distribution of initial pulse heights p; and their random phase, (2) the prob-
£ ’ I

s
ability of finding a spike p; at the instant ¢, and (3) the actual number of echoes N in the
fixed interval 7. Because the individual meteors are statistically independent of one another
(i.e., 7), one can write
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Since the train of meteor echoes apparently forms a Markoff process (no sense of history) of
small probability, one can argue that the probability of observing exactly N spikes in the
interval 7" should follow a Poisson distribution.
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The average over N of (2.5) is computed thus:
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One can write the remaining averages over p and ¢ in terms of the probability v(p,t) that a

=
single meteor echo occurs at time ¢ and produces a vector signal p in the receiver.
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Since the individual meteor echoes can occur with equal probability anywhere in the inter-
val T,
- 1 -
v(P,t) =75 v(p).
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The initial echo spikes p are randomly phased, since the distance from the transmitter to the
individual meteor trails is a completely random variable. Hence,
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where 6 is an arbitrary phase reference, which we take to be the angle between p and k. D(p)
-

N
represents the distribution of initial pulse heights. If ¢ denotes the angle between &, and k,,
one can use the equivalence (2.8) and the above to rewrite expression (2.7) for B(kk,) as
follows:
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The angular integration can be done using the standard formula:
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where we have taken the limit of 7' going to infinity, since the difference quantity in
braces is now finite at the upper limit.

To make further progress, one must divide the time interval and introduce explicit expres-
sion (2.2) for the discontinuous time functions N (t—#,) and X\ (f—%,). At this point in the calcula-
tion, it is convenient to choose ;=0 and ,=r, since only the time difference (t,—t,) =7 isrelevant
to a stationary problem. Dividing the time interval into two segments: 0<t<_7 and 7<t< =,
allows one to write equation (2.11) out as follows:
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3. Distribution for Inverse Square Law

The remaining integrals can be done in closed form if the distribution of initial pulse heights
is assumed to have the form,

D(p) =§- (3.1)
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This expression is more than an analytical convenience, in that experimental data on the
distribution of individual pulse heights is well fitted by eq (2.13). The major assumption
involved in using (2.13) is that the same law extends down to the small meteors which cannot
be distinguished as individual spikes. This assumed distribution of initial pulse heights is not
really an acceptable form in that the normalization integral
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diverges at the lower limit, rather than approaching unity. Strictly speaking, this implies that
the average rate of meteor signal occurrence » is infinite, which, in turn, invalidates the assump-
tion of the Poisson distribution (2.6). The cutoff procedure introduced by Bain [1960] remedies
this deficiency in a formal way. However, the divergence of this law for small p does not affect
the final composite signal, as noted earlier. Its relatively slow decrease for the very large,
exceptional rare meteors causes the real trouble.

The double integrations remaining in the evaluation of this characteristic function B
(kyky) in eq (2.12) can be done by interchanging the order of p and ¢ integration and setting

u=mpe =1k,
and
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in the first and second integral, respectively. This gives for (2.12) the following:
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The integrations are now uncoupled and can be done by noting that
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The final expression for the characteristic function becomes,
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The bivariate probability density is calculated from this expression as the double Fourier
transform of eq (2.3)
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where for notational convenience we have now set
= Q. (3.7)

The integrals in eq (3.6) can be performed most readily if one makes the following linear
vector transformation:
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The £ and k, integrals are now separated and can be done analytically by using the intra-vector
angular definitions exhibited in figure 2. With these conventions, one can write out the four-

fold integration above as angular definitions for signal (£,) and transform (%) vectors, all
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FiGure 2. Intra-vector angular definitions.

with respect to an arbitrary phase reference vector 7.
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Using the integral result (2.10), we find the final expression for the bivariate vector probability
distribution to be
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One can verify that this expression is normalized to unity by integrating over the compo-

nents of Ry, and Rs.
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The distribution of signal amplitudes is obtained from (3.8) by integrating over the phase
angles ¥ and 6, and leads to the following expression involving complete elliptic functions.
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The expected limiting forms of this result emerge if one assigns special values to the time dis-
placement 7. For example, if the time difference between the two measuring instants is large
compared to the decay time of the individual signal specified », one has

lim W (B, R) =2 % ! A0, o (3.10)
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This is just the product of the individual distributions (see eq 1.2) for R, and R, derived in
the first paper of this series [Wheelon, 1960]. The opposite extreme is somewhat more subtle,
but can be extracted by taking the limit as 7 goes to zero.
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Using the following limit definition of the Dirac Delta function,
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we have
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This indicates that as the time displacement goes to zero, the two signals should coalesce as
prescribed by the Delta function and their distribution be described by the previous result
for the single time expression. Note that the factor R, in the Jacobian for polar coordinates
is just cancelled by the denominator term.

The author acknowledges several valuable discussions of this paper with Dr. T. A. Magness.
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