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The probability dist ribu Lion of the ampli tude and phase o f the sum of a large num ber 
of random two-di mensional vectors is derived under t he fo llowing general condit ions : Both 
t he ampli tudes a nd th e phases of the component vectors a re random, t he di sLribu tions 
b eing a rbitrary within the vali dit.\7 of the Central Lim it Theorem ; in part icular, the d is­
t r ibutions of t he individual veetors need not be identical , the amplitude and phase of each 
component vec tor need not be independent a nd the di tribu tions Ileed not be symmel ri cal. 
T he disLributions formerly derived by R ayleigh , nice, H oy t, a nd Heckmanll are shown 
lo be special cases of this di sLribut ion . 

1. Introduction 

The c1ecLromagneLic field scattered by randomly 
distributed scn,tLerer necessarily always consist 
of the individually scattered wave which mutually 
interfere to form the resulting total field. Vve may 
thus write 

n 
E = reiO = ~Ajei4>J 

j = l 
(1) 

where l' is the amplitude and B t he phase of the 
resulting field fUld A j exp (i<p j) arc the elementary 
component waves. The amplitudes A } and pha es 
<Pi> and hence also l' and 0, arc random quantities. 

The sum (1) may be r epresented in the compl ex 
plane as the stUn of random veeLors (fi g. 1) ; the 

FIGURE 1. Random vector sum in the complex plane. 
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problem is also idenLicnl with the "random-walk 
problem" in math emalical laLisLics, for our task: 
is to determine the pl"Ob~lbility distribu lions of 1" 

and 0 if the distributions of t.ho A j and <P j are known. 
Tb e problem in its mosL elementary form , when 

the A } a1"e constan t and Lbe <P j arc all distributed 
uniformly over an interval of lengLh 27r, ,va olvcd 
by Rayleigh [1896) and l eH cls to the well-known 
Rayleigh distribution 

21' 2 
p (1') = -e- r I n. (2) 

n 

OLhel' special cases or 1,he distribu lion of E were 
derived by Rice [1944, 1945) and by Hoyt [1947). 

A 1110re general olu tion, namely for all A } COJl ­

stant and arbitrary symmetrical distributions of 
the phases was derived by Beckmann [1959). 
The Rayleigh , Rice, and HoyL distribution arc 
included in this distribution as special cases. 

The purpose of the present paper i to derive 
the distributions of l' and B in t he general ca e 
when both the A j and the <PJ arc r andom and 
arbitrarily distributed. The di tributions of the 
individual A } or rP} need not be identical, A } Hnd 
rP j may be correlated and the distributions of tJ lO 
rP} need not be symmetrical. Thc only restriction 
is that the distributions of the quantities A j cos rP j 
and A} sin <p j satisfy the condiLions of the Central 
Limit Theorem [Gnedenko and Kolmogorov, 1949). 
In physical practice the e conditions are pracLi­
cally always satisfied provided that n, the number 
of interfering waves, is large and that these waves 
ar e statistically independent.! 

Our problem, then, is to determine the probability 
distribution p(r) and the (more rarely required) 
distribution p(B) when the two-dimensional distri­
butions wj(A, rP) are given. 

1 Generalization for dependent variables is also possible [Bernstein, 1944J. 



2. General Solution 

We introduce the quantitif's 

x = r cos 8; y = r sin 8 (3) 

and denot(' the mean value by angular brackets 
( ) and the variance by the symbol D . Then 

(x)=a= ttJ -"'", J -"'", w j(A,<t»A cos <t> dAd<t>, 

(y)=,6= t1 J -"'", J -"'", wj(A,<t»A sin <t> dAd<t>. 

(4) 

(5) 

D eno ting th E' individual terms of the sums (4) and 
(5) by 2 

(6) 

,6 j= JJwj(A ,<t»Asin4>dAd<t>, (7) 

we have 

D {x } =8[ = tt [Jf Wj (A,<t»A2 cos2 <t> dAd<t> - a7], (8) 

D {y } =82= "tt [J J w/ A ,<t»A2 sin2 <t> dAd<t>- ,6J]. (9) 

The covariance of x and y is, after elementary 
manipulations, 

cov (.e, y) =~ t1 J Wl fl ,<t» A2 sin 2<t> dAd<t> 

+ ~ tt' J}Vi(A,<t»A cos <t> dAd<t> 

J J w/A,4»A sin <t> dAd<t>- a,6 , (10) 

where the apostrophe at the second sum indicates 
that the terms with i=j are to be omitted. 

We now temporarily assume that the distribution 
of <t> is symmetrical about its mpan value zero. Then 
the integrals in (5), (7), and (1 0) vanish owing to 
the factor sin <t> or sin 24> in the integrands, so that 

,6j=,6=cov (x, y) = 0. (11) 

Now according to the Central Limit Th eorem the 
distribution of the sum of many independent random 
variables tends under certain conditions that in 
practical a pplications are almost invariably satisfi ed, 
to the normal (Gaussian) distribution .3 

2 To save space, we henceforward omit the integration limits - co, co; unless 
other wise indicated, all integrals in this paper are thereIore to be taken Irom 
-00 to 00, 

3 For an exact statement of the Central L imit Theorem and the weakest (Linde­
herg) conditions of its vqlidity, sec [Gnedenko and Kolmogorov, 1949, Ch.5, 
Sec, 26), or [Richter, 1956, Ch. VII, Sec, 4] , An unnecessarily, st,:ong, coudition 
fo r the validity of the Ceotral Llm ,t Theorem IS e.g, that the distributIOns 01 tbe 
ter ms be iden'tical an d their variance exist (Bernoulli condit ion). 

Since by (11) x and yare uncorrclated (and h ence, 
as normal random variables, independen t) , the two­
dimensional probabili ty density of x and y is 

(12) 

Transformin g to polar coordinates as l.ll (3), we 
'find the req uil'ed distribution in the form 

r- sm- 8 ? • ? ] 

282 d8, 

(13) 

which after elementary manipulations may b e 
'VTitten as 

p(r)= Se - T12T e-Pcos28+Qco sO de , (14) 

where S, T , P, and Q are functions of r, a , 81, and 82. 

The in tegral in (14) may be expressed as a series of 
modified Bessel functions of the first kind (1m) as 
follows [Beckmann and Schmelovsky, 1958]: 

" , , 

l 

12"- e- P cos20+Q coSOde= 27re- P12i;o (- l )me,Jm(f)lzm(Q) I 
(15) 

where 

(16) 

so that (13) may be expressE'd as follows: 

(17) 

B efore normalizing the distribution (15), we calcu­
late the mean square of r, which, apart from a con­
stant factor (1 / 12071" in MKS units), equals the mean 
scattered power. From (3) and the formula for the 
variance of a random quantity 

'1 

and from the independence of x and y it follows that 

(18) 

The RMS value of the scattered field equals the 
square root of this expression. 

It is easily SE'en from (12) that the resulting vector 
r exp (i8) is the sum of a constant vector ~ directed 
along the x-axis and a random vector B (fig. 2); the 
x and y components of this random (Hoyt) vector 
are normally distributed with mean values zero and 
unequal variances 81 and 82' 

I 
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FIGURE 2. Components of the Tesultant vector r and its equi-
pTobability wn·es. 

vVe -now normalize in a ':col'dance with (18) by 
using Ithe ratio of the RMS values of the constant 
and random components 

B = a (19) 
.y81+ 8z 

and introducing the "normalized ampliLude" 

(20) 

and the "asyml1wtry factor" 

(21) 

.x 

FIGU RE 3. TransfoTmation of coordinares whqn I\'(</» is not 
an even func tion. 

FIG lJ RI, 4. Scattering by Tough 0 1' turbulent layers in the 
troposphel·e. 

1,2-r-r-r~-T~~~~~r-r-r-~~~~~.-, 

p{fl 

! 8=0 

~O~--------~--------~---------r----~ 

Using this normalization,4 we obtain the rcquircd 
distribution by substituting (19) to (21) in (17) in 
the generalfor111 ~8~--++~~~-?L-------+---------~----~ 

( )_ K 2+ 1 , [ _ I+ K 2(B2+ 1+K 2 2)J P p - K p exp 2 2K2 P 

The distribution (22) is determined through the 
parameters Band K according to (19) to (2 1), which 
in turn are determined through a, 81, and 82 according 
to (4), (8), and (9) . 

The probability densities pep ;B,K ) accordi.ng to 
(22) for various values of Band K are shown in 
figLlTes 5 to 9. 

The complement of the distribution function, i.e., 

P { p>z;B ,K } = 1-i~(p;B,K)dp (23) 

• This normalization differs [rom that used by Beckmanu, [1959 and 1960J. 
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FIGU RE 5. P Tobability densities p (p) fOT B = O. 
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FIGURE 7. P robability densities p (p) f or B = 1. 
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FIG URE 8. P robability densities p (p) for B = 2. 
~2~,-~~~~-,~~~~~~,-,-~~ 

p(f) 

t4PI-r----1-----++-~---r_-~ 

O'64------r---~_r--¥~-_t_--~ 

o"-r----_+-~*ff-_+--~~_+--_; 

2 3_ f 
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for yal'10US value of 13 and K arc ploUed on proba­
bilily paper In fi gure 10 lo 14. 5 

, The curves in figs. 5 to 14 " 'ere calculated by direct ullmer' ieal integration of 
(13) by plulched carcl machine un der the gllidan·~e of Mr. H. Vieh. 
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As lllay be seen .from figures 10 to 14, the distr'i­
button becoJll cs practically normal for B "2:.3, K:;' 3, 
as may also be shown theoretically (cf. appendix) . 
Th e mcan value and variance in th;s case is given by 

(24) 

From (18), (9), IUld (20) we have 

(25) 

Hence 

p{-!-->z;B,K ~ =p~--P-->z ;B,K \.. 
I RM S .) \.. PRM S ) 

J' Z, ll+B' 
= 1- 0 ]i (p;13,K )dp· (26) 

.. 
H 

*' 99. 
~ .. 
---;::; 98 

~ 95 

-..--' ' 0 
a. 

60 

70 

60 

50 
(Q 

, 
6 

5 

30 

10 

5 

2 

, 

'\ 
'\ 

'\ 

\ \ 
~\ \ 
1\\ \ 

\"-
"\ 

/ '\ 
8'0 

8:05 

I 

a 
o. 
o. I I 

02 

\ 
'\ \ 

'\ '\ 

\ \ 
1\ \ 

\ \ 
\ \ 

,'\ '\ 

'\ '\ 
,", '\ '\ 

""-" " ~~ 
~ 

8 - 1 

B · 1.5 

1,\ K2' 5 -
'\ 

\ 8 - 2 

\ 
\ / '\ 

"- \ 
8 -2.5 

'\ \/ 
'\ '\ ' '\ 
'\ V '\ 

"- \ "- 8 :J 

'\ '\ 
"" 

'\ 
~ "- \ "-
~ '" '" '" '" ............ " " " ""''' '' '' " " ~'t '" " '" 
I I I 

___ Z 5 

FI GU RE 13. Distribution curves of P {p > z I for 1\:2 = 5. 

99.9 
-)9.9 

(/. 9 9.5 
~ g; 

---;::;-- 98 

~ 95 

- '0 a. 
60 

70 

50 
50 

<0 

30 

10 

10 

I 

as 
OJ 
0 .1 

\ \ 

\ 

\ 
, \ \ 
1\ \ \ 

\ \ 

'""\ 
8 =0 

8'cii 

OJ 

\ \ \ 
\ 

\ 

1\ \ 1\ \ 
\ \ \ \ 
\ \ \ ~ 

\ / '\ \ 
v 

'\ \ \ 
'\ 

L,\ '\ \ 

'*''' \ \ 

~ I "'- \ 
/ ~ A "-

8 =4 

~ '" "" "\ / ....... " " 8 : 1.5 ~ 
~ 

K2·/0 -

8 =2 

8 "' 25 
/ 

)( 
-\ 

\ 
\ ;!=J 

\ '\ 

"'- "'-
" "-. " 1"\ 

""'-" "-. " , 
- - 2 

FIG1iRE 1 -1. Distribution curves of P{p> zl for K' -o= 10. 



Figures 15 to 19 show thi.s r elation plotted on 
Rayleigh paper (on which the Rayleigh distribution 
appears as a straight line with 450 slope). 

T h e less often r equired statistical distribution of 
the phase is founi from (13) by integrating over r 
from 0 t o 00 instead of over 8 from 0 to 211". After 
a somewhat tedious calculation one obtains 

]J (0) 

where 

G- BK I I + K 2 

- -V 2(K 2 cos2 8+ sin2 8) 
II ncl 

vVe now ret mn to th e case when the distribut ions 
of the phases 1> j are not symmetrical abou t zero . 
The general formulas (4) to (9) are still valid, but 
n either {3 in (5) nor the covariance cov (x,y) in (10) 
will vanish, so that x and y are no longer independ ent 
and om derivation breaks down from (11) onward. 
In this case we proceed as follows. 

' Ve calculate the covariance cov (x,y) according to 
(1 0) and determine the correlat ion coefficient 

G cov (X, lI) 

"';8182 
(28) 

' Ve now in trod uce n ew coordinate axes x' and y' 
which are tmned t hrough an angle 1>0 with respect to 
t h e original axes X, y (fig. 3) . The angle 1>0 is so 
chosen that th e quantities x' = 1' cos 0' and y ' = 1' 

sin 8' are uncorrelated , where 

8' = 8- 1>r. (29) 

For x ' and y ' to be u.neorrclated (and h ence, as 
normal random variables, independent), it is suffi­
cien t that the two-dimensional distribution liV(x' ,Y' ) 
h av e an axis of symmetry parallel to on e of th e coor­
dinate axes. Since the cmves liV(x ,Y) = const arc 
concentric ellipses with cen t er X= a, y = {3, it is th er e­
fore sufficien t t o choose the x' and y' axes parallel to 
th e axes of the ellipses. The r equired angle 1>0 th en 
follows from [Hristow 1961 , p . 125] 

tan 2¢0 
2G~S:S; 

8 [- 82 
(30) 

In th is n ew coordinate system we th en proceed as 
b efore ; the only d ifference is that {3' does not vanish 
now. Inst ead of (13) we therefore have 

(31) 
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plotted on Rayleigh paper . 

J O 

2,0 

t, f 

I,D 

0.. 
as 
0,7 

4' 
' ,M 
o,s , 

, 
o,J 

0,2 

1 

~ 

~ 

-

B = 0 

2 

2 

B .0 
..:". 

.:::,.. 

"" 

F IGURE 16, Distribution curves of P lr jrHM s > zl f or K 2= 2 
plotted on R ayleigh pap er, 

236 



) , 

J.O 

~o 

1,5 

(0 

~9 

aD 
0.7 

Q6 
'. J> 
0.5 , 
0.> 

o.J 

-,' 

f-
1 

b:,2 

f-

-

a" 0 

) 

<Xl 

J 

I , 
2 

1 

B " 0 

"-
,;! 

FIGU RE 17, Distribllti on curves oj P lr / I'JlMs > zl for J(2= 3 
ploUed on Rayleigh pap er. 

J.O 

;:: B " .0 

~o - 1 

1,5 
--'>. 2 

(0 00 .9 
.41 

41 

46 
a.» 
45 
1.+'-

, , 
I- . ::.i:t" 

0.> a .0 

.... 
4J 

." 
0.' 

FIG URE 18. Distribu tion curves of Plr/ rRMs > zl f 01' I{2 = 5 
ploUed on Rayleigh paper. 

JO 

. ~~" 
20 
~ . _0 

~I-i\~ , . 

~ 5 t-r-; 
I- ) 

1.0 I-- I-?" 
09 

ae 
0.7 

0.6 
' .J> 
0,5 

'" 
0.> 

." 
o.J 

o. 'f 

0.' 

---f-~1Tl-

, , , 
' ;ttP - --' 
-t-=+::; - --

cUe 

~. 
, . I J ._- - -_ .. -
- 1-0- I----

1-- ·~~j~-W~ .~~~-~ 

n 
," 

.1=1;0' 

-

J 

8 
I • o 

--

p{_r_ > .l (f) 

rRMS ~ 

FI Gum;; 19. D ist1'ibu tion curves of PI r/ rRMR > zl f0 1' r z= 10, 
p lotted on Na ylei !J /! pap el , 

where the meaning or (J' , c/ and {3 ' is evidenL ['rom 
fi.gul'e 3. This integral may agai.n be evaluated as 
an infi.nite series of Bessel fun ctions (d . appendix), 
bu L for practical purposes it is usually m ore simple 
t o perform the num eri.cal integration 0[' (3 1) directly. 

3. Special Cases 

\Ve now consider some special cases or lhe distribu­
tion (22) , In most cases the expression (22) will 
formally rf'rnain unchanged, but the values or a, 8l , 

and 82 will vary . 
L et the elementary scattel'erl waves be all 0[' th e 

same kind , so that th e amplitudf' and phase distribu­
tions are the same for each wave. W'e first assume 
the amplitudes constant and eq ual to unity . Let the 
probability density of the phases be symmetrical 
about zero and equal to w(c/». Then from (4), (8), 
and (9) we have 

(32) 

(33) 

(34) 

Table 1 gives the values of a , 81, and 82 as ealcu­
l d from (32) to (34), and also of R, K, and p in 
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accordance with. (19) to (21 ) for the normal , uniform, 
and Simpson-distributions; the symbol sinc a = (sin 
a) / a is used in the table. 

T ABLE 1. 

w(q, ) Normal, (q, ) =0, Uniform from -a to +a Simpson·distributed 
sta ndard deviation q from - 2a t o +2a 

a ne-1j2rr2 n s ine a 11, s ine2 a 

8, %(1-e- I1Z )2 ~ (l +sinc2a - 2 sinc' a) ~ (1 +sine' 2a+sinc' a) 

82 ~( l -e-'"') ~ (I-sine 2a ) ~ (l-sin ~' 2a ) 

B 2 
e-(I'2 sinc2 a sinc4 a 

n--
11, I-si no:? a n ---

l-e-0"2 l-sinc~ a 

K 2 u2 I -s ine 2a ] -sine:? 2a 
coth "2 "1 +s in c 2a-2 sinc:? a 1 +sinc' 2a+sinc' a 

r' r 2 r ! 
p' 

n(1-c"') ,, (I -s ine' a) n (l -sinc' a) 

If the phases of the elementary waves are distrib­
uted uniformly over the int erval (- 71',71'), we obtain 
for a=71' from table 1 a= O, sl=s2=n/2, or R = O, 
K = 1, p= r/ln; substituting these values in (22) we 
obtain, as was to be e:\ pected, the normalized 
R ayleigh distribution 

(35) 

The Ra~Tleigh distribution is also obtained if q:, is 
distri buted uniformly over any interval of length 
2br (k= I ,2, ... ) or if the varianee of q:, is much 
greater than 71'2, in which case the distribution of q:, is 
(with some very unrealistic exceptions) arbitrary. 
IVe shall call a vector whose elementary components 
A j exp (iq:,) have their phases uniformly distribut ed 
over the interval (- 71',71') .a "R ayleigh vector." 

The distribution of the amplit ude of the sum of a 
constant vector and a Rayleigh vector was fo und by 
Rice [1 944, 1945] and detailedly analyzed by Norton, 
Vogler , Mansfield, and Short [1955] and Zuhrt 
[1957]. Direc ting the cons tan t vector V along the 
x-axis, we immediately have a = V, Sj =sz= n/2, hen ce 
by (19) to (2 1) R = a/, In, q:, = r/, 'n, K = 1 and on sub­
stitu ting these values in (22) we find the normalized 
Rice distribution 

(36) 

The distribution of a vector whose x and y compo­
nents are distributed normally with mean values zero 
and unequal variances Sj and S2 was found by Hoyt 
[1947]. Here we have a = R = O; on substituting in 
(22) we obtain the normalized Hoyt distribution 

I f is evident from (12) and figure 2 that the sum 
(1) may always be represented as the sum of a C011-

...., 
stant vec tor a and a H oyt vector H . 

IVe next consie! er the case in which the amplitudes I 

A j of the elementary waves are random and governed .( 
by the (same) probabili ty density wA(A). If A j and 

q:, j are independent then it follows from the general 
formulas (4), (8), and (9) that 

a = n (A ) f wq,(q:,) cos q:, clq:" 

sl=n(AZ) J wq,(q:, ) cos2 q:,clq:,-~ 

s2=n(A 2) J~q,(q:,) sin2 q:,dq:,. 

(38) 

(39) 

(40) 

If, for example, the phases q:, are uniformly dis­
tributed over an in terval of length 271', we obtain a = O, 

S j =S2=~ n(A 2); substitu ting in (17) we find 

( ) _~ _r2/n(A2) . 
p r - n (.I12) e (41) 

Comparing this res ul t with (2) this will be recog­
nized as a R ayleigh distribution, in which the num­
ber of components n is multiplied by t he mean power 6 

of eftch component. 
If a R ayleigh vector co nsists of components with 

different (constant or random) amplitudes A » th en 
from (4), (8), and (9) 

(42) 

Subs ti tuting this in (17) and (2 7), cer tain proper­
ties of a Rayleigh vector with components of uneq ual 
but constan t amplitudes postulated by Norton, 
Vogler, Mansfield, and Short [1955] are immediately 

proved as correct (1. P {I'>z}= exp (-z2j± A]) ; 
)= 1 j 

2. e distribu ted uniformls between ° and 271'; 3. r 
and e independent). 

If the random amplitudes and phases of the ele­
mentary waves are correlated, formulas (4), (8), 
and (9) may no t be simplified ; however, it is still 
true that the mean power of the random component 
equals the sum of the mean powers of the individual 
(identically distributed ) elementary components, for 
in this case we have from (8) and (9) 

SI + s2=nJ A2 [J w (A,q:,)dq:, ] dA-~ 

=TI'JA2WA(A)clA-~=n(A2)-a2 
n n 

(43) 

6 More precisely the mean square of the am plitude . This differs from the mean 
power by a constant factor F , which in MKS units eq uals 120 .. for propagation in 
free space. The distinction is immaterial for OUf present purposes an d will be 
d isregarded ; if the reader objects to this procedure, he may consider (1) to present 
n sinusoidal vol tages intt?rfering aCrOSS a one-ohm resistor , in wh ich case F equals 
un ity. 
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so that by (18) 

(44) 

Since n is by assumption large, the second term 
will practically equal a 2 , i.e., the power of the con­
stan t component. Thus the power of the random 
component equals n(A2), or the sum of the mean 
powers or the individual components. 

It is instructive to observe the transition from a 
purel~' coherent field (mean power equal to '(/,2) to a 
purely incoherent field (mean power equal to n). 
This depends on the phase distribution w(¢) ; if the 
phases are constant, i.e., D {¢ } = 0, then (r2 )=n2, 
whereas for phase distributions with large variances, 
i.e., for D {¢ } > > 71"2 the mean power (r2)=n. Thus 
for example from (18) and table 1 we find for nor­
mally distributed pbases 

(45) 

yielding (r2)=n2 for 0"= 0, but (r2)=n for O"~ 00 (0"» 71"). 
Si mil arly, for uniformly disLribu Lcd phases we find 

agai n yielding (1'2)=n2 for a= O, but r2= n for a~ oo 
(a> > 71"), and also for a= 2h. 

4. Conclusion 

The statistical distribution of the ampli tude and 
phase of a multiply cattered electromagneLic field 
is equal to the stati tical distribution of the sum of 
two-dim ensional vectors with random ampli tudes 
and phases. When these phases are distributed 
symmetrically, the ampli tude disLribution of the 
resulting vector is given by (17) or in the normalized 
form (22), or by the curves of figme 5 to 19; the 
phase dis tribution is given by (27). In the general 
case, which includes asymmetrica1 phase distribu­
tions, the resulting distribution is given by the in­
tegral (31). Various distribution laws of the am­
plitudes and phases of the elementary vectors change 
the values of a, SI, and 82, but not the general form 
of the above formulas. The distributions derived 
by Rayleigh [1896], Rice [1944- 5], Hoyt [1947], and 
Beckmann [1959] are special cases of the above 
distribution. 

The distribution derived here is met, among other 
cases, in the propagation of radio waves in irregnlar 
terrain and in tropospheric scatter propagation, 
since in both cases scattering from rough surfaces is 
involved. From the above derivation it is seen that 
the amplitude of a field consisting of very many 
elementary scattered waves is not necessarily Ray­
leigh-distributed (as is often erroneously assumed), 
but that the Rayleigh distribution, even in its most 
general form, is met only if the phases of the in­
dividual scattered waves are distributed uniformly 
over an interval of length 271" or in some equivalent 
way iodicated after equation (35). In practice this 
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will not be the case if, for example, the scattel'ers 
are distributed in space in such a way that the 
variance of path lengths between source and point 
of observation is smaller than one wavelength. Such 
a case is shown in figure 4, where a rough or turbulent 
layer is asslllled to be normally distributed about a 
mean level (N£) with variance (J" and the condition 

(47) 

holds. This condition is very often satisfied in 
practice, especially for the longer wavelengths A; 
experimental measmements of tropospheric propaga­
tion beyond the horizon in the meter band [Beck­
mann, 1960] have in fact shown distributions as in 
figmes 15 to 19 more of len than a pure Rayleigh 
distribution. 

5 . Appendix 

To evaluate the integral (31), one may use a result 
derived by Chytil [1961], which after elementary 
modifications reads 

( 2?r 
u(P,Q,R )= Jo exp (_ P2 cos2 e+ Q co e+ R sin e)cle 

= 271"e-f -£, (- I )"'€71J ", (f.2) 12rn(,IQ2+R 2) 
m = O 

cos [ 2m ( arctftn ~) ] (4 ) 

reducing to the formula (15) derived by Beckmann 
and Schmelovsky [1958] for R = O. For R = O and 
large Q(Q>P > > 1) one obtains by addle-point 
integration [Beckmann and Schmclov ky, 1958] 

/271" P 00 (2P)'" 
u(P,Q,O) ~ -V Q eQ - ~o Am Q (49) 

where 
A 1.3.5 ... (2m - I>. A = 1 (50) 

m 2.4.6 . .. 2m ' 0 . 

Using (49) to evaluate (14), we find after normal­
izing by (19) to (21) for Q> 2P> > 1. 

(51) 

Now if 

(52) 

this expression will obviously be negligibly small for 
all values of p except in the neighborhood of p = B, 
where the exponential factor will dominate, tbe 
terms with p (l / 2J-m being either negligible or practically 
constant in this short interval. But the exponential 
is that of the normal distribution with mean value 



(p)= B and variance D {p}= 1/ C1 + K2). hence for 
large B (52), the distribution of p beco~es normal. 
As may be seen from figures 10 to 14 in practice 
this is the case for B ?:.3, K2 <5. ' 
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