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The probability distribution of the amplitude and phase of the sum of a large number
of random two-dimensional vectors is derived under the following general conditions: Both
the amplitudes and the phases of the component vectors are random, the distributions
being arbitrary within the validity of the Central Limit Theorem; in particular, the dis-
tributions of the individual vectors need not be identical, the amplitude and phase of each
component vector need not be independent and the distributions need not be symmetrical.
The distributions formerly derived by Rayleigh, Rice, Hoyt, and Beckmann are shown

to be special cases of this distribution.

1. Introduction

The eclectromagnetic field scattered by randomly
distributed scatterers necessarily always consists
of the individually scattered waves which mutually
mterfere to form the resulting total field. We may
thus write

n
[f= l'(""’:z{;]j( i9g (1)
=

where 7 is the amplitude and 6 the phase of the
resulting field and A;exp (i¢;) are the elementary
component waves. The amplitudes A; and phases
#;, and hence also 7 and 6, are random quantities.

The sum (1) may be represented in the complex
plane as the sum of random vectors (fig. 1); the
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Ficure 1.  Random vector sum in the complex plane.

231

problem is also identical with the “random-walk
problem” in mathematical statistics, for our task
18 to determine the probability distributions of »
and 0 1f the distributions of the A; and ¢, are known.

The problem in its most elementary form, when
the A; are constant and the ¢; are all distributed
uniformly over an interval of length 27, was solved
by Rayleigh [1896] and leads to the well-known
Rayleigh distribution

2r
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Other special cases of the distribution of £ were
derived by Rice [1944, 1945] and by Hoyt [1947].

A more general solution, namely for all A; con-
stant and arbitrary symmetrical distributions of
the phases was derived by Beckmann [1959].
The Rayleigh, Rice, and Hoyt distributions are
mcluded in this distribution as special cases.

The purpose of the present paper is to derive
the distributions of » and 6 in the general case
when both the A; and the ¢, are random and
arbitrarily distributed. The distributions of the
individual A4; or ¢; need not be identical, A; and
¢; may be correlated and the distributions of the
¢; need not be symmetrical. The only restriction
is that the distributions of the quantities 4, cos ¢;
and A; sin ¢; satisly the conditions of the Central
Limit Theorem [Gnedenko and Kolmogorov, 1949].
In physical practice these conditions are practi-
cally always satisfied provided that =, the number
of interfering waves, is large and that these waves
are statistically independent.’

Our problem, then, is to determine the probability
distribution p(r) and the (more rarely required)
distribution p(8) when the two-dimensional distri-
butions w;(A,¢) are given.

1 Generalization for dependent variables is also possible [Bernstein, 1944],



2. General Solution
We introduce the quantities
x=r cos 0; y=rsin 0 (3)

and denote the mean value by angular brackets
() and the variance by the symbol ).  Then

(;r):a:i‘l,fw J ) w;(A,p) A cos ¢ dAde,  (4)
J=ld —w0 J-o

<1/>:B:ﬁfm f . w,(A,¢)A sin pdAdp.  (5)
j=ld — =

Denoting the individual terms of the sums (4) and
(5) by *

o J fwj(zi,(p)/l cos ¢ dAd¢, (6)
B}:J‘J:wj(A,d;)A sin ¢ d Adg, (M)

we have

D [ JJwj(A,¢)A2cos2¢(/A(1¢—a§:|, s)
j=1

Diy] Z, U‘fwj(zl,@ A’sin? o ,/A(1¢—3§:|. (9)

The covariance of z and ¥ is, after elementary

manipulations,
cov (.z',y):; Zij(A,da)AZ sin 2¢ dAdg
Z j=1

Jw (A,9) A cos ¢ dAdd

1—1 j-]

ffwj(A,¢)A sin ¢ dAdo—apB, (10)

where the apostrophe at the second sum indicates
that the terms with i=j are to be omitted.

We now temporarily assume that the distribution
of ¢ is symmetrical about its mean value zero. Then
the integrals in (5), (7), and (10) vanish owing to
the factor sin ¢ or sin 2¢ in the integrands, so that

(11)

Now according to the Central Limit Theorem the
distribution of the sum of many independent random
variables tends under certain conditions that in
practical applications are almost invariably satisfied,
to the normal (Gaussian) distribution.?

B;=B=cov (z,y)=0

2 To save space, we henceforward omit the integration limits —, «; unless
otherwise indicated, all integrals in this paper are therefore to be taken from
— t0 «,

3 For an exact statement of the Central Limit Theorem and the weakest (Linde-
herg) conditions of its validity, see [Gnedenko and Kolmogorov, 1949, Ch. 5,
See. 26, or [Richter, 1956, Ch. VII, Sec. 4]. An unnecessarily strong (Clndltl()n
for the validity of the Central Limit Theorem is e. g. that the distributions of the
terms be identical and their variance exist (Bernoulli condition).

Since by (11) 2 and ¥ are uncorrelated (and hence,
as normal random variables, independent), the two-
dimensional probability density of z and ¥ is

- 1 (x—a)*
W)= ——=0x )I:
@) 21/ 8182 } 28 25,

(12)

Transforming to polar coordinates as in (3), we
find the required distribution in the form

*2m D Al
7 7 CoS—a r°sin- 6
1)(1'):4J e.\'pl:—( r_ - :I(lé),
2w/ 8,8, Jo 28, 28,

(13)
which after elementary manipulations may be
written as

2T
)= e“Tf ¢~ Peos?8+Qcos g (14)
0

where S, 7', P, and () are functions of 7, «, s;, and s..
The integral in (14) may be expressed as a series of
modified Bessel functions of the first kind (7,) as
follows [Beckmann and Schmelovsky, 1958]:

2r
f & ecmiaany 9#6“”/22 (—1)" em1m<2 Im(Q)
0

(15)

where
[ 1 for m=0,
2 for m =0,

so that (13) may be expressed as follows:

(16)

a? 81+82r._,
==€ 2‘1 48182
\ s 182

XZ (_“ 1) em[m

m=0

plr)=

Ww>12,,,( ) (17)

Before normalizing the distribution (15), we calcu-
late the mean square of », which, apart from a con-
stant factor (1/1207 in MIKS units), equals the mean
scattered power. From (3) and the formula for the
variance of a random quantity

Dir}=*—@)
and from the independence of z and 7 it follows that

(rYy=s;+s5+ o> (18)
The RMS value of the scattered field equals the
square root of this expression.
It is easily seen from (12) that the resulting vector

7 exp (16) is the sum of a constant vector « directed
along the z-axis and a random vector H (fiz. 2); the
z and ¥ components of this random (Hoyt) vector
are normally distributed with mean values zero and
unequal variances s; and s,.
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Frcure 2.  Components of the resultant vector v and its equi-
7 )

probability curves.

We 'now normalize in accordance with (18) by
using [the ratio of the RMS values of the constant
and random components

@
B—- (19)
V81182
and introducing the “normalized amplitude”
r ,
p== = (20)
V81182
and the “asymmetry factor”
So
K=q/2 (21)
\ $1

Using this normalization,* we obtain the required
distribution by substituting (19) to (21) in (17) in
the general form

K*+1 1+K2/,, 1+K2 )
plp)= x[';rt-p(‘xp[— +_)\ (/;ur,,_,sz} pz>:|
= \m y 1{4—1 2 2 ()¢
XMZ:‘,“(—U Gadl Wl >12m[1;(1+K)pJ. (22)

The distribution (22) is determined through the
parameters B3 and K according to (19) to (21), which
in turn are determined through a, s;, and s, according
to (4), (8), and (9).

The probability densities p(p;B,K) according to
22) for various values of B and K are shown in
figures 5 to 9.

The complement of the distribution function, i.e.,

Plo>zBK) 1= [ 0B K)dp
0

(23)

4 This normalization differs from that used by Beckmann, [1959 and 1960].
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Ficure 3.
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Ficure 4.  Scaltering by rough or turbulent layers in
troposphere.
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Probability densities p (p) for B=0.5.
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for various values of B and A are plotted on proba-
bility paper in figures 10 to 14.°

5 The curves in figs, 5 to 14 were calculated by direct numerical integration of
(13) by punched card machine under the guidance of Mr. R, Vich.
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Fraure 10.  Distribution curves of P{p >z} for K2=1.

Frcure 11.

Distiibution curves of P{p >z} for K2=2,
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Ficure 12.  Distribution curves of P{p >z| for K2=3.
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As may be seen from figures 10 to 14, the distri-
bution becomes practically normal for B>3, K<3,
as may also be shown theoretically (ef. appendix).
The mean value and variance in this case is given by

- 1
~ {p} m——=50 24
(=B, Disl=1zm (24)
From (18), (19), and (20) we have
(P)=1+58% prms=n 17+7Bi- (25)
Hence
)
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Figures 15 to 19 show this relation plotted on
Rayleigh paper (on which the Rayleigh distribution
appears as a straight line with 45° slope).

The less often required statistical distribution of
the phase is found from (13) by integrating over r
from 0 to « instead of over § from 0 to 2x. After
a somewhat tedious calculation one obtains

1

5~ TPATEY
o 2200 @ L a2
Mﬁ)ﬁ?w(Kz cos? §-F-sin® 6) BRRGCAE ee H
(27)
where
- 1+K*
(’_BK\/Z(K2 cos? f-sin? 6)
and
G5 G
erf G:-‘-%:_ J e~ tdt.
VT Jo

We now return to the case when the distributions
of the phases ¢, are not symmetrical about zero.
The general formulas (4) to (9) are still valid, but
neither g in (5) nor the covariance cov (z,7) in (10)
will vanish, so that z and ¥ are no longer independent
and our derivation breaks down from (11) onward.
In this case we proceed as follows.

We calculate the covariance cov (z,7) according to
(10) and determine the correlation coeflicient

Cvzﬂfﬁ@. (28)

/
V8182

We now introduce new coordinate axes z’ and 3’
which are turned through an angle ¢, with respect to
the original axes z,y (fig. 3). The angle ¢, is so
chosen that the quantities z’=7 cos 0’ and 7' =r
sin 0’ are uncorrelated, where

6" =0— ¢y. (29)

For 2’ and %’ to be uncorrelated (and hence, as
normal random variables, independent), it is sufhi-
cient that the two-dimensional distribution W(z’,y’)
have an axis of symmetry parallel to one of the coor-
dinate axes. Since the curves W(z,y) =const are
concentric ellipses with center z=a, y=4, it is there-
fore sufficient to choose the 2’ and y” axes parallel to
the axes of the ellipses. The required avgle ¢, then
follows from [Hristow 1961, p. 125]

204/s7s:
tan 2p,=— L2,
S1—8

(30)

In this new coordinate system we then proceed as
before; the only difference is that g’ does not vanish

now. Instead of (13) we therefore have
N 2 (rcos0—a)* (rsinf§—p)>?
PO =g t5m ) &P il

(31)
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Ficure 19.

where the meaning of 6/, o’ and g” is evident [rom
figure 3. This integral may again be evaluated as
an infinite series of Bessel functions (cf. appendix),
but for practical purposes it is usually more simple
to perform the numerical integration of (31) directly.

3. Special Cases

We now consider some special cases of the distribu-
tion (22). In most cases the expression (22) will
formally remain unchanged, but the values of «, s,
and s, will vary.

Let the elementary scattered waves be all of the
same kind, so that the amplitude and phase distribu-
tions are the same for each wave. We first assume
the amplitudes constant and equal to unity. let the
probability density of the phases be symmetrical
about zero and equal to w(¢). Then from (4), (8),
and (9) we have

a:nfw(qs) cos ¢ de (32)

slznfw(@ cos? ¢ rld)—%- (33)

sz:nfw((j;) sin? ¢ de. (34)

Table 1 gives the values of «, s;, and s, as calcu-
I d from (32) to (34), and also of B, K, and p in
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accordance with (19) to (21) for the normal, uniform,
and Simpson-distributions; the symbol sine ¢= (sin
a)/a is used in the table.

TABLE 1.
’ Tt | . . .
w(p) Normal, (¢\ = Uniform from —a to +a | Simpson-distributed
‘smnd ard dm ia mon o [ from —2a to +2a
SR——— | R
| ) ) | .
a | ne—1/202 n sinc a i n sine? a
\ n, P n ; e
s =1 i)l ) (1+sine 2a—2 sine? a) i Z (1+sine? 2a+-sinct a)
| n n q <
82 | Tz(l_ﬂa-{) ‘ 5 (1—sine? 2a)
1 w ;
|
B2 \ n eiﬂ | i sinet a
| 1—e-0? | [ 1—sinct a
| | |
{
K2 ‘ eoth ', 1—sinc 2a 1—sine? 2a
i oth - T T S e S
| | 1+sine 2¢—2 sinc? @ | 1+4sine? 2a+-sinet a
o , | ’
pi’ - R | e
n(1—sine? a) [ n(1—sinct a)
|

n(1—e?) |

If the phases of the elementary waves are distrib-
uted uniformly over the interval (—m,7), we obtain
for a== from table 1 a=0, .slﬁs)-n/_, or B=0,

K=1, p=r/y/n; substituting these values in (22) we
y P /N =
obtain, as was to be expected, the normalized
Rayleigh distribution

p(p)=2pe="", (35)

The Rayleigh distribution is also obtained if ¢ is
distributed uniformly over any iutcrval of length
2kr(k=1,2, . ) or if the variance of ¢ is much
greater than =2 , in which case the distribution of ¢ is
(with some very unrealistic exceptions) arbitrary.
We shall call a vector whose elementary components
A; exp (ig) have their phases uniformly distributed
over the interval (—m,7) a “Rayleigh vector.”

The distribution of the amplitude of the sum of a
constant vector and a Rayleigh vector was found by
Rice [1944, 1945] and detailedly analyzed by Norton,
Vogler, Mansfield, and Short [1955] and Zuhrt
[1957].  Directing the constant vector V along the
z-axis, we immediately have a=V, s;=s,=n/2, hence
by (19) to (21) B=a/\n, ¢=r/y n, K=1 and on sub-
stituting these values in (22) we find the normalized
Rice distribution

p(p)=2pe~ B2 [ (2Bp). (36)

The distribution of a vector whose z and 5 compo-
nents are distributed normally with mean values zero
and unequal variances s; and s, was found by Hoyt

[1947]. Here we have a=PB=0; on substituting in
(22) we obtain the normalized Hoyt distribution
2+ 1A K*—1 ,

plp)= o\p[ ( ) :l[o SVcE p->-

(37)

It'is evident from (12) and figure 2 that the sum
(1) may always be represented as the sum of a con-

stant vector @ and a Hoyt vector H.

We next consider the case in which the amplitudes
A;of the elementary waves are random and governed
by the (same) probability deunsity w,(A). If A; and
¢; are independent then it follows [rom the general
formulas (4), (8), and (9) that

a=n({A) |w,(p) cos ¢ de, (38)

; @ .
s;=n(A? |wy(p) cos’ ¢ (I¢>—)—L (39)
$y=n{A? |wy(¢p) sin® ¢ dg. (40)

If, for example, the phases ¢ are uniformly dis-
tributed over an interval of length 27, we obtain =0,

1 ’ i : - 2
G n{A?); substltutmg in (17) we find

—r?/"n<.»12)

p(r)= (41)

n( 42)

Comparing this result with (2) this will be recog-
nized as a Rayleigh distribution, in which the num-
ber of components 7 is multiplied by the mean power ®
of each component.

If a Rayleigh vector consists of components with
different (constant or random) amplitudes A, then
from (4), (8), and (9)

si=t=3 2 (43 (42)

Substituting this in (17) and (27), certain proper-
ties of a Rayleigh vector with components of unequal
but constant amplitudes postulated by Norton,
Vogler, Mansfield, and Short [1955] are immediately

, |
proved as correct (1. P{r>z}=exp <—22/Z A‘j) ;
[ j=1 /i

2. 6 distributed uniformly between 0 and 27; 3. 7
and 6 independent).

If the random amplitudes and phases of the ele-
mentary waves are correlated, formulas (4), (8),
and (9) may not be simplifiad; however, it is still
true that the mean power of the random component
equals the sum of the mean powers of the individual
(identically distributed) elementary components, for
in this case we have from (8) and (9)

& 2
S1t8s= nvf A? [J w(A,p) (l¢] dA —‘:—L

*anzwA(A)(IA——(;——zn(AZ)—-% (43)

6 More precisely the mean square of the amplitude. This differs from the mean
powox by a constant factor F, which in MKS units equals 1207 for propagation in
ace. The distinction is immaterial for our present purposes and will be
garded; if the reader objects to this procedure, he may consider (1) to present
n sinusoidal voltages interfering across a one-ohm resistor, in which case F equals
unity.
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so that by (18)

=) +at(1- ) (44)

Since 7 is by assumption large, the second term
will practically equal o? i.e., the power of the con-
stant component. Thus the power of the random
component equals n{A?, or the sum of the mean
powers of the individual components.

It is instructive to observe the transition from a
purely coherent field (mean power equal to n?) to a
purely incoherent field (mean power equal to n).
This depends on the phase distribution w(g); if the
phases are constant, i.e., D{¢}=0, then (*)=n?
whereas for phase distributions with large variances,
1.e., for D{¢} >">=* the mean power (*)=n. Thus
for example from (18) and table 1 we find for nor-
mally distributed phases

“+n(1—e%) (45)

yielding (r)=n?for ¢=0, but (»*)=n for ¢— o (¢ > >).
Similarly, for uniformly distributed phases we find

(P=n"e”

{rH=n? sinc? a-+n(1—sinec? a) (46)
again yielding (#*)=n? for a=0, but 7’=n for a—>

(a>>m), and also for a=2kmr.
4. Conclusion

The statistical distribution of the amplitude and
phase of a multiply scattered electromagnetic field
i1s equal to the statistical distribution of the sum of
two-dimensional vectors with random amplitudes
and phases. When these phases are distributed
symmetrically, the amplitude distribution of the
resulting vector is given by (17) or in the normalized
form (22), or by the curves of figures 5 to 19; the
phase distribution is given by (27). In the general
case, which includes asymmetrical phase distribu-
tions, the resulting distribution is given by the in-
tegral (31). Various distribution laws of the am-
plitudes and phases of the elementary vectors change
the values of a, s;, and s,, but not the general form
of the above formulas. The distributions derived
by Rayleigh [1896], Rice [1944-5], Hoyt [1947], and
Beckmann [1959] are special cases of the above
distribution.

The distribution derived here is met, among other
cases, in the propagation of radio waves in irregular
terrain and in tropospheric scatter propagation,
since in both cases scattering {rom rough surfaces is
nvolved. From the above derivation it is seen that
the amplitude of a field consisting of very many
elementary scattered waves is not necessarily Ray-
leigh-distributed (as is often erroneously assumod),
but that the Rayleigh distribution, even in its most
general form, is met only if the phases of the in-
dividual scattered waves are distributed uniformly
over an interval of length 27 or in some equivalent
way indicated after equation (35). In practice this

will not be the case if, for example, the scatterers
are distributed in space in such a way that the
variance of path lengths between source and point
of observation is smaller than one wavelength. Such
a case is shown in figure 4, where a rough or turbulent
layer is assumed to be normally distributed about a
mean level (M) with variance ¢ and the condition

20 sin y<A 47)
holds. This condition is very often satisfied in
practice, especially for the longer wavelengths X\;
experimental measurements of tropospheric propaga-
tion beyond the horizon in the meter band [Beck-
mann, 1960] have in fact shown distributions as in
ficures 15 to 19 more often than a pure Rayleigh
distribution.

5. Appendix
To evaluate the integral (31), one may use a result
derived by Chytil [1961], which after elementary
modifications reads

27
w(P,Q,R)= f exp (—P? cos? 6+ Q cos 6--R sin 6)do
0

I‘

r\.

53 (1 el () Tl QT E)

cos [2 m <z1rctzm —{;—)] (48)

reducing to the formula (15) derived by Beckmann
and Schmelovsky [1958] for #=0. For R=0 and
large Q(¢)>P>>1) one obtains by saddle-point
integration [Beckmann and Schmelovsky, 1958]

9 N\ m )
w(P,Q,0) ~ \/2”0 ”Z‘, A, 1 (49)
where
1.35...Cm—1) ., .
An="%46 .. 2m D=L 50

Using (49) to evaluate (14), we find after normal-
izing by (19) to (21) for Q@ >2P >>1.

l—i—Kz e\pl: (I)’— p) ]
p(p) =
\ or D3
- i1
\P MZ:() "/lm I;K )
Now if
—1 .
B? >> K (52)

this expression will obviously be negligibly small for
all values of p except in the neighborhood of p=25,
where the exponential factor will dominate, the
terms with p/? =" being either negligible or practically
constant in this short interval. But the exponential
is that of the normal distribution with mean value
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(p)=DB and variance D{p}=1/(1+K?); hence for
large B (52), the distribution of p becomes normal.
As may be seen from figures 10 to 14, in practice
this is the case for B>3, K*><5.
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