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It is proposed in this paper that the total lunar echo at any instant of ti me is comprised 
of t wo components! whic~ are t he result of scattering from two general types of te rrain fea­
tures. On the basIs of tIllS model, the average theoretical backscattered power flu x at the 
receiver is derived as a func tion of time for the case of short pulse t rans mission . The radar 
cross section of t he moon is a lso calculated. Several comparisons are made between t he 
t heory and experimental results ob tained with a variety of equ ipment parameters. 

1. Introduction 

:More than a q uartel' century ago experimen tel'S 
initiated efforts to establish radar contact with the 
moon . It was not until 1946 that radar equipment 
had been improved to the point where positive re­
sul ts were obtainable. Since that time the problem 
of radar reflections from the moon has been subject 
to extensive investigation by several experimental 
groups u.nd tbeoretical workers both here and 
abroad. 

Among the first theoreticians to report their find­
ings in this general area were Grieg, M etzger, and 
,Vaer [1948]. Although only continuous wave trans­
mission was considered, the total transmission loss 
over the eal'th-moon-en.rth path was derived for both 
the smooth and the perfectly diffuse lunar surface 
models. 

During the past few years several experimental 
\ groups have looked for moon echoes using pulse 

transmission at a variety of frequencies. Among 
these investigations are those reported by Trexler 
[1958], Yaplee et al. [1958], Hughes [1960], Leada­
brand et a1. [1960], and Pettengill [1960 , 1961]. 
Adaptations of neither the smooth nor the diffuse 
moon models could account for the shape of the 
returns using short transmitted pulses. This dis­
parity is clearly illustrated in fi&ure 1 which presents 
experimental results obtained by Pettengill [1961] 
at a frequency of 440 Mc/s using a transmitted pulse 
duration (1') of 100 J.Lsec. If the moon scattered 
radiation like a smooth sphere then the echo would 
consist almost entirely of a pulse return with a dura­
tion of t he order of 100 Ilsec. In the other extreme, if 
t he lunar surface were a completely diffuse reflector 
at radar wavelengths then the initial rapid rise of the 
return would be followed by a much slower decay 
than is actually observed. Theoreticians were 
thereby stimulated to begin their studies of the lunar 
reflection problem n.new. 

I This work was supported in part by the Applied Research Laboratory, 
Sylvania Electronic Systems, Waltham, M ass. 

Senior and Siegel [1959] first proposed what might 
be termed a "phenomenological" Lheol'Y in which i t 
was suggested that the lunar echo consisted of a 
small munber (4 01' 5) of individual returns, each of 
which was associated with a si~~le .. reflecting fl,r.ea. 
However, other workers (e.g., .hug hes [1960]) felt 
that experimental data obtn.ined with very short 
pulses failed to support this view. In response to 
such criticism, Senior n.nd Siegcl [1960] later increased 
their estimate of the number of scattering areas to 25 
01' 30, all of which were located within a depth of 
about 50 km from the subterl'estrial point of the 
moon. However , a revision of this na ture fails to 
resolve two rather serious objections. First , the 
theory as it is formulated does not provide n. func­
tional formalism which perm its quantitn.tive compar­
ison with experimental resul ts obtained using a 
variety or pulse lengths. Secondly, on the basis of 
our current knowledge of lh e moon 's surfn.ce, it seems 
quite unlikely that a number of large relatively 
smooth "spherical sur faces" are concentrated only in 
the immediate vicinity or the subterrestrial point, 
while the remainder of tbe scattering rcgions over the 
lunar surface are "cratel'like. " In any eve nt, the 
theory of Senior and Siegel lI as not received wide 
acceptance and most roce nt work has used a statis­
tical approach. 

The basic premise of tbe statistical theories is that 
at any instant of time the amplitude o[ the lunn.r echo 
represents the net effect of scattering from a large 
number of comparatively extensive reHecting areas 
randomly orien ted and distributed ovor the surface. 
Several workers have reported theoretical results in 
this area, notably Hargreaves [1959], D aniels [1960a, 
1960b], Brown [1960], and Hn.gfors [1961]. These 
theories need not be reviewed here since a brief 
summary of each is available ina recen t survey paper 
by E vans [1961] . 

Section 2 of this paper is devoted to a discussion of 
lunar scattering mechanisms in which it is proposed 
that the total echo at any instant of time is the result 
of reflection from two general types of terrain 
features. One of these is described by a statistical 
model which is discussed in some detail in section 3. 
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The radar cross section of the moon is calculated in 
section 4. Sections 5 and 6 are devoted to deriva­
tions of the temporal distribution of lunar echo power 
in the case of short pulse transmission. Finally, 
several comparisons between theory and experiment 
are given in section 7. 

2. Discussion of Scattering Mechanisms 

The experimentally obtained echo amplitude dis­
tribution appearing in figme 1 leads one to suspect 
that perhaps more than a single scattering mechanism 
is responsible for the observed decay. Clearly, the 
initial part of the retmn is suggestive of a specular 
type of scattering process rather than a diffuse type. 
On the other hand, the subsequent portion of the echo 
reveals just the opposite characteristic. Thus, it 
seems appropriate to regard the total signal at each 
instant of time as the com bined effect of two scatter­
ing components of different types which, for con­
venience, will be referred to hereafter as the "quasi­
specular" and the "diffuse" components, respectively. 

The quasi-specular return differs from that which 
would be observed from a smooth moon in that there 
exists an extended period of signal decay at times 
greater than the original pulse length. As pointed 
out by Evans [1961]' the results of experiments using 
different pulse lengths suggest that dming this period 
of decay the echo amplitude represents the net effect 
of reflection from a large number of randomly 
distributed scattering areas. This observation leads 
quite natmally to the so-called "statistical" model 
for quasi-specular scattering from the lunar smface. 
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FIGURE 1. Observed echo power as a fun ction of tim e for a 
pu lse length ~ of 1 00 Jlsec. 

According to this model, the moon is characterized 
by random irregularities in smface height h. Further­
more, these irregularities are presumed to be large 
in the sense that their characteristic dimensions are 
somewhat greater than a few meters and that other­
wise the smface is smooth, with the result that in­
coming radiation is scattered locally in a specular 
fashion. From the mathematical point of view, it 
is supposed that h can be treated as a continuous 
random function of position on the lunar surface and 
that the statistics of the function h are known, apart 
from characteristic parameters which are to be 
determined from experiment. 

The experimentally obtained echo decay rate is 
determined as an average over a large number of 
returns. Since the rough lunar surface pres en ts 
a slightly different aspect from one pulse to the 
next as a result of lunar libration, one might think 
of each experimentally obtained retmn (or set of 
retmns, depending upon the prf) as representing 
the echo obtained from a member of an ensemble 
of moons characterized by different surface height 
functions h. In an analogous fashion, the fLverage 
amplitude distribution of the retul'l1 predicted on 
the ?a.sis of the statistical model is determined by 
obta1llll1g an ensemble average of the expression for 
returned power. The average echo distribution 
will resemble specular reflection much more than 
diffuse reflection so long as the deviation of the 
actual surface from the mean is not large and the 
average smface height-to-separation ratio character- ' 
istic of the irregularities is fairly small. On the 
other hand, it seems quite unlikely that such a 
scattering mechanism could explain the slow, low­
level portion of the decay which follows the initial 
rapid amplitude decrease. 

Although the statistical model embodies those 
physical characteristics of the smface which playa 
dominan t role in backscattering near normal inci­
dence, it is incomplete in the sense that it does not 
include the existence of small irregular smface 
featmes, such as rocks and jagged facets, which 
will tend to scatter radiation more isotropically. 
These latter irregularities will contribute relativeiy 
little to the amplitude of the signal scattered from 
the vicinity of the subterrestrial point of the lunar 
surface. 01'1 the other hand, in the case of a short \ 
transmitted pulse the echo amplitude at times 
considerably greater than the pulse length is due 
to returns from portions of the moon's surface 
closer to the limb. In this region reflections from 
small , less directive scattering facets will assum e 
greater importance than quasi-specular reflection 
from the slow undulatory component of surface 
roughness. Therefore, it is natural to expect that 
scattering from these smaller irregular facets will 
accollllt for the slow decay of echo amplitude which 
follows the rapid decrease from the peak of the 
return due to quasi-specular reflection. 

In view of the fa.ct that the quasi-specular and 
diffuse reflection mechanisms operate essen tially 
independently of each other, the total lunar echo 
power at each instant of time can be considered to 
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be Lhe sum of the scn,ttel'ed powers associated with 
the indivielLml components . Consequently, the 
power n,mplitude due to these different scatterin g 
mechn,nisms can b e derived independen tly n,nd th e 
results can subsequently b e added to give the co m­
posite lunar echo . Sin ce the m a>.'imum response 
from diffuse scattering is 15 to 20 db below that du e 
to quasi-speeular reflection, it is apparent that onl~r 
the htter eomponent need b e considered in estimat­
ing the total return in th e case of continuous wn,ve 
transmission. 

3. Statistical Model of the Lunar Surface 

The eenter of the moon is taken to b e coincide)) t 
with the origin of a Cartesian coordinate system as 
illustrated in figure 2. Th e transmitter-receiver is 
located on the positive x3-axis at a distance H from 
the origin. 

The surface of the moon is treated as though it 
I were randoml:v ro ugh . Thus, if th e mean surIa,ce 

is assumed to be il. sph ere of r adius a, lhen the local 
radius l' at a n.v point x = (X"X2,X3) on the tru e surface 

! can be expressed as 1' = a+ h, where th e local surface 
height h is ~), r a ndom fun ctio n of position. In ex­
pressions involvi ng the surfn,ce configuration it is 
often convenien t to employ spherical coordin ates, so 
that the locus of th e point x can b e represented by 
the pal'ftm etric systel1l 

I 
I 

X, = T sin e cos r/> 
X2 = 1' sin e sin r/> 
X3= 1' cos e 

(3- 1) 

with r= a+ h(O,r/». The local norm al vector n,t x 
cn,n b e calculn,ted frorn the expression 

where J i (i = 1,2 ,3) are th e J acobians of th e syste m 
(3- 1). The ei are unit vectors in the three mutually 
orthogoDil.1 directions . The local surface area ele­
m ent dA is given by 

dA= [Ji+J~+J5]l dOdr/>. (3- 3) 

It is co nsisten t with th e h ypoth esis of locally spec­
ulaI' scatterin g to n,ss um e tha t those surface rough­
n esses which determin e th e propertie of th e qua i­
specular co mpon ent arc characterized by dimensions 
wh.ich a re gren,te r than several radar wavelengths. 
In the sequel we sha ll denote by u lhe standard 
devi ation of the local surface h eigh t , and 0 will 
denote the great circle distn,nee sepn,rating two 
p oin ts on th e m ean lun ar surface beyond which local 
surface heights ar e virtun,lly uncorrelateeP In 
view of the fact that as a ra,dar r eflector the near 

2 The quantity 0 is usually referred to as the Ifcorrelation radiuS." 
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FIGURE 2. Geometry of the lwwr scatte1'ing problem. 

surface of the moon appears Lo b e much more s lllooth 
than rough, it is anticipated that th e value of ulo 
will b e at least an order of lll n,gniLude less tha ll unit~r . 
This r emark follows from lhe observation that ulo is , 
in a sense, a measure of th e l'I1lS surface h eigh L-to­
separation l'fttio. Efl'ects such as sh adowing and 
multiple reflections will therefore be of seco ndary 
importance near th e subterrestrin,l point of lhe moon 
and need not be considered h er e. 

An analysis based on a statistical model of th e 
present sort becomes prohibitively con 'plicated 
when an attempt is ffin,de to take into account 
explicity the possible electrom agnetic properties 
of the moon's crust. On th e other hand, t h e sLaListi­
cal model proposed h ere implie n, gently undulatory 
lunn,r surface, which is mooth over di tan ces of a 
few radar wavelengths and \vhich scatters radiation 
specularly in a local sense. This suggests that any 
given region of th e moon's surfn,ce must con tain 
areas which ar e favorably oriented to produce re­
t urns if it is to be at all effective in contributin g 
to the back scattered power. This leads to the 
assumption that th e relative importance of any given 
region in con tributing to th e returned echo will be 
more strongly dependent upon th e local geom etry 
thn,n upon the electromagnetic parameters of t h e 
surface material. In order to determine th e in­
flu ence of local geometry upon th e observed echo 
it has become standard practice in d iscussions of 
lunar scattering to assume that tb e far zone scattered 
fields can b e calculated by taking th e total fields at 
the lunar surface to b e th e same as thou gh the 
interior were a perfect dielectric with t r= 00. The 
scattered power level in the br zone is later adjusted 
b y a multiplicative correction factor which is usun,lly 
r eferred to as an effective power reflection coef­
ficient. The value of this coefficient is determined 
by calculating the fraetional power scattered by a 
semi-infinite dielectric slab with an eff ective relative 
permitt ivity t r exposed to a norm ally incident plane 
wave. Since th e surface areas providing th e g ren,test 
contribution to th e quasi-specular scatterin g com­
ponent ar e those which ar e perpendicular Lo the 
direction of propagn,tion of th e in ciden t field, thi 
procedure is a good approxinmtion. 

Since a dieleetric with t r = OO is indislinguishable 
from a perfect conductor th e possibility of in ternal 
reflections is implicitly eliminated from considera­
tion. This is consistent with reality since the lunar 
radius a is so mu ch greater than the skin depth of 
rocky m aterial at radar wavelengths. 
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The section which follows is devoted to the devel­
opment of an approximate expression for the radar 
cross section of the moon on the basis of the scat­
terin g model just described. 

4. Radar Cross Section of the Moon 

At the conclusion of section 2 it was remarked 
that the total radar cross section of the moon may 
b e calculated with a fair degree of accuracy by 
assuming that only the quasi-specular component 
contributes significantly to the backscattered power. 
This calculation will b e performed using the statis­
tical model for the lunar surface. 

In the case of continuous wave transmission we 
may represent the incident magnetic field as a plan e 
wave propagating in the negative x3-direction with a 
time depen dence of the form exp (-iwt ): 

The scattered magnetic field can then b e calculated 
from the in tegral of Stratton and Chu: 

H s= 4~ L [-iWfo (n X E)G-vG 

X (n X H)+(n· H )v G }tA. (4- 2) 

In this expression, G is the standard Green's function 
for the three dimensional H elmholtz equation and 
the electromagnetic vectors in the integrand are the 
total fields at the surface of the moon. The vector 
n is the outward local normal to the true surface at 
the point (8, </» . Since reflections from the portion 
of t he moon's surface in the shadow r egion are 
neglected, the surface A of integration may be taken 
to b e the illuminated h emisphere. 

The several assumptions outlined in the previous 
section permit the use of the so-called "tangent plane 
approximation." This, together with the idealized 
electric properties of the surface material, provides us 
with simple relations for the fields at the surface: 

(4-3) 

and 

n X E = O. (4- 4) 

Following the substitution of (4- 3) and (4-4) into 
the in tegrand of (4- 2) and the specialization of the 
result to the far zone, th e scattered m agnetic fi eld 
can th en be written in the form 

Hs=-el [2:~J H i exp [i(kR 

- wt)lfA exp (-i2lcx3)J 3d8d</>. (4- 5) 

The far zone scattered electric field can b e written as 

(4- 6) 

where to is the ch aracterist.iC' impedance of free space. 
The quantity of particular interest is the expected 

value of the X3-component of the Poynting vector S 
at the position of the observer. In the case of fi elds 
varying harmonically in time, it is customary to sup­
press the rapid fluctuations of S by calculating a local 
time-averaged value. Tills operation is certainly 
m.eaningful for con tinuous wave transmission when 
th e surface of t he scatter is characterized by irregu­
larities considerably greater than a wavelength in . 
dim ension. Thus the quantity to b e derived is the ' 
expected value of 

(4- 7) 

Under the present set of assumptions the Poynting 
vector at the receiver is directed along the x3-axis so 
~at no confusion will arise if 5 \3 is written silnply as 
s. 

Equations (4- 5) and (4- 6) can b e combined with 
(4- 7) to give an expression for S in terms of the 
random surface height h. The expectation or 
stochastic average of the power flux is obtained 
through multiplication of S by an appropriate joint 
probability density function p (ht,!/,z) followed by 
integration over all hi and h2• This general method 
was first presen ted by I sakovich [1952] and later 
placed on a more rigorous basis by Hoffman [1955], 
both of whom treated r eflections from a rough 
conducting plan e. After an application of Fubini's 
Theorem this procedure in the present case leads to 
th e relation 3 

.0" {exp [- i2k (hi cos 81- h2 cos (2) 1 

J 31J32 }d8 Id8zd</>ld</>2]. (4- 8) 

In order to evaluate this last expression, a number of 
simplifications must b e introduced. 

The quantity J 3 is easily calculated from system 
(3- 1) , with the result 

J ? [ + lOh. ] 3=r" S111 8 cos 8 r 08 S111 (} • (4- 9) 

First we observe that h is generally expected to be 
an extremely small quantity compared with a, so 
that little error is incurred if rZ in the first factor is 
set equal to a2 • The second term inside the paren­
theses is nothing more than the product of sin 8 and I 

the local surface slope in the 8-direction. Current 
estimates of the rms value of lunar surface slopes 1 

3 Expectations are denoted by @"( ) to avoid confusion with thesymbo] E which 
is reserved for the electric field . 
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'> place this figure at about 10° 01' less. Llmar radar 
da ta obta,in ed by using very short pulses (see fig. 1) 
indicate that nearly all of the power r tmned by the 
lun ar hemisphere i cattered from a region in the 
vicinity of the ubterrestrial poin t. It would appear 
that if the estimates of th e lunar slopes are reasonably 
accurate, the second term in parentheses in (4- 9) 

" docs not assume importance compared with the first 
r except in those regions of the surface which con­

tribute negligibly to the total radar return . This 
term will henceforth be omitted. 

As a result of the simplifications just outlined, J 3 

no longer involves the random variable h so that J 3l 
and J 32 may be removed from the braces. The ex­

, pectation which remains is simply the characteristic 
(, function appropriate to the joint probability density 

p (hl ,h2). If we assume this latter function to be the 
tandard Gaussian bivariate distribution with vari­

ance (T2 an d correlation function p, then (4- 8) can be 
expressed in the form 

- cos O2) ], exp [- 2k2(T2(COSOI 

- COs02)2]exp[- 4k20"2co OI CO Oz(l - p) ] 

. cos 01 cos Oz si n 01 si n O2 do IdOzd¢ lClcpZ J. (4- 10) 

We fu'st observe that the third exponential factor 
in the integrand of (4- 10) is a rapidly varying [unc­
tion when p is near unity. This suggests that we 
replace p by the first fow terms of an appropriate 
series expansion . The correlation function p is neal' 
unity only when the points (Ol ,¢l ) and (02, ¢Z ) on the 
mean surface are close to one another. Therefore, 

I throughout that portion of the coordinates dom ain 
~ where the series expansion is no longer valid, the 

harmonic factor oscillates very rapidly in general, 
and tends to cancel out r esidual errors introduced by 
the expansion . 

The functional form of p is somewhat arbitrary, 
but in view of the fact tllat the mean surface is a 
sphere, it is natural to assume i t to be a function of 

r x/2, where X is the angle between the lines joining 
points (01 ,¢1) and (Oz,¢z) with the center of the sphere. 
A large class of correlation fun ctions, for example, is 
represented by the relation 

p= p(sin x j2). (4- 11 ) 

l' Hwe exclude the possibility of a discontinuity in 
lope at x = O, we can expand p in powers of sin x j2 

to obtain 

p = l-~ Ip" (0) Isin2 xj2+ . o. 

where the prime indicates differen tiation with respect 
to sin x j2. 

It is now expedien t to take fmther advantage of 
the fact that nearly all the power is scattered from 
the vicini ty of the specular refl ection point. If we 
put xi=sin Oi in (4- 10) then most of the radar signal 
i retmned from the region of smaIl Xi ' Thus we 

hall set cos O.=l - l X2 throughout the integrand z 2 t 

and drop terms which are of an order higher than x~ 
where appropriate. Fmther simplifica tion resul ts 

from the fact that ~k / (O ) 1 is equal Lo the product of 

(2a2j (T2 ) and the mean square value of the local sur­
[ace slope and is much greater than unily except for 
completely negligible slopes. (It may be noLed that 
in the ca e o[ a Gaussia,n couelation function this 
product is equal approximately to 4a2jo2.) Tbu we 
may neglect the terms k2 (T2X; as co mpared with 

= 2ka, the expectntion of S takes the forlll 

where 

l llllhJOZ" L (k)= 
o 0 0 0 

exp [i~ (xi-XD] cxp [ _~2 (xi + xD] 

. cxp [},.2xlXZ cos (¢I - ¢ Z) ] clxidxkl¢lcl¢z. (4- 14) 

then the result of in tegration over the azimuthal 
angles in (4- 14) can be written as 

L (lc) = 471"2 So l.f exp [- (,ulxi + ,uzxD] 10(/,.2xlx2) clxidx~, 
(4- 15) 

where 10 is the zero order modified Bessel function 
of the first kind . Since ,,2 is a number very much 
greater than uni ty, the Bessel function can be ex­
panded asymptotically for ~ i of the o~'d~r of unity 
and greater to show that lI ttle error IS lllcurred If 
the upper limits of integration in (4- 15) arc set equal 
to infinity . If 10 is then replaced by its series ex­
pansion and the summation is removed from the 
integral signs, then the integrations are easily per­
formed to give as a result 

(4-16) 
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Thus, in the present approximation the expected 
power £lux at the receiver is independent of the pre­
cise form of Ip"(O) I. The expected value of S is 
given by 

(4- 17) 

When (4- 17) is multiplied by an effective re£lection 
coefficient a, standard radar formulas can be used 
to show that the effective radar cross section of 
the moon in the present approximation is 

(4- 18) 

This is exactly the same result obtained by Grieg, 
Metzger, and Waer [1948] for a smooth moon; it 
differs from the result for a perfectly diffuse moon by 
a factor of 8/3. The difference between the theory 
just outlined and the smooth moon model is, of 
course, that the power in each case is scattered from 
different regions of the surface as we shall see in the 
next section. 

In order to obtain a quantitative comparison of 
the results just derived with experimental data , it is 
necessary to assign a reasonable value to the power 
reflection coefficient a . If it is assumed that the 
lunar surface is composed of material with an 
effective relative permittivity Er , then the coefficient 
a can be estimated by calculating the fractional 
power scattered by a semi-infinite dielectric slab 
exposed to a normally incident plane wave: 

. [,/;':-IJ2 
a= , /;':+1 . 

(4- 19) 

In order to complete the calculation an estimate 
must be made of the relative permittivity of the 
lunar surface. 

The composition of the lunar crust has been the 
subject of considerable speculation for a great many 
years. On the basis of many studies at infrared 
wavelengths the surface appears to be composed of 
a granular rocky substratum lying beneath a very 
thin layer of dust. Thus it appears reasonable to 
conclude that for our purposes the lunar surface is 
composed of dust-like granular rock. 

Of course, little is lmown about the precise types 
of rocky substances to be found in the lunar crust. On 
the other hand, many well-considered "guesses" 
have been made in order to provide estimates of the 
physical constants of the lunar surface. A typical 
value of the various relative permittivities of such 
substances is close to 8. Taking this to be a repre­
sentative value for lunar surface substances in the 
solid state, an estimate can be made of the effective 
permittivity of the material in a dust-like or granular 
state using formulas such as those developed by 
DeLoor [1958] . 

It can thus be shown that the effective relative 
permittivity of an aggregate of closely packed spheri­
cal granules of rock, in vacuo, whose relative per­
mittivity El in the solid state is 8, is equal roughly to 

4. Substituting this value into (4- 19), the theor'eti­
cal radar cross section of the moon is approximately 

(4- 20) 

Ample data exist to check this result against experi- I 
mental findings. Senior and Siegel [1959], for ex- J 
ample, present a table of several measured values of . 
fJ s/7ra2 over a considerable frequency range, In a 1 
recent summary paper on the problem of lunar radar 
reflections Evans [1961] contributes further values at 
higher frequencies, As pointed out by Evans, the 
radar cross section of the moon shows no systematic 
variation with wavelength over the interval 3 m to 
~ cm and the average value obtained experimentally J 
IS 

(4- 21 ) 

I 
I 

which agrees well with the result in (4- 20). 

5. Pulse Transmission: The Quasi-Specular ~j\ 
Component 

I 
Lunar radar l'e£lection experiments in which short 

pulses were transmitted provided somewhat more l 
insight into the nature of the moon as a scatterer 
of electromagnetic radiation than could be gained ' 
from continuous wave transmission, In the case Of ·j 
very short transmitted pulses the temporal distribu­
tion of echo power can be interpreted as a measure 
of effectiveness of various parts of the moon's surface I 
in scattering radiation back to the Earth. As 
already mentioned, the average power received at I 
any instant can be thought of as the sum of the quasi- I 
specular and the diffuse components. The quasi- I 
specular component dominates that part of the ~ 
return which originates in the vicinity of the sub­
terrestrial point on the moon. The discussion which 
follows is devoted to the derivation of expressions 
for power received from quasi-specular scattering as I 
a function of time. The scattering model is the J 
same as that described in section 3, 

In the case of transmission of a rectangular pulse 
of duration T the incident magnetic field can be 1 

:,pr:;: ::p t[b.e :;: + wt) IIU (et + x,) - u (et _ e, + x,) I 1 
\ 

(5- 1) 

where U denotes the H eaviside step function. It 
should be remarked that the path of integration in 
the second expression passes below the pole on the l 
real axis. If H i(k) denotes the incident wave in f. 

the case of continuous wave transmission, apart J 
from the timo factor exp (-iwt ), then an alternative 
expression to (5- 1) is I 
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H i=-21 .J' ''' exp (iklct ) [1- exp [- i(lc l 
'7T't _'" 

Thus if Hs(k ) denotes the scatter ed fi eld (4- 5) with­
out the factor exp (-iwt) , then the scattered magn etic 
field in the case of pulse transmission is just 

H 8=-21 .J'" exp (iklct ) [1 -exp [-i(lcl 
7T' t _'" 

+ k) cT]]Hs (-kl) [kl~k] dkl' (5- 3) 

As in th e previous analysis, the scatter ed electric field 
can be obtained from the relation 

(5- 4) 

These expressions will b e used subsequen tly to cal­
~ culate tIle expected value of received PO\.vCl' as a 

function of time. 
Once again, the quantity of in terest is the expected 

value of the X3-component of the Poynting vector S 
at the position of the observer. In the case of 
co ntinuous wave transmission, the rapid fluctuations 
of S were suppressed by calculating a local time-

\, averaged value. In the case of pulse r eflection , the 
same time average must be interpreted as a local 
"adiabatic" average in which the time dependent 
coefficients of the harmonic factors ar e r egarded as 
slowly varying over several periods of the carrier 
wave. In the case of gross rough.ness, this is a good 
approximation except possibly in a few very narrow 
intervals in the time domain (such as the expected 
position of the l eading edge of the r eturn). Sincc 
experimental data are uncertain in these r egions, the 
precise time average at these points deserv es no 
special consideration . Thus for pulse t ransmission 
the quantity to b e derived is the stochastic average 
of 

(5- 5) 

Jus t as in the case of CW transmission the pres en t 
set of assumptions leads to a Poynting vector in the 
x~-d irection at the ~'eceiver so that SX3 will again be 
written simply as S . 

It is convenient to shift the origin of time so that 
the "average" leading edge of the scattered pulse 
arrives at time T = O; i.e., put ct = cT + R - 2a in 
(5- 3) and (5- 4). Some degree of brevity is achieved 
b.v settin g 

P(!ci) = [1-exp [-i(k i+ k)CT]] [ki~k] ' (5- 6) 

H ere, T is the duration of the transmitted pulse and 
k i is a tran form variable. The expected value of 
S can then be written in the form 

6" {S } =[~o En] (47T';R )2 R e [f_oo", J:",.L1 fA2 
· exp [i(cT - 2a)kl-i(cT- 2a)k2]· F (kl)P*(kz) 

· exp [i2k1a cos 81-i2k2a cos 82] 

· rff { exp [i2klhl cos 81-i2k2h2 cos 82] 

J 3I J 32 }d8Id82d<t>ld<t>2clkldk2J (5-7) 

It is important to note that th e path of integration 
in the second transform (involving k2 ) passes over 
the pole on the real axis since we have taken the 
complex conjugate of the expression for Hs. 

In the remainder of the discussion we sh all confine 
our attention to pulses of very short duration 
(T< < < 2a/c) and to comparatively small values of 
time T. With these restrictions , th e same kind of 
approximations used in th e CW analysis will apply 
to the present situation. For example, when T is 
very small compared with 2a/c, that por tion of the 
lunar hemisph ere contributin O' to the scattered 
power is char acterized by small Xt=sin 8i. More­
over, the receiver bandwidths employed in hmar 
scattering experimen ts are such that only those 
frequencies within a Jew tens of m egacycles of the car­
rier Jreq uency are of significance from th e equi pmen t 
standpoin t. Altbough the variation of kl and k2 in 
the transforms corresponds to all frequencies, in so 
far as the geometric approximations are concerned, 
prod ucts such a ki kj (J2 can be treated fiS being of 
the order of k2 (J2. H en ce, apart from a few obvious 
modifications, the simplification of the integrand in 
(5- 7) proceeds in the same fashion as before, giving 
as a resul t 

rff {S } =[~ H~] [8;~~J Re[I_"'oo I-"'", exp [icTkl 

- icTk2 ] exp [- 2(JZ(kl - k2)2] 

. P(k 1) F* (k2) L (kl ,lcz) dkldk2} (5-8) 

where 

L (khkz) = ilili Z1r i 21r exp [-~(iVI+ A2)xi] 

. exp [~ (iV2- A2)X~] 

. exp [A2X1X2 cos (<t>1-<t>2)] dxiclx~d<t>ld<t>2. (5-9) 

In this last expression, A,2= klk2(J2 [pl/ (0)[, vI = 2k1a, 
and v2 = 2k2a. 

The integration in (5- 9) is performed in much the 
same manner as that in (4- 14). The result can be 
expressed in the form 

L (kl ,k2) =k~:2 [1 +i ~ (1c 1- lc2) JI, (5-10) 

where j3 = 2a/[ pl/(0 )[(J2. 
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The calculation of the resulting transforms in 
(5- 8) is somew11 at tedious and will not be reproduced 



here. The final expression for the expectation of S, 
un der current restrictions , can be convenien tly 
wr itten as 

rff { S} =[ % H~] [2~] 2 n exp (2(32(J2) 

.[J (cT)- J (cT -cr )]] , (5-11 ) 

where 

J (u) = exp (- 2(32(J2) [1 + erf (u j2 ,,'2(J)] 

- exp (-(3u) [1 + el'f (u/2-J2(J- ·,/2(3(J)]. (5- 12) 

Although (5- 11 ) is a relatively uncomplicated 
r elation and well suited to rapid calculations by an 
electronic digital computer, more insigh t in to the 
gross fun ctional dependence of rff{S} on tim e is pro­
vided by further simplification . We first observe 
that the product (3 (J is a number very much less than 
unity (except for completely negligible lun ar surface 
slopes). Furth ermore, on the basis of several cal­
culations described elsewher e [Winter , 1961 ], i t has 
been shown that the prin cipal role of th e errol' 
functions appearing in (5- 12) is to smooth out dis­
continuities in slope which would otherwise appear 
if (J were allowed to approach 0+ in their arguments.4 

Therefore, replacing (3(J by zero and notin g that 

(5- 13) 

it can be shown that an approximate relation for the 
expected value of S is 

g{S} = [% En][2~J 

{
o ; T< O 

. l - exp (- (3cT) ; O< T < r 

[exp ((3cr)- I] exp (- (3eT ); r < T « 2a/e. 
(5- 14) 

Thus for values of T greater than the pulse duration 
the decay of echo power is approximately expon ential, 
with a "time constant" equal to 1/(3e . 

6 . Pulse Transmission: The Diffuse 
Component 

The quasi-specular component of the lunar echo 
is due to scattering from that por tion of the lunar 
terrain whi ch appears to be locally smoo th and 
whose irregularities are large compared with a wave­
length. In the case of short pulse transmission this 
component will decrease in importance very rapidly 
as the "illuminated zone" moves back toward the 
limb from the subterrestrial point. At the sam e 
time scatterin g from smaller , rougher surface features 

• 'rhis is equi valent to letting u-->O+ in the fact or exp [-2u'(k,-I;,l'J appearin~ 
in (.\-8). 

(such as rocks and jagged facets ) will increase in 
relative importance since these facets will ten d to 
scatter radiation in a more isotropic fashion . Since 
the detailed structure of such features is not known , 
a semiempirical approach must be employed. 

vVe begin by assuming that echo power associated 
with the diffuse component is due to scattering from 
a great number of small scatterers which are ran- c 
domly distributed over the surface of the moon. 
Suppose that the jth scatter er at (OJ, </>}) is situated 
within the small area element .ilAj. The average 
total power incident upon .ilAJ is approximately 

where R i is the range from the transmitter-receiver 
to the scatterer and the fa ctor f (R j ) is such that if 
g[cT- (R j+ a- R )] is the instantan eous distribution 
of transmitted power in range, then 

Thus for a rectangular pulse of duration r arnvmg 
at the sub terrestrial point on th e moon at tim e 
T = O, the factor g takes th e form 

g[cT -(R j+a- R )]= U[cT - (R j+ a- R )] 

-U[eT - cr -(R j+a- R )] . (6- 3) 

Let uk(8;' </> j) denote the radar cross section per uni t 
area of the jth scat ter er. The power flux at the 
receiver due to scattering from this facet is then 

Since it has been assumed that the scatterers are 
distributed over the lunar surface in a random 
fashion, the relative phases of waves reflected from 
them will be randomly distribu ted and un correlated 
and the power flux at the receiver at any instan t of 
time is simply the sum of the individual contribu­
tions. Combining (6- 1), (6- 2), and (6- 3) with (6- 4 ) 
the received power flux can be written as 

g {S } =[¥ H~] ~ {U[c T - 2(R j+ a - B )] 

-U[cT -cr - 2(R J+ a- R )] } 

. [47r~J] O:k(rh </> j) .ilAj, (6- 5) 

where N is the number of scatter ers. 
Since O:k (O}, </> j) is not known, it is convenien t to 

treat it as a random variable with a probability 
density function P[(1k (OJ, </> j)]. The expected value of 
S may then be defined as 
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Eq uaLion (6- 0) c,w b e co mbin ed with (6-5) to give 
an explicit expressio n for 6 ' {S } . H we allow Lhe 
number of scatterers to approach infinity and let all 
t:,.(i,c Lo go Lo zero (thus forcing M to ftpproaeh infinity) 
Lhe summaLions becom.e in tegrations over e, cp, and (i . 
The range R j is then given by R -a cose. The factor 
1/47rR} may be replaced by 1/47rR2 and subsequently 
be removed from the inLegral. 'iiVi th these modifica­
tions , the expectation of § takes the form 

- [I l [ 2] ('" ( 1I" /2j' 211" 
(n S j= j I-n-1 4:1r Jo Jo 0 

IU (cT- 2a+ 2a cos e) -U(CT-cT- 2a+ 2a cos e)] 

. (i (e,cp) p [(i (e,cp)] sin ededcpd(i. (6- 7) 

TIl e inLegral over (i is nothing more than Lhe meftn 
O'o(e,cp) of Lh e random variable (i (e,cp). Thus, in order 
to complete th e calcul,llion some additional state­
mellts must be m}lcl e with regard Lo (io (e,cp). 

As WitS stll.Led earlier, i ll the ftbsellce of any detailed 
in rormaLion concerning the s trucLure of the less direc­
ti \' e scatterin g facets , iL is impossible Lo assign a pre­
cise functional form to O'o(O,cp ). On the other hand, 
since the i"<tcels are presumably dis tributed over th e 
surfa,ce in a rnndom 1"<lsh ion, Lhere is no reason to 
rebt in an azimuth al depende nce explici ll.\' . This de­
pendence could , in fact, be determined (in Lh eor.\') 
on ly if th e configuration of Lhe i"<l.ce ts were speci:fied 
Logether with thei r orientaLion with l'especL to the 
direcLion of Lh e incidenL field vecLors. In suppress­
in g the azimuthal dependen ce, Lhe parameter 0'0 (0) 
can be interpreteel as th e v}llue of O'o(e,cp ) <wemged 
onr th e angle cpo 

The experimentally ci etermin ed belw.vior of the 
eliA'use component (e .g., see fig . 1) sugges ls lhllL (io(O) 
may be repre enled in lhe form 

(6- 8) 

where n is of the order of magnitude of unity 01' more. 
H Lh e surface facets reradiated energy isotropically, 
a n cl shftdowin g were unimportant, then n would be 
identically equal to unity. On the other hand, we 
sha ll see in sec tion 7 that Pettengill 's experiments 
suggest th e net effect of backscattering from these 
fncet s is more adequately described by Lambert's 
Law which implies that n is closer to two . It should 
not be concluded from this , however, that the fea­
tures of the lunar surface producing the diffuse echo 
component scat ter radiation in the same sense that a 
"gray body" is diffuse at infrared wavelengths. In 
faeL , if further experimentation verifies this law, and 
if the present model is correct, the diffuse component 
ma~T be interpreted as scattering from certain pre­
fert'ed types of configurations, such as sp ikes or other 
sbarply pointed facets . Although the following is 
not particularly appropriate to the physical situation 
at h lwd , Ament [1956] has shown, by way of example, 
that Lamber t's Law is suggested in backscattering 
from th e coplanftr ends of parallel but randomly situ­
a ted se mi-infinite thin wires. 

At a ny rate, when (6- 8) is substituted into (6- 7), 
the scattered power flux associated with the diffuse 
component can be written as 

6" {S } =[10 I-n] [~]2 ~ 
, 2 2R n + 1 

rO 
[ cT]n+! .J 1- 1- -

" 2a 
I 

I [ C(T-T)]n+ l [ CT]n+!. 1- - I--
\.. 2a 2a' 

over the time interval o r interesL here. Th e to Lal 
lUll ar echo power ~lL any ins tan L of time T is tbe sum 
of (6- 9) a nd thc correspondiug express ion 1'01' S{S} 
associated wiLh quasi-specular re neelion . Th e vftlue 
of ITo is, of co urse, delennined from experimenLal 
chl.tn . 

7. Comparison of Total Theoretical Signal 
With Experiment 

AlL hough experimental aLLc lll p t lo obLain lun ar 
echoes using shorL pulse transmission have b een in 
pl"Ogress LluoughouL th e past decade, detailcdresulLs 
of s uch sludies b}we appeared in t he liLerature onl~' 
willlin three or rOUl" years of this wriling. In ade­
qU<LCies in exis ting equipm ellt , coupled wi th large 
tmnsmission losse , sL ill m ake it difficult to attach a 
grC}lt amount of acc uracy to fl.n~T colledion of lunar 
mclar observalions . Therof'ore , il is not unadvisftble 
to reg}ud th e experimental r es ults ,wH,ilable aL the 
present tim e wi th some reservaLion . On th e olher 
hallel , n number of experiments, wit h v~,rious carrier 
frequellc ies a nd pulse len~ths, arc sufficiently r eli,l.­
blc so Lh}ll ft satisfactory cLegree of acc uracy ma:\' be 
a ttributed to Lhe measuremenls. AmongsL t hese 
d<tta arc those r eported by Trexler [1958], Hughes 
[1960], and P ettengill [1960 , ] 961]. Theoretical r e­
s ults derived in the prcscnL investigaLion fl.re com­
pared with t he aforementioned experimcn tHI results 
and others in the discussion below. 

Among the most accurate lunar radar data avail­
able are those of Pettengill [1961 ]. The equipment 
employed in this experiment was the Millston e 
Radar of :Ylassachusetts Institute of T echnology'S 
Lincoln Laboratory. Using a transmitted carri er 
frequency of 440 Mc/s and a pulse length of 100 
Ilsec, Pettengill was able to obLain an average 
temporal distribution of echo power throll ~hout a 
time interval corresponding to the Lotftl radar 
"depth" of the moon (11.6 Jll scc). Figure 1 pre­
sents the results as reported by P ettengill. The 
precise behavior of th e initial rise of the signal from 
the vicinity of T= O is no t well known so that only 
the period of signal decay will be compared with 
theory. 

The task of fitting the theoretical results to the 
experimenh,l curve involves the solution of a three 
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parameter problem since the total signal is given 
by the sum of (5- 14) and (6- 9) which together 
involve the constan ts (3, uo, and n. Instead of 
assignin g values to the constan t (3 we shall refer to 
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FIGUR E 4. Com parison of theoretical results with the initial 
portion of the echo decay f or a very short pulse. 

the combina tion 1/2 -Va{3. From th e defini tion of f3 
and th e remarks in section 4 with regard to the 
relation between Ipl! (0) I and the mean square lunar 
surface slope, i t can be seen that 

In the special case of a Gaussian correlation 
run ction, the various expressions in (7- 1) are equal 
simply to u/o (for 0< <a). 

On the basis of several calculations it was con­
clud ed that the best overall agreement between the 
theoretical curve and the experimen tal one is 
fLchi eved by using parameter values of the order of 

1/15 ::; 1/2,/a(3 ::; 1/12 

1/4 ::; uo::; 1/3 

3/2::;n::; 2. (7- 2) 

The graph corresponding to the set (1/12, 0.25, 2) is 
shown together wi th the experim en tal decay rate in 
·iigure 3. 

Of course, comparison of the theory wi th fL single 
experim en t is inconclusive. The general usefuln ess 
of the present formula tion wi ll be demonstra ted if i t 
can be shown that comparisons wi th other experi­
men tal r esults lead to values for 1/2-va(3 , Uo, and n 
which are close to those indicated in (7- 2). 

R ecen t work reported by Hughes [1960] provides 
us wi th results of an experimen t performed wi th 
equipmen t parameters which are considerably dif­
ferent from those of th e :VIillstone R fLdar. Using a 
5 fLsec pulse and a carrier frequen cy of 3000 M c/s, 
Hu ghes observed a lunar echo decay which seemed 
to be fairly well represen ted by the function 

(7- 3) 

where OJ = arc cos (1-cT/2a ). This expression is 
plo tted in figure 4. The theoretical resul t cor-
responding to th e set of parameter values (1/2·./a(3 , 
Uo, n) = (l /15, 0.25, 2) appears to give a fairly good 
overall fi t to the data. 

Inspection of figures 3 and 4 reveals a systema tic 
difference in slope between the theoretical and 
experimental resul ts even though the parameter 
valu es fall within the ranges indicated in (7- 2). 
Similar disparity in slope was encountered by 
H agfors [1961] who assum ed a Gaussian correlation 
function to derive an "apparen t delay spectrum," 
which can be interpreted as a measure of the rela tive 
effectiveness of various por tions of the lun ar surface 
in returning a r adar signal. H agfors rem arks that 
the discrepancy in slope might be removed by a 
differen t choice for the correlation function p. 
E vans [1961] concurs with this view. Another 
possible explanation is suggested by an inspection 

224 

J 
~I 

\ 



\ 

of lU rlfu ' photographs 01' chart of' lunar Lopogntph~T 
which reveals Lhct t the subtelTestrial point lies within 
a comp,uatively smooth flat r egion which graduall.\· 
blends in to som ewha t rougher ten ain around its 
borders. Tbu s it may be that the effective 1'111 S 
value of local lu I1fU' surface slope actually increases 
sligh tly wi th increasing 0 in this general region. In 
thi s event the predicted rate of decay of echo power 
wi th time would slowly decrease wi th increasing T 
as srems to be observed in practice. 

Theories based on the statistical mod el of th e 
moon 's surface h ave been criticized in the past for 
their in itbility to account for the so-called modulation 
loss phenomenon . The term "moduln.tion loss" re­
fers to the apparen t decrease in t he peak power o[ 
tlJC lun,l,l' echo as the transmitted pulse dura tion is 
diminished. The present formul a tion , on tIl e other 
haml , provides n.n explicit expression [01' the modu­
lation loss for compMison with observed dn.ta. Al­
thougb the n.ppropriate expe['imental r es ul ts ,He 
sparse and somewhat un cer tain , the most reliab le 
are pJ'obn.bly those communi cated to Senior alld 
Siegel [1960] by Youmans . According to these data 
the peak: power r eturned from n. 200 J..(sec pulse is 
abou t 1 db below the value for continuous wave 
tran sm LSSLon . The COLTe ponding value 1'01' n. 30 
J..(sec pulse is 8.5 db , for a 10 J..(sec pulse i t is 17 db , 
and for a 2 J..(sec pulse tbe loss appears to be 22 ± 2 
db . An approximate theoretical expression for the 
modulation loss as a Jun ction of pulse length is 
obtaincd from a combination of (4- 17 ) and (5- 14 ): 

Loss = l -exp (-(3CT). (7- 4) 

Figurc 5 prcsents a plo t of the modulaLion loss 
predicted from (7-4) with 1/2'/(;(3= ]/12 togeLher wi th 
the experimental resul ts described above. The 
agreem en t is seen to be quite satisfactory. 

AnoLher check of Lhe foregoing resull was per­
formed usin g the data ob tain ed b)T Trexler [1958] 
who employed fl pulse length of 12 J..(sec and a carrier 
rrequen cy of 198 ). Ic/s. Trexler p1'esen ts a plo t of 
the fraction of total echo energy r eceived at time T. 
With (5- 14) iL is a simple matter to ob tain an expres­
sion fol' this fraction as a fun ction of tim e. D e­
noting this quan tity by Q, for T ?:, r , we h ave 

Q= l - ((3c r)- 1 [exp «(3cr) - l ] cxp (- {jcT). (7-5) 

Figure 6 displays eurves of loge (1- Q) as a function of 
T for r = 12 J..(sec. The circled points were calcu­
lated from Trexler's plot of experimental results. 
It would appear that the best fit to the radar data is 
obtained by using the r atio 1/2.J(i]3= 1/17 .5, a value 
sligh tly lower than indicated in (7- 2). Th e the­
oretica,} curve corresponding to 1/2.J(i]3= 1/15 is 
shown. [01' comparison. 

A ch eck of the param eters (To and n is not r eadily 
available since only one or two lunar radar equip­
ments have sufficient sensitivi ty to detect the low 
level d ecay associated with the tail of the echo. 
However, Pettengill [1960] has also reported the 
results or experiments with the Millstone Radar in 
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which 500 J..(sec pulses were used . That portion of 
the experimental results cOlTesponding to the diffuse 
component is illustrated in figure 7 together with 
the theoretical curve corresponding to (1/2.ya(3, (To, 
n) =(1/12 , 0.3, 2). Again the parameters fall wi thin 
the ranges indicated by (7- 2) and overall agreement 
is quite good. Compari on with portions of t he 
experimental curve corresponding to times less than 
1 msec is no t possible because the sampling interval 
employed in the experiment (500 J..(sec) is so great as 
to ob cure the details of the rise and decay of the 
echo in this r egion. 
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