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It is proposed in this paper that the total lunar echo at any instant of time is comprised
of two components, which are the result of scattering from two general types of terrain fea-

tures.

cross section of the moon is also calculated.

On the basis of this model, the average theoretical backscattered power flux at the
receiver is derived as a function of time for the case of short pulse transmission.

The radar
Several comparisons are made between the

theory and experimental results obtained with a variety of equipment parameters.

1. Introduction

More than a quarter century ago experimenters
initiated efforts to establish radar contact with the
moon. It was not until 1946 that radar equipment
had been improved to the point where positive re-
sults were obtainable. Since that time the problem
of radar reflections from the moon has been subject
to extensive investigation by several experimental
groups and theoretical workers both here and
abroad.

Among the first theoreticians to report their find-
ings in this general area were Grieg, Metzger, and
Waer [1948].  Although only continuous wave trans-
mission was considered, the total transmission loss
over the earth-moon-earth path was derived for both
the smooth and the perfectly diffuse lunar surface
models.

During the past few years several experimental
groups have looked for moon echoes using pulse
transmission at a variety of frequencies. Among
these investigations are those reported by Trexler
[1958], Yaplee et al. [1958], Hughes [1960], Leada-
brand et al. [1960], and Pettengill [1960, 1961].
Adaptations of neither the smooth nor the diffuse
moon models could account for the shape of the
returns using short transmitted pulses. This dis-
parity is clearly illustrated in figure 1 which presents
experimental results obtained by Pettengill [1961]
at a frequency of 440 Me/s using a transmitted pulse
duration (r) of 100 wsec. If the moon scattered
adiation like a smooth sphere then the echo would
consist almost entirely of a pulse return with a dura-
tion of the order of 100 usec. In the other extreme, if
the lunar surface were a completely diffuse reflector
at radar wavelengths then the initial rapid rise of the
return would be followed by a much slower decay
than is actually observed. Theoreticians were
thereby stimulated to begin their studies of the lunar
reflection problem anew.

1 This work was supported in part by the Applied Research Laboratory,
Sylvania Electronic Systems, Waltham, Mass.

Senior and Siegel [1959] first proposed what might
be termed a ‘“phenomenological’” theory in which it
was sugeested that the lunar echo consisted of a
small number (4 or 5) of individual returns, each of
which was associated with a single reflecting area.
However, other workers (e.g., Hughes [1960]) felt
that experimental data obtained with very short
pulses failed to support this view. In response to
such eriticism, Senior and Siegel [1960] later increased
their estimate of the number of scattering areas to 25
or 30, all of which were located within a depth of
about 50 km from the subterrestrial point of the
moon. However, a revision of this nature fails to
resolve two rather serious objections. First, the
theory as it is formulated does not provide a func-
tional formalism which permits quantitative compar-
ison with experimental results obtained using a
variety of pulse lengths. Secondly, on the basis of
our current knowledge of the moon’s surface, it seems
quite unlikely that a number of large relatively
smooth “spherical surfaces’ are concentrated only in
the immediate vicinity of the subterrestrial point,
while the remainder of the scattering regions over the
lunar surface are “craterlike.”” In any event, the
theory of Senior and Siegel has not received wide
acceptance and most recent work has used a statis-
tical approach.

The basic premise of the statistical theories is that
at any instant of time the amplitude of the lunar echo
represents the net effect of scattering from a large
number of comparatively extensive reflecting areas
randomly oriented and distributed over the surface.
Several workers have reported theoretical results in
this area, notably Hargreaves [1959], Daniels [1960a,
1960b], Brown [1960], and Hagfors [1961]. These
theories need not be reviewed here since a brief
summary of each is available in a recent survey paper
by Evans [1961].

Section 2 of this paper is devoted to a discussion of
lunar seattering mechanisms in which it is proposed
that the total echo at any instant of time is the result
of reflection from two general types of terrain
features. One of these is deseribed by a statistical
model which is discussed in some detail in section 3.
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The radar cross section of the moon is calculated in
section 4. Sections 5 and 6 are devoted to deriva-
tions of the temporal distribution of lunar echo power
in the case of short pulse transmission. Finally,
several comparisons between theory and experiment
are given in section 7.

2. Discussion of Scattering Mechanisms

The experimentally obtained echo amplitude dis-
tribution appearing in figure 1 leads one to suspect
that perhaps more than a single scattering mechanism
is responsible for the observed decay. Clearly, the
initial part of the return is suggestive of a specular
type of scattering process rather than a diffuse type.
On the other hand, the subsequent portion of the echo
reveals just the opposite characteristic. Thus, it
seems appropriate to regard the total signal at each
instant of time as the combined effect of two scatter-
ing components of different types which, for con-
venience, will be referred to hereafter as the “quasi-
specular’” and the “diffuse” components, respectively.

The quasi-specular return differs from that which
would be observed from a smooth moon in that there
exists an extended period of signal decay at times
greater than the original pulse length. As pointed
out by Evans [1961], the results of experiments using
different pulse lengths suggest that during this period
of decay the echo amplitude represents the net effect
of reflection from a large number of randomly
distributed scattering areas. This observation leads
quite naturally to the so-called “‘statistical” model
for quasi-specular scattering from the lunar surface.
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Ficure 1.

According to this model, the moon is characterized
by random irregularities in surface height . Further-
more, these irregularities are presumed to be large
in the sense that their characteristic dimensions are
somewhat greater than a few meters and that other-
wise the surface is smooth, with the result that in-
coming radiation is scattered locally in a specular
fashion. From the mathematical point of view, it
is supposed that A can be treated as a continuous
random function of position on the lunar surface and
that the statistics of the function A are known, apart
from characteristic parameters which are to be
determined from experiment.

The experimentally obtained echo decay rate is
determined as an average over a large number of
returns. Since the rough lunar surface presents
a slightly different aspect from one pulse to the
next as a result of lunar libration, one might think
of each experimentally obtained return (or set of
returns, depending upon the prf) as representing
the echo obtained from a member of an ensemble
of moons characterized by different surface height
functions h. In an analogous fashion, the average
amplitude distribution of the return predicted on
the basis of the statistical model is determined by
obtaining an ensemble average of the expression for
returned power. The average echo distribution
will resemble specular reflection much more than
diffuse reflection so long as the deviation of the
actual surface from the mean is not large and the
average surface height-to-separation ratio character-
istic of the irregularities is fairly small. On the
other hand, it seems quite unlikely that such a
scattering mechanism could explain the slow, low-
level portion of the decay which follows the initial
rapid amplitude decrease.

Although the statistical model embodies those
physical characteristics of the surface which play a
dominant role in backscattering near normal inci-
dence, it is incomplete in the sense that it does not
include the existence of small irregular surface
features, such as rocks and jagged facets, which
will tend to scatter radiation more isotropically.
These latter irregularities will contribute relatively
little to the amplitude of the signal scattered from
the vicinity of the subterrestrial point of the lunar
surface. On the other hand, in the case of a short
transmitted pulse the echo amplitude at times
considerably greater than the pulse length is due
to returns from portions of the moon’s surface
closer to the limb. In this region reflections from
small, less directive scattering facets will assume
greater importance than quasi-specular reflection
from the slow undulatory component of surface
roughness. Therefore, it 1s natural to expect that
scattering from these smaller irregular facets will
account for the slow decay of echo amplitude which
follows the rapid decrease from the peak of the
return due to quasi-specular reflection.

In view of the fact that the quasi-specular and
diffuse reflection mechanisms operate essentially
independently of each other, the total lunar echo
power at each instant of time can be considered to
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be the sum of the scattered powers associated with
the individual components. Consequently, the
power amplitude due to these different scattering
mechanisms can be derived independently and the
results can subsequently be added to give the com-
posite lunar echo. Since the maximum response
from diffuse scattering is 15 to 20 db below that due
to quasi-specular reflection, it is apparent that only
the latter component need be considered in estimat-
ing the total return in the case of continuous wave
transmission.

3. Statistical Model of the Lunar Surface

The center of the moon is taken to be coincident
with the origin of a Cartesian coordinate system as
illustrated in figure 2. The transmitter-receiver is
located on the p()sm\(‘ ry-axis at a distance /2 from
the origin.

The surface of the moon is treated as though it
were randomly rough. Thus, if the mean surface
is assumed to be a sphere of radius @, then the local
radius 7 at any point X= (x;,x,,x;) on the true surface
an be expressed as r=a-+h, where the local surface
height 4 1s a random function of position. In ex-
pressions involving the surface configuration it is
often convenient m ('m])l()\' spherical (()()l(lm.ll(\@, SO
that the locus of the point x can be represented by
the parametric system

x=7 sin 0 cos ¢
Iy=7 sIn f sin ¢
I3=171 CcOos 0

(3-1)

with r=a-+h(6,9). The local normal vector at x
can be calculated from the expression

n— lJlel +e +J‘83]/[Jf+J:i’+']—;];
m 1), /Ox .4 2.9
2008/ |00"<00/ L

where J;(i=1,2,3) are the Jacobians of the system
(3-1). The e; are unit vectors in the three mutually
orthogonal directions. The local surface area ele-
ment dA is given by
dA=[Ji+J5+J3] dode. (3-3)
[t is consistent with the hypothesis of locally spec-
ular scattering to assume that those surface rough-
nesses which determine the properties of the quasi-
specular component are characterized by dimensions
which are greater than several radar wavelengths.
In the .qum-l we shall denote by ¢ the standard
deviation of the local surface height, and 6 will
denote the great circle distance separating two
points on the mean lunar surface beyond which local
surface heights are virtually uncorrelated.> In
view of the fact that as a radar reflector the near

2 The quantity é is usually referred to as the ‘‘correlation radius.”
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Fregure 2. Geomelry of the lunar scattering problem.

surface of the moon appears to be much more smoot h
than rough, it is anticipated that the value of o/
will be at least an order of magnitude less than unll\
This remark follows from the observation that a/6 18,
in a sense, a measure of the rms surface height-to-
separation ratio. Effects such as shadowing and
multiple reflections will therefore be of secondary
importance near the subterrestrial point of the moon
and need not be considered here.

An analysis based on a statistical model of the
present sort becomes prohibitively complicated
when an attempt is made to take into account
explicity thc possible electromagnetic properties
of the moon’s crust.  On the other hand, the statisti-
cal model proposed here implies a gently undulatory
lunar surface, which is smooth over distances of a
few radar wavelengths and which scatters radiation
specularly in a local sense. This suggests that any
given region of the moon’s surface must contain
areas which are favorably oriented to produce re-
turns if it is to be at all effective in contributing
to the back scattered power. This leads to the
assumption that the relative importance of any given
region in contributing to the returned echo will be
more strongly dependent upon the local geometry

than upon the electromagnetic parameters of the
surface material. In order to determine the in-

fluence of local geometry upon the observed echo
it has become standard practice in discussions of
lunar scattering to assume that the far zone scattered
fields can be calculated by taking the total fields at
the lunar surface to be the same as though the
interior were a perfect dielectric with e¢,=». The
scattered power level in the far zone is later adjusted
by a multiplicative correction factor which is usually
referred to as an effective power reflection coef-
ficient. The value of this coefficient is determined
by calculating the fractional power scattered by a
semi-infinite dielectric slab with an effective relative
permittivity e, exposed to a normally incident plane
wave. Since the surface areas providing the greatest
contribution to the quasi-specular scutmmg com-
ponent are those which are perpendicular to the
direction of propagation of the incident field, this
procedure is a good approximation.

Since a dielectric with ;= is indistinguishable
from a perfect conductor the possibility of internal
reflections is implicitly eliminated from considera-
tion. This is consistent with reality since the lunar
radius @ is so much greater than the skin depth of
rocky material at radar wavelengths.
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The section which follows is devoted to the devel-
opment of an approximate expression for the radar
cross section of the moon on the basis of the scat-
tering model just described.

4. Radar Cross Section of the Moon

At the conclusion of section 2 it was remarked
that the total radar cross section of the moon may
be calculated with a fair degree of accuracy by
assuming that only the quasi-specular component
contributes significantly to the backscattered power.
This calculation will be performed using the statis-
tical model for the lunar surface.

In the case of continuous wave transmission we
may represent the incident magnetic field as a plane
wave propagating in the negative z;-direction with a
time dependence of the form exp (—iwt):

H,=eH; exp [—i(kastwt)]. (4-1)
The scattered magnetic field can then be calculated
from the integral of Stratton and Chu:

:4% L [—iweo(nXE)G—vG
X (X H)+(n - H)vG]dA. (4-2)

In this expression, G is the standard Green’s function
for the three dimensional Helmholtz equation and
the electromagnetic vectors in the integrand are the
total fields at the surface of the moon. The vector
n is the outward local normal to the true surface at
the point (6,¢). Since reflections from the portion
of the moon’s surface in the shadow region are
neglected, the surface A of integration may be taken
to be the illuminated hemisphere.

The several assumptions outlined in the previous
section permit the use of the so-called ‘“tangent plane
approximation.” This, together with the idealized
electric properties of the surface material, provides us
with simple relations for the fields at the surface:

H=2H,—2(H;n)n (4-3)
and

nxE=0. (4-4)

Following the substitution of (4-3) and (4-4) into
the integrand of (4-2) and the specialization of the

result to the far zone, the scattered magnetic field
can then be written in the form

[2 R] H, esp (iR

——wt)}fA exp (—12kwxy) Judbdg. (4-5)

H——

The far zone scattered electric field can be written as

Es: - §Oe2H8y (4—6)

where ¢ is the characteristic impedance of free space.

The quantity of particular interest is the expected
value of the z;-component of the Poynting vector S
at the position of the observer. In the case of fields
varying harmonically in time, it is customary to sup-
press the rapid fluctuations of S by calculating a local
time-averaged value. This operation is certainly
meaningful for continuous wave transmission when
the surface of the scatter is characterized by irregu-
larities considerably greater than a wavelength in
dimension. Thus the quantity to be derived is the
expected value of

S:% Re E, <H* (4-7)

Under the present set of assumptions the Poynting
vector at the receiver is directed along the z;-axis so
that no confusion will arise if 'S’Ig is written simply as
S.

Equations (4-5) and (4-6) can be combined with
(4-7) to give an expression for S in terms of the
random surface height h. The expectation or
stochastic average of the power flux is obtained

through multiplication of S by an appropriate joint
probability density function p(hyhs) followed by
mtegration over all A; and fhy,. This general method
was first presented by Isakovich [1952] and later
placed on a more rigorous basis by Hoffman [1955],
both of whom treated reflections from a rough
conducting plane. After an application of Fubini’s
Theorem this procedure in the present case leads to
the relation 3

= o
@ 2
&{S} l: H][ZTR

Re [f f exp [—i2ka(cos §;—cos 6)]
Al AZ

& {exp [—i2k(hy cos 6,—h, cos 6,)]

Jme}doldozd@d@]. (4-8)

In order to evaluate this last expression, a number of
simplifications must be introduced.

The quantity .J; is easily calculated from system
(3-1), with the result

Js— G2SINNG l:cos 0—{—% %g sin 0]. (4-9)

First we observe that /i is generally expected to be
an extremely small quantity compared with a, so
that little error is incurred if 7* in the first factor is
set equal to @®>. The second term inside the paren-
theses is nothing more than the product of sin 6 and
the local surface slope in the #-direction. Current
estimates of the rms value of lunar surface slopes

3 Expectations are denoted by ()(( } toavoid confusion withthesymbol E which
is reserved for the electric field.
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place this ficure at about 10° or less. Lunar radar
data obtained by using very short pulses (see fig. 1)
indicate that nearly all of the power returned by the
lunar hemisphere 1s scattered from a region in the
vicinity of the subterrestrial point. It would appear
that if the estimates of the lunar slopes are reasonably
accurate, the second term in parentheses in (4-9)
does not assume importance compared with the first
except in those regions of the surface which con-
tribute negligibly to the total radar return. This
term will henceforth be omitted.

As a result of the simplifications just outlined, J;
no longer involves the random variable 4 so that .J3
and /3 may be removed from the braces. The ex-
pectation which remains is simply the characteristic
function appropriate to the joint probability density
p(hyhy). I we assume this latter function to be the
standard Gaussian bivariate distribution with vari-
ance o and correlation function p, then (4-8) can be
expressed in the form

S [{_OHjH:) I] R(‘I:J J exp [—i2ka(cos 6,

—c0s 0,)] - exp [—2k*s*(cos 6,
— 08 05)%] exp [—4k?a* cos 0; cos 0, (1—p)]

- ¢0s 0, cos 0, sin A, sin 6, (1011162([¢1(/¢2:|. (4-10)

We first observe that the third exponential factor
in the integrand of (4-10) is a rapidly varying func-
tion when p is near unity. This suggests that we
replace p by the first few terms of an appropriate
series expansion. The correlation function p is near
unity only when the points (6;,¢,) and (6,,¢,) on the
mean surface are close to one another. Therefore,
throughout that portion of the coordinates domain
where the series expansion is no longer valid, the
harmonic factor oscillates very rapidly in general,
and tends to cancel out residual errors introduced by
the expansion.

The functional form of p is somewhat arbitrary,
but in view of the fact that the mean surface is a
sphere, 1t 1s natural to assume it to be a function of
X/2, where X is the angle between the lines joining
points (61,¢,) and (6:,¢,) with the center of the sphere.
A large class of correlation functions, for example, is
represented by the relation

p=np(sin X/2). (4-11)
If we exclude the possibility of a discontinuity in
slope at x=0, we can expand p in powers of sin X/2
to obtain

p=1—1 0" (0)sin? x/2+. .

zl—i [p"(0)|[1—cos 6, cos 6,

¢)]+..., (4-12)

—sin 6, sin 0, cos (¢—

where the prime indicates differentiation with respect
to sin x/2.

It is now expedient to take further advantage of
the fact that nearly all the power is scattered from
the vicinity of the specular reflection point. If we
put z;=sin 6, in (4-10) then most of the radar signal
1s returned from the region of small ;. Jllllb we
shall set cos 01&1——.1 x; throughout the integrand
and drop terms which are of an order higher than
where appropriate. Further simplific ation results

- 1 | .
from the fact that 5p”(0)f is equal to the product of
&l |

(2a*/¢*) and the mean square value of the local sur-
face slope and is much greater than unity except for
completely negligible slop(‘b (It may be noted that
in the case of a Gaussian correlation function this
product is equal approximately to 4a%/6°>.) Thus we
may neglect the terms £%:%2 as compared with

262 |p” " (0)| 23, (1=1,2). With N>=k%?|p’’ (0)| and »

l\D’b—‘

=2ka, the expectation of S takes the form

(O 0 k y
“ _n=[5) 11} ,,a,] Re{L(K)}s (4-13)

where

1 1 2r (27
w11
0 0 0 0
exp I:i K)(rl—l)] exp [—z\; (.I'f+.l'§):|

- exp [N2ryr, cos (¢—an) | dridaidgde,. (4-14)

1 . 9 ] . 9
If we now put w=-—_(v—N) and py=;(w+N),

then the result of integration over the azimuthal
angles in (4-14) can be written as

1 1
L(k)zél‘lrzf f exp [— (uiai+poxd) | Io(N2yx) daidas
0 0
(4-15)

where 7, is the zero order modified Bessel function
of the first kind. Since N is a number very much
greater than unity, the Bessel function can be ex-
panded asymptotically for z; of the order of unity
and greater to show that little error is incurred if
the upper limits of integration in (4-15) are set equal
to infinity. If Z; is then replaced by its series ex-
pansion and the summation is removed from the
integral signs, then the integrations are easily per-
formed to give as a result

Li=27 (4-16)

K1k m=0 [4#1112] kla
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Thus, in the present approximation the expected
)
power flux at the receiver is independent of the pre-

cise form of [p’’(0)]. 'The expected value of S is
given by

e[ [2T
£{S) _[2 IL-] [21],]

When (4-17) is multiplied by an effective reflection
coefficient «, standard radar formulas can be used
to show that the effective radar cross section of
the moon in the present approximation is

(4-17)

g =ama’. (4-18)
This is exactly the same result obtained by Grieg,
Metzger, and Waer [1948] for a smooth moon; it
differs from the result for a perfectly diffuse moon by
a factor of 8/3. The difference between the theory
just outlined and the smooth moon model is, of
course, that the power in each case is scattered from
different regions of the surface as we shall see in the
next section.

In order to obtain a quantitative comparison of
the results just derived with experimental data, it is
necessary to assign a reasonable value to the power
reflection coefficient «. If it is assumed that the
lunar surface is composed of material with an
effective relative permittivity e, then the coefficient
a can be estimated by calculating the fractional
power scattered by a semi-infinite dielectric slab
exposed to a normally incident plane wave:

'\"Jer_l

Ve +1

(4-19)

the calculation an estimate
relative permittivity of the

In order to complete
must be made of the
lunar surface.

The composition of the lunar crust has been the
subject of considerable speculation for a great many
years. On the basis of many studies at infrared
wavelengths the surface appears to be composed of
a granular rocky substratum lying beneath a very
thin layer of dust. Thus it appears reasonable to
conclude that for our purposes the lunar surface is
composed of dust-like granular rock.

Of course, little is known about the precise types
of rocky substances to be found in the lunar crust. On
the other hand, many well-considered ‘guesses”
have been made in order to provide estimates of the
physical constants of the lunar surface. A typical
value of the various relative permittivities ot such
substances 1s close to 8. Taking this to be a repre-
sentative value for lunar surface substances in the
solid state, an estimate can be made of the effective
permittivity of the material in a dust-like or granular
state using formulas such as those developed by
DelLoor [1958].

It can thus be shown that the effective relative
permittivity of an aggregate of closely packed spheri-
:al granules of rock, in vacuo, whose relative per-
mittivity ¢ in the solid state is 8, is equal roughly to

4. Substituting this value into (4-19), the theoreti-
cal radar cross section of the moon is approximately

o,=0.11 ma®. (4-20)
Ample data exist to check this result against experi-
mental findings. Senior and Siegel [1959], for ex-
ample, present a table of several measured values of
os/ma* over a considerable frequency range. In a
recent summary paper on the problem of lunar radar
reflections Evans [1961] contributes further values at
higher frequencies. As pointed out by Evans, the
radar cross section of the moon shows no systematic
variation with wavelength over the interval 3 m to

3 cm and the average value obtained experimentally
is

a,=(0.081£0.005)ra* (4-21)

which agrees well with the result in (4-20).

5. Pulse Transmission: The Quasi-Specular
Component

Lunar radar reflection experiments in which short
pulses were transmitted provided somewhat more
nsight into the nature of the moon as a scatterer
of electromagnetic radiation than could be gained
from continuous wave transmission. In the case of
very short transmitted pulses the temporal distribu-
tion of echo power can be interpreted as a measure
of effectiveness of various parts of the moon’s surface
in scattering radiation back to the Earth. As
already mentioned, the average power received at
any instant can be thought of as the sum of the quasi-
specular and the diffuse components. The quasi-
specular component dominates that part of the
return which originates in the vicinity of the sub-
terrestrial point on the moon. The discussion which
follows is devoted to the derivation of expressions
for power received from quasi-specular scattering as
a function of time. The scattering model is the
same as that described in section 3.

In the case of transmission of a rectangular pulse
of duration 7 the incident magnetic field can be
expressed in the form

Hi=e H, exp [—i(kxs+wt)]|[U(ct+a5)—U (ct—ecr+a3) |

)

—=e, /] LJQQ exp [i (et +x3) ky] [1

—exp [—1(k+k)er]] [ﬁ](ﬁcl, (5-1)

where U denotes the Heaviside step function. It
should be remarked that the path of integration in
the second expression passes below the pole on the
real axis. If H;(k) denotes the incident wave in
the case of continuous wave transmission, apart
from the time factor exp (—iwt), then an alternative
expression to (5-1) is
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s ) )
H’=2»7;; J_w exp (iket)[1—exp [—i (k,
1

FRyerl M (=) | 2 [k 5-2)

Thus if Hy(k) denotes the scattered field (4-5) with-
out the factor exp (—iwt), then the scattered magnetic
field in the case of pulse transmission is just

N Y . L
H =5 J_w exp (itkct) [1—exp [—2 (k,

B er]| H, (—k) [T}Hc}zkl_ (5-3)

Asin the previous analysis, the scattered electric field
can be obtained from the relation

Es=—¢.e. . (5-4)
These expressions will be used subsequently to cal-
culate the expected value of received power as a
function of time.

Once again, the quantity of interest is the expected
value of the z;-component of the Poynting vector S
at the position of the observer. In the case of
continuous wave transmission, the rapid fluctuations
of S were suppressed by calculating a local time-
averaged value. In the case of pulse reflection, the
same time average must be interpreted as a local
“adiabatic” average in which the time dependent
coefficients of the harmonic factors are regarded as
slowly varying over several periods of the carrier
wave. In the case of gross roughness, this is a good
approximation except possibly in a few very narrow
intervals in the time domain (such as the expected
position of the leading edge of the return). Since
experimental data are uncertain in these regions, the
precise time average at these points deserves no
special consideration. Thus for pulse transmission
the quantity to be derived is the stochastic average
of

= 1 .

b=§ Re Es > H**. (5-5)
Just as in the case of CW transmission the present
set of assumptions leads to a Poynting vector in the

re-direction at the receiver so that S,, will again be
written simply as S.

It is convenient to shift the origin of time so that
the “average” leading edge of the scattered pulse
arrives at time 7=0; i.e., put ¢t=c¢T+ R—2a in
(5-3) and (5—4). Some degree of brevity is achieved
by setting

Flke)=[1—exp [—i (ei+8)er]] [Ei k] . (5-6)

Here, 7 is the duration of the transmitted pulse and
= 2 p 2 nm 4
k; is a transform variable. The expected value of

S can then be written i the form

#(5)={ 4 m] G e I f " f"z

- exp 4 (el —2a)ky—i(cT—2a)ks) - F(k)) F*(ky)
- exp [12/,a cos 6,—12ksa cos 65
- & {exp [12kih, cos 0,—12kshs cos 0,

J31J32}d01(102d¢1(i¢2dk1(llc2:|- (5-7)

It is important to note that the path of integration
in the second transform (involving k,) passes over
the pole on the real axis since we have taken the
complex conjugate of the expression for H.

In the remainder of the discussion we shall confine
our attention to pulses of very short duration
(1< << 2afe) and to comparatively small values of
time 7. With these restrictions, the same kind of
approximations used in the CW analysis will apply
to the present situation. For example, when 7" is
very small compared with 2a/e, that portion of the
lunar hemisphere contributing to the scattered
power is characterized by small z,=sin 6, More-
over, the receiver bandwidths employed in lunar
scattering experiments are such that only those
frequencies within a few tens of megacycles of the car-
rier frequency are of significance from the equipment
standpoint. Although the variation of &; and k. in
the transforms corresponds to all frequencies, in so
far as the geometric approximations are concerned,
products such as kkj;o® can be treated as being of
the order of k%¢*. Hence, apart from a few obvious
modifications, the simplification of the integrand in
(5-7) proceeds in the same fashion as before, giving
as a result

”W?l- _g-(][[2 _,,_af._ 2]{. - - e [,',yv/{.
GAR =g i Sl ¢ . _m(,xp 1ed ky

—1¢Ths) exp [—20°% (k;—k2)?]

 F (k) e I (kl,lcg)(lkl(/k;,]y (5-8)

where

1 1 2T (27 ] . ) )
L(kl,k2)=£ L ﬁ JO exp [:—-5 ('1u1+>\~’)x;]

- exp [% (ivy— )\Z)xg]

- exp [Ny cos (p— o) | datdazdpdps.  (5-9)
In this last expression, N=#kk.0*|p’’(0)|, ri=2ka,
and v,=—2k.a.

The integration in (5-9) is performed in much the
same manner as that in (4-14). The result can be
expressed in the form

2 1 =il
L(khkz):i(‘%'ﬂ;—? [] +’1/ B (kl-‘kQ)] ) (5'—10)

where g=2a/|p’’(0)|a*. )
The calculation of the resulting transforms in
(5-8) is somewhat tedious and will not be reproduced
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here. The final expression for the expectation of S,
under current restrictions, can be conveniently
written as

@ -[5m][] s

JJ(eT)— J(CT—CT)]] (5-11)
where
J (1) =exp (—28%2)[1+erf (u/2+20)]
—exp (—Bu)[1+ert (u/2\§a—\§[3a>]. (5-12)

Although (5-11) is a relatively uncomplicated
relation and well suited to rapid calculations by an
electronic digital computer, more insight into the

gross functional dependence of &S} on time is pro-
vided by further simplification. We first observe
that the product Bo is a number very much less than
unity (except for completely negligible lunar surface
slopes). Furthermore, on the basis of several cal-
culations described elsewhere [Winter, 1961], it has
been shown that the principal role of the error
functions appearing in (5-12) is to smooth out dis-
continuities in slope which would otherwise appear
if ¢ were allowed to approach 0+ in their arguments.*
Therefore, replacing o by zero and noting that

lim 77[1+91f(u/2\ 20) |=U (u),

a0+ 2

(5-13)

it can be shown that an approximate relation for the
expected value of S'is

@[ Q\ - g-() g a?
5= 5] on]
0

; I<0
1—exp (—BeT) ;o 0<T<r
[exp (Ber)—1] exp (—BeT); 7<<T<<2ale.

(5-14)

Thus for values of 7 greater than the pulse duration
the decay of echo power is approximately exponential,
with a “time constant” equal to 1/ge.

6. Pulse Transmission: The Diffuse
Component

The quasi-specular component of the lunar echo
is due to scattering from that portion of the lunar
terrain which appears to be locally smooth and
whose irregularities are large compared with a wave-
length. In the case of short pulse transmission this
component will decrease in importance very rapidly
as the “illuminated zone’” moves back toward the
limb from the subterrestrial point. At the same
time scattering from smaller, rougher surface features

4(’l‘his is equivalent to letting e—0+ in the factor exp [—202(k1—k2)?] appearing
in (5-8).

(such as rocks and jagged facets) will increase in
relative importance since these facets will tend to
scatter radiation in a more isotropic fashion. Since
the detailed structure of such features is not known,
a semiempirical approach must be employed.

We begin by assuming that echo power associated
with the diffuse component is due to scattering from
a great number of small scatterers which are ran-
domly distributed over the surface of the moon.
Suppose that the jth scatterer at (6;,¢;) is situated
within the small area element AA;. The average
total power incident upon AA; is approximately

Puce G170 ) cos 004, 1)

where R; is the range from the transmitter-receiver
to the scatterer and the factor f(R;) is such that if
gleT— (R;+a—R)] is the instantaneous distribution
Of transmitted power in range, then

J(R)

Thus for a rectangular pulse of duration 7 arriving
at the subterrestrial point on the moon at time
T=0, the factor g takes the form

gleT— (R;+a—R)|=UleT— (R ;+a—R)]
—UleT—er— (R ;+a—R)).

:g[cT—Q(Rj+a—[f)]~ (6-2)

(6--3)

Let 7.(60;,¢;) denote the radar cross section per unit
area of the jth scatterer. The power flux at the
receiver due to scattering from this facet is then

I_P L
b]:Pinc [m]0k<0j,d)j) sec (9]. (6—4)

Since it has been assumed that the scatterers are
distributed over the lunar surface in a random
fashion, the relative phases of waves reflected from
them will be randomly distributed and uncorrelated
and the power flux at the receiver at any instant of
time is simply the sum of the individual contribu-
tions. Combining (6-1), (6-2), and (6-3) with (6-4)
the received power flux can be written as

5)1=| S| Wier—2@,+a—)
—UleT—cer—2(R ;+a—R)]}
: [ﬁ] 71059904, (6-5)

where N is the number of scatterers.

Since o (6,,¢,) is not known, it is convenient to
treat it as a random variable with a probability
density function p[o; (6,,¢,)]. The expected value of
S may then be defined as

= M _
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Equation (6-6) can be combined with (6-5) to give
an explicit expression for ¢ {S}. If we allow the
number of scatterers to a )[)10(1('11 infinity and let all
A7, to go to zero (thus forcing M to approach infinity)
the summations become integrations over 6, ¢, and o.
The range R;is then given by R—a cos 6. The factor
1 /47 R? may be mpld( ed by 1/4xR? and subsequently
be removed from the integral. With these modifica-

tions, the expectation of S takes the form

& '§]‘-i|:(“ ”"[/M/ ]f f”/zj

[U(eT—2a+-2a cos 6) —U (¢T—cr—2a+2a cos 6) ]
- (0,¢) plo (0,¢)] sin 0dodeds.  (6-7)

The integral over @ is nothing more than the mean
7,(0,¢) of the random variable 5(0,¢). Thus, in order
to complete the calculation some additional state-
ments must be made with regard to 7,(0,¢).

As was stated earlier, in the absence of any detailed
mformation concer nlng the structure of the less direc-
tive scattering facets, it is impossible to assign a pre-
cise functional form to @,(6,¢). On the other hand,
since the facets are presumably distributed over the
surface in a random fashion, there is no reason to
retain an azimuthal dependence explicitly. This de-
pendence could, in fact, be determined (in theory)
only if the coniiguration of the facets were specified
together with their orientation with respect to the
direction of the incident field vectors. 1In suppress-
ing the azimuthal dependence, the parameter 7,()
can be interpreted as the value of @,(6,¢) averaged
over the angle ¢.

The experimentally determined behavior of the
diffuse component (e.g., see iig. 1) suggests that ,(0)
may be represented in the form

ao(0)=0o(cos 0)", (6-8)
where 7 is of the order of magnitude of unity or more.
If the surface facets reradiated energy isotropically,
and shadowing were unimportant, then n would be
identically equal to umt\' On the other hand, we
shall see in section 7 that Pettengill’s experiments
suggest the net effect of backscattering from these
facets 1s more adequately described by Lambert’s
Law which implies that # is closer to two. It should
not be concluded from this, however, that the fea-
tures of the lunar surface producing the diffuse echo
(omponont scatter radiation in the same sense that a

“oray body” is diffuse at infrared wavelengths. In
LL('L, if further experimentation verifies this law, and
if the present model is correct, the diffuse component
may be interpreted as scattering from certain pre-
ferred types of configurations, such as spikes or other
sharply pointed facets. Although the following is
not particularly appropriate to the physical situation
at hand, Ament [1956] has shown, by way of example,
that Lambert’s Law is suggested 1 backscattering
from the coplanar ends of parallel but randomly situ-
ated semi-infinite thin wires.

625829—62——2

At any rate, when (6-8) is substituted into (6-7),

the scattered power flux associated with the diffuse
component can be written as
s fonlfal
; T<0
1~,:1-—(£ o ;o 0<T<r
(,T n+1

;<

l[l—“iﬂ"“—[l—ﬂ
(6-9)

over the time interval of interest here. The total
lunar echo power at any instant of time 7"is the sum
of (6-9) and the corresponding expression for &S}
associated with quasi-specular reflection.  The value
of ¢, 1s, of course, determined from experimental
data.

7. Comparison of Total Theoretical Signal
With Experiment

Although experimental attempts to obtain lunar
echoes using short pulse transmission have been in
progress throughout the past decade, detailed results
of such studies have appeared in the literature only
within three or four years of this writing. Inade-
quacies in existing equipment, coupled with large
transmission losses, still make it difficult to attach a
great amount of accuracy to any collection of lunar
radar observations. Therefore, it is not unadvisable
to regard the experimental results available at the
present time with some reservation. On the other
hand, a number of experiments, with various carrier
[requencies and pulse lengths, are sufficiently relia-
ble so that a satisfactory degree of accuracy may be
attributed to the measurements. Amongst these
data are those reported by Trexler [1958], Hughes
[1960], and Pettengill [1960, 1961]. Theoretical re-
sults derived in the present investigation are com-
pared with the aforementioned experimental results
and others in the discussion below.

Among the most accurate lunar radar data avail-
able are those of Pettengill [1961]. The equipment
elnploved in this experiment was the Millstone

Radar of Massachusetts Institute of Technology’s
Lincoln Laboratory. Using a transmitted carrier
frequency of 440 Me/s and a pulse length of 100
usec, Pettengill was able to obtain an average
temporal distribution of echo power throughout a

time interval corresponding to the total radar
“depth” of the moon (11.6 msec). Figure 1 pre-
sents the results as reported by Pettengill. The

precise behavior of the initial rise of the signal from
the vicinity of 7=0 is not well known so that only
the period of signal decay will be compared with
theory.

The task of fitting the theoretical results to the
experimental curve involves the solution of a three
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parameter problem since the total signal is given
by the sum of (5-14) and (6-9) which together
involve the constants 8, oo, and 7. Instead of
assigning values to the constant g we shall refer to

T =100 musec, o, =0.25

n=2 .

ECHO POWER,dbm
1
n
o
T

-25 F

THEORY \
————— EXPERIMENT \

-40 L | | L ] 1 1 ] I 1

TIME T, msec

Comparison between theory and experiment over
an entire echo.

Figure 3.

ECHO POWER , dbm
&
T

THEORY

== = EXPERIMENT:

S0 | L L L
[0} 0.05 0.10 0.15 0.20
TIME T, msec

0.25

Comparison of theoretical results with the initial
portion of the echo decay for a very short pulse.

Figure 4.

the combination 1/2+yaB8. From the definition of 8
and the remarks in section 4 with regard to the
relation between |p’” (0)| and the mean square lunar
surface slope, 1t can be seen that

U Te e P [ LT T
2\073“[%] [i’p (O)J] '_\2[" {l:a(lx] }]
(7-1)

In the special case of a Gaussian correlation
function, the various expressions in (7—1) are equal
simply to ¢/6 (for 6<<a).

On the basis of several calculations it was con-
cluded that the best overall agreement between the
theoretical curve and the experimental one is
achieved by using parameter values of the order of

1/15<1/2vaB <1/12
1/4<0y<1/3

3/2<n<2. (7-2)
The graph corresponding to the set (1/12, 0.25, 2) is
shown together with the experimental decay rate in
iigure 3.

Of course, comparison of the theory with a single
experiment is inconclusive. The general usefulness
of the present formulation will be demonstrated if it
can be shown that comparisons with other experi-

mental results lead to values for 1/2+apB, oy, and 7
which are close to those indicated in (7-2).

Recent work reported by Hughes [1960] provides
us with results of an experiment performed with
equipment parameters which are considerably dif-
ferent from those of the Millstone Radar. Using a
5 wsec pulse and a carrier frequency of 3000 Mec/s,
Hughes observed a lunar echo decay which seemed
to be fairly well represented by the function

S=S,exp (—1068,); 3°<6,<14° (7=3)
where 6,=arc cos (1—c7/2a). This expression is
plotted in figure 4. The theoretical result cor-
responding to the set of parameter values (1/2vag,
oo, n)=(1/15, 0.25, 2) appears to give a fairly good
overall fit to the data.

Inspection of figures 3 and 4 reveals a systematic
difference in slope between the theoretical and
experimental results even though the parameter
values fall within the ranges indicated in (7-2).
Similar disparity in slope was encountered by
Hagfors [1961] who assumed a Gaussian correlation
function to derive an ‘“‘apparent delay spectrum,”
which can be interpreted as a measure of the relative
effectiveness of various portions of the lunar surface
in returning a radar signal. Hagfors remarks that
the discrepancy in slope might be removed by a
different choice for the correlation function p.
Evans [1961] concurs with this view. Another
possible explanation is suggested by an inspection
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of lunar photographs or charts of lunar topography
which reveals that the subterrestrial point lies within
a comparatively smooth flat region which gradually
blends into somewhat rougher terrain around its
borders. Thus it may be that the effective rms
value of local lunar surface slope actually increases
slightly with increasing 6 in this general region. 1In
this event the predicted rate of decay of echo power
with time would slowly decrease with increasing 7'
as seems to be observed in practice.

Theories based on the statistical model of the
moon’s surface have been criticized in the past for
their inability to account for the so-called modulation
loss phenomenon. The term “modulation loss” re-
fers to the apparent decrease in the peak power of
the lunar echo as the transmitted pulse duration is
diminished. The present formulation, on the other
hand, provides an explicit expression for the modu-
lation loss for comparison with observed data. Al-
though the appropriate experimental results are
sparse and somewhat uncertain, the most reliable
are probably those communicated to Senior and
Siegel [1960] by Youmans. According to these data
the peak power returned from a 200 wpsec pulse is
about 1 db below the value for continuous wave
transmission. The corresponding value for a 30
psec pulse is 8.5 db, for a 10 psec pulse it is 17 db,
and for a 2 usec pulse the loss appears to be 2242
db. An approximate theoretical expression for the
modulation loss as a function of pulse length is
obtained from a combination of (4-17) and (5-14):

Loss=1—exp (—per). (7-4)
Figure 5 presents a plot of the modulation loss
predicted from (7-4) with 1/2vaB=1/12 together with
the experimental results desceribed above. The
agreement is seen to be quite satisfactory.

Another check of the foregoing results was per-
formed using the data obtained by Trexler [1958]
who employed a pulse length of 12 usec and a carrier
frequency of 198 Me/s.  Trexler presents a plot of
the fraction of total echo energy received at time 7.
With (5-14) it is a simple matter to obtain an expres-

sion for this fraction as a function of time. De-
noting this quantity by @, for 7> 7, we have
Q=1—(Ber) ' [exp (Ber)—1] exp (—BeT). (7-5)

Figure 6 displays curves of log, (1—@) as a function of
T for 7=12 psec. The circled points were calcu-
lated from Trexler’s plot of experimental results.
It would appear that the best fit to the radar data is
obtained by using the ratio 1/2yaf=1/17.5, a value
slightly lower than indicated in (7-2). The the-
oretical curve corresponding to 1/2yap=1/15 1is
shown for comparison.

A check of the parameters o, and 7 is not readily
available since only one or two lunar radar equip-
ments have sufficient sensitivity to detect the low
level decay associated with the tail of the echo.
However, Pettengill [1960] has also reported the
results of experiments with the Millstone Radar in
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Frcure 5. Comparison between theoretical and experimental

modulation loss.
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Fraure 6. Comparison between theoretical and observed

fraction of echo energy returned at time T

which 500 psec pulses were used. That portion of
the experimental results corresponding to the diffuse
component is illustrated in figure 7 together with
the theoretical curve corresponding to (1/2+/ag, oy,
n)=(1/12, 0.3, 2). Again the parameters fall within
the ranges indicated by (7-2) and overall agreement
is quite good. Comparison with portions of the
experimental curve corresponding to times less than
1 msec is not possible because the sampling interval
employed in the experiment (500 usec) is so great as
to obscure the details of the rise and decay of the
echo in this region.
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The author expresses his thanks to Prof. R. W. P.
King and to Drs. J. E. Storer and D. W. Tufts for
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