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In calculating ground losses for antennas with a ground-wire system, it is necessary to
know the vertical electric-field strength and the tangential magnetic-field strength at the

surface of the ground.

In this paper the vertical electric-field strength at the ground plane near the base of an
electrically short vertical antenna with a top loading in the shape of a circular disk is caleu-

lated.

1. Introduction

The losses in the ground around antennas with a
ground-wire system may be considered to consist of
two kinds of losses, the H-field losses and the FA-field
losses.

The FH-field losses arise from the horizontally
ground currents, which are numerically equal to the
tangential magnetic-field strength. /F/-field losses
have been treated, for example, by Abbott [1952]
and by Knudsen [1959].

The existence of the £-field losses was pointed out
by Wait [1958], who showed that transverse currents
proportional to the vertical electric-field strength
just above the ground gave rise to additional losses.

Usually in investigations of the losses around
antennas with a ground-wire system the ZF-field
losses are omitted because they are considered neg-
ligible as compared to the H-field losses. However,
as was pointed out by Wait [1958], this may not be
justified for monopole antennas with a top loading.
It might therefore be of interest to examine and com-
pare the two kinds of losses for a top-loaded antenna.

In order to make such an investigation of the
magnitude of the - and H-field losses 1t is necessary
to know the tangential magnetic and the vertical
electric-field strengths at the ground plane around
the antenna in consideration.

These field strengths have been calculated for an
electrically short vertical monopole with a top
loading consisting of one, two, or four horizontal
wires by Knudsen [1959] and by Knudsen and
Larsen [1960].

For the disk-loaded monopole, which has the
advantage over the wire-loaded antennas of rota-
tional symmetry, only the magnetic-field strength has
been calculated [Wait, 1959].

It is the purpose of this note to supplement the
above-mentioned calculations with a calculation of
the vertical electric-field strength at the ground

Numerical computations are carried out to some extent.

plane around an electrically small disk-loaded mono-
pole, so that the necessary material for an investi-
gation of the losses around top-loaded antennas of
the mentioned types is available.

2. Geometry and Current Distribution

The disk-loaded antenna is shown in figure 1. It
consists of a vertical wire of length A and a top load-
ing in the shape of a horizontal circular disk of
radius a.

We introduce a eylindrical coordinate system
(p,¢,z) with the z-axis pointing vertically down-
wards. The vertical wire extends from the point
z=h on the z-axis to the origin O which is also the
center of the top loading. The plane z=/Ah coincides
with the ground plane. Further, we introduce a
spherical coordinate system (r,0,¢) with the origin
O and the axis =0 pointing vertically downwards.
Finally we introduce the polar coordinates (r, ¢,) to
the variable point S on the disk.
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Frcure 1. Coordinate systems for menopole with disk-loading.
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We shall follow Wait [1959] in making the follow-
ing assumptions regarding the current distribution.

1. The current distribution on the disk is quad-
ratic, i.e., the surface current density

K=K(@)=K@)r,

A .
where 7, denotes a unit vector coparallel to the
vector OS] is given by

Kermr [ ~(2) ]

where [ is the current at O.
2. The current flowing in the vertical wire is
constant and equal to /.

3. Field of the Disk Loading

In this section we shall calculate the vertical
component £¢,_, of the electric field strength at
the ground plane due to the current flowing on the
disk loading.

So far, we do not take into consideration the influ-
ence of the ground plane. Using as time factor
e e’ we may express the Hertz vector at a point
P(p,0,2) due to the currents on the disk as

] o IkR K ;
4driwe, Jlmk RN

where k=2r/wavelength, ¢=8.854-10"* F/m, and
where R denotes the distance between S and P, i.e.,
between the current element Ads and the field point.

We now make the assumption that the greatest
dimension of the antenna system can be considered
small as compared to the wavelength.

For field points in the neighborhood of the disk
we then have ¢*#~1. Hence,

= —1
H—47riweo fj\k E de

From the sy mmetu it can be seen that the Hertz

vector at P TI= IL,p-+1,$-+11.2, where p,6,2 denote
unit vectors, has vanishing ¢— and z-components.
We then have

ﬁ:

=1l 1
= Triwe, fm R cos ¢; K(ry)ds
_I 2 a 1 7 2
=47r7:w2(, L S peos é: I:l—(i) :|r1 de, dry,
il
where

Y T S ST Yo
R=A+/r*+ri—2rr; cosv,

with cos y=cos 6 cos 6;--sin 6 sin 6, cos ¥;, where §;==-

[\')i’l

We now introduce the expansion

= n—m
*“Z Z ( _6771 ( )'PM(COS 0)Pm((OS 01)
=0 m=0 (n+m)!
r m
) T2Ty
,,n+1
COS Mo, 5
" , =T
Tn-H

where 65=1 if m=0 and 6%=0 if m >0, and where
Prrare associated Legendre polynomials.
We hereby obtain

_]0 Yor [a " © 0 (n )
I,= 47r2weoj j ,:1——< ) nZOmZ(2 ) ()] (n+m)!
G
7
7Tl1 r=r
P (cos 6) P7(0) cos me, cos ¢, 7, dydr,
7.ﬂ
. rn=r
7’;1*1 J =
ST
—47r’[w€0 n= On(n+1
,,,n
yntl =
PL (cos 6) dr, (1)
rﬂ
i nzr

The electric-field intensity Z’¢ may now be obtained
by

E'i=yy.TI+k1I.

Since the Hertz vector has vanishing ¢- and z-
components, the vertical component F.¢ of E'? is
given by
1 911,

E"d:_
£ p oz

o1,
0p0z

or, expressed in spherical coordinates,

fra_cot 8 cos® § OII, 2 cos®f OH sin 26 o°1I,
P r o 7 2 o
cos 26 DZH,, sin 26 0711,
+ rorof 2t 0fF 4

In the following calculations we shall treat sepa-
rately the two cases:

1. The field point P is situated outside a sphere of
radius @ and center O.

2. The field point P is situated inside a sphere of
radius @ and center 0.
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1.7=a n+2, the above expression may be rewritten
In this case we obtain from (1)
hy E@5" e
pa=_=0 "¢ ____ B2 __pro)p !
m,— f [ ~(2) |50 P eose) s i B = e 2 DT 3 O w00 (@
47rlweo n(71—|~]) n+1
We are interested only in the value of £.? at z=

n+41 P (0) _ P o . ]I/ m 2
P (cosb). (3) | Therefore, we insert in (4) 7=———- The influence
27rlweo =0 Ccos

nn+1)2(n+3) 0s 0
of the earth, which is assumed to be perfectly con-
Inserting (3) in (2) gives ducting, may now be taken into consideration by
adding to (K.9),_, the field (£.%)._, of the mirror
—1I, = @ PL(0) image. We hereby obtain

Eji—

2miwey SIn 0 5= r"t (n+1) (n+3)

E z — Ivd - Fvld o
[PLi(cos B)—cos 0 PLs(cos 6)]. ( = (E) et Jaui

X :2([£zld)z:h
Using the formula

](l n+1 7L+...
P 11(cos8) —cosO P} 1 5(cosf) = —sin 6(n+2) P, 4(cos), 7?120:0777, U(h) (n+1) (n+3)
where P,;, is the Legendre polynomial of order cos™ 3 9 PL(0)P, 2(cos 0)2 (r=a). (5)
2NR==0)

In this case we obtain from (1)

1, Qi;éonl(;fﬂ)]’;(mse){f W[ < >:|(1,,+f" Zﬂl:l——(%)z:l(lrl} (6)
47r_2£20§n53+01>) Pr(cos?) {( ) n(n——‘)) ( ) (nf?tj— 2) " an";ii) ’ @

The term n=2 in (6) vanishes as the two integrals
are finite, and P3(0)=0. The term n=0 in (6)
vanishes as the two integrals are finite, and

—0 as n—0.*

P(0)P,(cos )
[

n

Inserting (7) in (2) gives

Ei— 4_] (0t0n211”<0) ])’1‘((08())':_U%—|;(}L 2)(c05 0[2(1——271) -I~n(n+]) z+(1—n)(n—‘>)—i|
n# 2

+[2(n—1> 7‘”*?_2_% 2])]—{—1 1. 1(cos 6) l: (cos 0(2n+1)[ D) ;;2 ; n2 2+__:|

1 2 [7‘”"2 12n+1 PL,.(c 0[7‘”"2 2 __l 2n-+-1 1 2n+1:|
“cosOn—2[ a” E’n—{—‘&])]“— w+2(c0s) “a" n(n—2) (12(n+3)(7b——2) rn(nt1)

We are interested only in the value of FE.* at

z=h. 'Therefore, we insert in (8) r:—h—- The
cos 0

influence of the earth, which is assumed to be per-

fectly conducting, may now be taken into considera-
tion by adding to (K2, the field (E£.%),_, of the

*See appendix.
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mirror image. We hereby obtain

(Eg) z=h— (E;d) z=h+ (Ez”d) z=h

:2(E;d>z=h

L e PL(0) 2

_27”:(,060 h2 n=1 n(n+]) (n_z) I n(COS 0) )
n#F 2

2Ll
0

[(g)n cos™ "2 9 2[(1—2n) cos? §+n—1]

1

+<g>2 n[(n+1) cos? §—1]—cos? §(n—2)[(n—1) cos? 6+1]]+n+3 I:P}2 +1(cos 6) cols g I:(%)n

cos "2 0 (n+3)[2(2n+1) cos? 0—)1]—1—(%)2 2n(2n+1)[1— (n+3) cos? 6]-+cos* 6 2(2n+1) (n+3) (n— 2):|

—P% . ,(cos 6) l:(g)ncos“"“ 6 2(n+1) (n+3) —<g>2n(n+l) (2n+1)4cos? 0(n+3) (n—2) (2n+1):|:|}- i

r=a.
For r=a the above expression checks with (5).
4. Field of the Vertical Wire

The vertical component E%._, of the electric-
field strength at the ground plane in the neighborhood
of an electrically short vertical wire of length £
carrying a constant current 7, is given [Knudsen,
1960] by

_I() ]

P\ %
27riweopl:1+<}_t>:| '

5. Numerical Results

w —
E z(z=h)—

(10)

In order to make the field-strength expressions
dimensionless we define

WE(

— 21
ez(z:h)—T @ Ez(z=)z)-
0

(11)

Numerical computations of the normalized vertical
components e,.._; of the electric field at the ground
plane due to the currents on the disk and on the
vertical wire have been carried out in the following
cases:

1. The length of the vertical wire is twice the

radius of the disk, .., gzz.
2. The length of the vertical wire is equal to the
radius of the disk, i.e., (}—;:1.

In both cases 7=a. Hence, in the computation of
¢! .—n, formula (5) in connection with (11) apply.

9)

. h
The two above-mentioned values of , are the same
as those used by Wait [1959] in his computations.

In his paper Wait also gives curves for L;:O.G and

h
—=0.4.
a
the present investigation to include computations
in these cases, too. However, it turns out that for

Therefore, it might have been desirable in

h : .
these values of p r<afor some points on the ground,

so that in the computation of ¢%._, one should apply
formula (9), which, unfortunately, for the parameter
values in consideration, converges rather slowly.

So the cases %=0.6 andg 0.4 have been omitted.

In figure 2 curves showing the imaginary unit times
the vertical component of the normalized electric-
field strength as a function of the relative horizontal

distance © from the base of the vertical antenna are
a
plotted.

h . e
For ==2 there is a shift in sign for ¢ _, at 2~ 1.7,
a @
. h ’ e g
and for (;:1 there is a shift in sign for .., at

£2~1.0.
a
component of the electric-field strength at the ground
plane due to the current in a top loading consisting
of one, two, or four horizontal wires was found by
Knudsen and Larsen [1960].

Similar shifts in sign for the vertical
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Fraure 2. Vertical electric field strength at the ground plane around a disk-loaded monopole.
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6. Conclusion

Formulas have been derived for the vertical
electric-field strength at the ground plane near an
electrically small disk-loaded monopole, and nu-
merical computations have been carried out in the
cases of the height of the vertical member being
equal to the radius of the disk and the height of the
vertical member being twice the radius of the disk,
respectively.

In both cases the field strength due to the top
loading is of the same order of magnitude, but
smaller than the field strength due to the vertical
member for points of the ground plane situated just
below the disk, while for points at a greater distance
from the antenna base the field from the top loading
is negligible as compared to the field from the
vertical member. As could be expected, the ratio
between the numerical values of the field strength
due to the disk and the field strength due to the
vertical member is largest for the larger disk in the
whole area around the antennas.

7. Appendix

We shall examine the expression;—LP}Z(O)P;(COS ) as

n—0. Due to I.’Hospital’s rule we have

fi %P;(())P; (cos 6)

n—0

2 [PLO)P(cos )]

fo}

L n=0

_ > 0

[ O 5/ 1(n — JPi =
___Pn(o) anPn((os 8) +P}(cos 6) anPn(O):In:O—O’
since

Pl(cos) =0, and[%lP},,(cos 0)-] islimited [Tsu,1960].
—n=0

This investigation was carried out by means of a
support from the Air Force Cambridge Research
Center, U.S. Air Force.
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