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The usual idealized model for a cylindrical antenna consists of an extremely thin-walled

tube of infinite conductivity with an mhml(*\mmll) narrow circumferential gap.

one expects the antenna current at the feedpoint of such a model to be infinite.
the singularity in feedpoint current is not detected by either iterative or
equation for antenna current.
on |z| <h, where h is the half-length of the antenna.

solutions of the integral

each other and with experimental data.

that the con\t nlmn 1l solutions of the intezral equation are solutions on most,
Inside a small region, |z| <z, the correct solution to the Illl(‘"l.ll equa-
Low-order iterative and Fourier

of the range |z| <h.
tion is pe ('llll.ll to the idealized generator.

Physically,

However,
Fourier series
These solutions are continuous
They are also in good agreement with

From a formal point of view this amounts to saying

but not all,

series solutions

ignore these peculiarities and produce a smooth current distribution which can be used

in predicting the behavior of practical structures.

This paper is concerned with a de-

tailed study of the theoretical current near the feedpoint of the idealized model and the

development of a definition of z,.

1. Introduction

The current distribution, 7,(z), for a finite cylin-
drical antenna of length 24 and radius a is a solution
of

7] [ ('”)(I(’—’o)‘l%)*( cos kz +O)/J£ ‘-) ﬁjkf:])

(1)
where
) 1 +7 ,— kR
.(i (‘:_3(1):“27r f7 ( Il) B (/¢ (2)
and
R=[4a? sin? ¢/2+ (z—z,)?]}. (3)

Some writers approximate the kernel distance with
11)1:[“2'1’(5’_50)2]‘}- (4)

With the correct kernel distance the integral equation
corresponds exactly to a model consisting of a thin-
walled tube excited by a hypothetical generator of
voltage V' such that the electric field in a narrow gap

is given by
Vio(z). (5)

Idealization of the generator region leads to a
fundamental difficulty. A finite voltwo across an
infinitesimal gap implies that 7(2) is infinite a
However, it is possible to manage the solution 01 (1)
in such a w ay as to obtain a useful finite result. In
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1 This work was carried out under P.0. 14-3270 from Sandia Corporation.

the King-Middleton [King, 1956] and Hallén [1938]
theories the integral equation is solved by an iter-
ative process in which the starting approximation is
a continuous function. After only one or two
iterations the output function is still continuous.
It can then be argued that these solutions are valid
on |z| <k except for a small region |2/ <z, where they
differ markedly from the mathematically correct
solution. The continuous “solution” evaluated at
z=0 gives a finite admittance, Y, which is presumed
to be characteristic of the antenna viewed as a
circuit element. There is still the problem of
establishing  correspondence  with  experiment.
Measured antenna admittances depend on Y, and
the actual terminal zone structure and transmission
line used in the experiment. KExperimental pro-
cedures and theoretical corrections can be designed
to extricate Y, from the experimental data [King,
1956]. Combined theoretical and experimental ex-
perience have definitely established the utility of
approximating the correct solution of (1) by a
continuous function.

Tterative solutions of (1) become extremely tedious
beyond second or third order. Some of the integrals
arising in the theory are performed with the approxi-
mate kernel distance given by (4). This approxima-
tion is suspect for thick structures. These objections
are overcome in a theory developed by Duncan and
Hinchey [1960].  This theory provides a method for
obtaining the coefficients of a }‘01111(‘1 expansion of
the current distribution to any reasonable degree of
accuracy. The solution has bc('n carried to 25th
order. One interesting result is that no sign of poor
behavior of 7(z) near z=0 develops even at such high
order. One does not expect a Fourier series to show
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fine details in a region of width z; until the order of
solution is high enough for space frequencies of order
z:' to appear. The fundamental period in finite
antenna theory is about a wavelength. Thus, our
-alculations provide evidence that

2s<N/25 for hja> 60, (6)

the smallest 4/a ratio studied.
According to Wu and King [1959], z, may be much

smaller than the estimate provided by (6). It can
be shown that
e L @

AN

for small z. If one is allowed to guess that this func-
tion is simply not applicable after it decreases to a
value comparable to the amplitudes of well-known
continuous solutions one obtains

[N

A :
S,\,%e l/l(l' (b)

Although (7) is certainly correct for small enough z,
the method of obtaining (8) is somewhat drbllmn
A definition of z, based on the point at which a simple
logarithmic funection exceeds the nominal value of
observed current fails to take into account the man-
ner in which the current makes the transition from
moderate to logarithmic behavior. The definition
of z; to be introduced here is a rough measure of the
location of the transition region in which the graph
of the current changes from ‘moderate to large slopo.
On this basis (8) turns out to be much too small and
too sensitive to antenna diameter to be useful.

Obviously, the distinction between thin and thick
cylinders will always be somewhat arbitrary. Such
distinetions depend on methods of analysis and de-
sired numerical tolerances. In this paper a thin
antenna is one in which a moderately smooth funec-
tion is a good approximation to /(z) except within a
suitably small fraction of a wavelength near z=0.
The remainder of the paper is devoted to the quan-
titative development of this general idea

In order to facilitate the analysis we allow the
antenna length to become infinite. The singularity
in I(z) is associated entirely with the ides Jlized gen-
erator. Waves reflected from the ends of a finite
antenna can do no more than produce a standing
wave of twice the amplitude of a smooth approxima-
tion to /(z) for the infinite antenna.

A byproduct of this study is the development of a
continuous approximation to /(z) for the infinite an-
tenna when £a is small enough to justify such a cur-
rent distribution. Admittances defined from the
approximate solutions for various values of ka are to
be interpreted similarly to those of finite antenna
theory.  Admittance values for infinite antennas are
of more than academic interest. Altshuler [1961]
recently l(‘])()ll(’(l on a traveling-wave linear antenna.
Lum])v(l resistors are inserted in this type of antenna
at |z =h—x/4. With appropriate values of resist-

ance the current distribution in the central region,
0<]z consists primarily of running waves
traveling outw(ud from z=0. It is thus possible to
apply the theory of the infinite antenna to a realizable
structure.

2. Formal Theory

The right-hand side of (1) represents the surface
ralue of vector potential.  When the antenna length
becomes infinite the term ' cos kz which represents

standing waves is no longer needed. With V=1
the integral equation becomes
b (g deg="EE o5 (9)
A . 1(20)J(2—2p)AZ20=—3 o (4 .

Hallén [1956] has reported the solution of (9). In
the notation of this paper,

( ) - COs az

> T (10)
“0J o B Jn(ﬁ“) H? )(Ba/)
where g2=k*—a*. We have chosen the contour_of
integration along the real axis with an upward in-
dentation at a=4. The phase of g is defined by

phB=0, a<k; phB=—m/2, o >k. (11)
With the help of the identity
J1(2)Y o (2) —Jo(2)Y 1 (2) =2/xz, (12)
1,(z) may be broken into two parts
y  2ka H“)(Ba) Ccos az .
=], St e 09
and
2ka JJ1(Ba) cos az
17 : Lo l 14)
(@)= ()j:) 6J()(6(1> 0 (14
The first of these expressions gives the current
distribution on the outer surface of the tubular

Current on the inner surface is described
by (14). Only the exterior solution is of interest in
antenna theory. Incidentally, (13) is in agreement
with the work of Silver and Saunders [1950] who
solved the exterior boundary value problem of an
infinite eylinder with a window of arbitrary size and
shape in which the electrie field is known. Equation
(13) follows from their work if the window is allowed
to become a narrow circumferential gap and the
usual boundary condition relating surface current
density and magnetic field is imposed.

The task now at hand is to integrate (13) in such
a way that I(z) may be examined arbitrarily close
to z—0. It is helpful to break the integrand into
real and imaginary parts and write

model.

i J; [B(@)+jW(a)] cos azde,  (15)

or

I1(z)=r(2)+j i(2), (16)
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where
P J a<lk
7Zo BJ3(Ba) +Y3(8a)] o
R (a)=0, a >k;
, 2ka Wt
W(a)=— ZOZ —%{L, a<k;
, 2 K —k?Y2q
W (a)_ Zﬂ ( . IL%[I%YK (a) 2)1/2 J, a>k

a7)

Thus, the real part of 7(z) can be determined by an
integration only on the finite range 0 <a<k. The
singularity in R(«a) at a=F£ is integrable so that

r(2) W/“.ﬁ 57

The combination of Bessel functions seen in (18)
occurs so frequently in what follows that it is con-
venient to define

D(x)=J%(x)+Yi(z).

COS az

3(Ba)+Y; (Ba)

(18)

(19)

Further reduction is accomplished by the change of
variable, a=Fk cos 6. We also let kz=¢ and ka=K.

Then,
4 (‘72 cos ({ cos 6)
A N )
r(8) rZ()ﬁ sin D(K sin 6) i (20
Now introduce the well-known identity
n=c
cos (¢ cos O)=27 €,(—1)"J5,({) cos (2n0); (21)
n=0

e,=1 for n=0, and ¢,=2 for n>0.

In terms of coefficients which can be obtained by
numerical or approximate integration,

with
_cos (2n8) .
=e(=1) f sin 0D (K sin 6) g &3

Further discussion of the R,, and a table of values
can be found in the section entitled Numerical
Analysis. It is sufficient at this point to note that
only a few terms of (22) are required to provide an
accurate representation of 7(¢) on the range of
0<¢<2mr. Since I(z) is an even function, this
corresponds to a full wavelength on either side of
the feedpoint at z=0.

The determination of i(z) is more difficult. By
using the small argument formulas for the Bessel
funetions and modified Bessel functions which occur
in (17) it can be verified that W(a) contains non-

integrable singularities of opposite sign on either side
of a—Fk. A direct attack would involve evaluating

1(2) Z*Cwuv(a) cos azda, (24)

where a standard notation has been used to denote
the principal value of the integral.  Defining i(z) by
means of the principal value of an improper 1nto<rml
is not hard to justify. The difficulty could have
been avoided in the first place by detouring well
away from a=£k in defining the contour. “Even
with this admitted, a serious difficulty remains.
W(a) is a complic: dl(‘(l function and the integral must
be performed numerically over a long range in «
before K, and K, are acc uml(l\ 10])1(-\('111011 l)\ their
asymptotic behavior. To do this and maintain high
accuracy for small z is difficult, even with the aid of
automatic computer facilities.

Fortunately, the difficulties inherent in using (24)
can be avoided entirely. R(a) can be used to deter-
mine both »(z) and i(2). We rewrite (13) as

T Eid eoneada. (25)

0

An obvious substitution gives

[<:):_1J‘°" F(a) sin az‘da-{—f F(a)e’*da. (26)

0

Denoting the imaginary part of the first integral by
1(2),

o I'k].’(a) e 27)

0

A series form similar to (22) can be written using

n= o X ,
sin (§ cos ) =2 > (—1)"J 5,11 (¢) cos (2n+-1)6. (28)

n=0

One obtains
.

7«1(?)“7?/0 Z [MH 1J7n+1(§_)

™2 cos (2n+1)6
= — n+1 . \ = e
Lor=(—1) 2]:, sin (K sin )

A table of 7, and /; for various values of A can be
found in the next section.
There remains

T3 (2) = l’mf F(a)e’*da.
0

de-  (29)

(30)

We now choose a closed contour consisting of a line
from the origin along the positive real axis with an
upward indentation at a=#k, the infinite quarter
circle from the real axis to the positive imaginary
axis, and a return to the origin via the imaginary
axis. If z is positive the integral along the large
quarter circle will vanish. There are no poles within
the contour. Then
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z'g(s):Imfjm F(a)e'*da. (31)
0

The substitutions a=jy, 7:\“k2+n2 reduce (31) to

. 4k e 5
a@= ) ADha 2 L)
Even is(z) is determined by R(«). With the under-
standing that R(ja) is defined on an infinite range,
whereas R(a)=0 for o >k, we can summarize in
terms of cosine, sine, and Laplace transforms with z
as the transform parameter. Equations (18), (27),
and (32) can be collected into

Re I(2)=ZR (a),
Im I (2)=— %R () + LR (jeo). (33)

In this sense the real and imaginary parts of 7(z) are
codetermined.

For computational purposes (29) and (32) are a
considerable improvement over (24). However, (32)
can be improved further. The first step is the triv-
ial one of obtaining an lllt(‘(’ldll(l in terms of non-
dimensional quantities. If we let n=/kv and ka=K,

e "
o (1+0)D(KY 1+11)

With the substitution u=ZK+y1+¢* (34) is trans-
formed to

Il 5“ =
(6=
- 7r/ 0

(34)

—(g/l\) v w—K?

25 ( - du. 35

A 7r/u (\ u2 KQ)uD (w (35)
The advantage of (35) over (34) is d])p:n'cnt from
the (m\nlptotl( behavior of [ul)(u)]™'. At u=10
this funetion is approximated by /2 with an accuracy
of 0.12 percent. Thus we need be concerned with
numerical integration only on the range K <u<10
no matter what the value of K. By contrast, the
integrand of (34) cannot be replaced by its asymp-
totic behavior until »>~10/K. For large K (35) can
be integrated directly [Krdelyi et al., 1953] to give

i (O~ HO =Y (0] (36)
where Hy(¢) is the Struve function of zeroth order.

A different strategy is to be employed for small K.
To eliminate unnecessary repetition of constants
during the derivation we define K times the integral
in (35) as f(¢).  We start with the identity

—(¢/K) Ju—K?
e ($/K)

($) ;:I_)(l]{i_IK e du
- 1 — (¢/K) V=K
_I\. p I:[([)(K)—,,[)(u'):] \712—K27(["'
- 1 —(/K) yw—K?
K “zu KD(K) "I)(”il N R ~du. (37)

The first of these is integrable. In the third integral
we replace [uD(u)]~* by /2 and neglect K inyu*— K?.

The second term is defined as a special function,
qx(¢), to be determined and tabulated by numerical
integration. We now have

[Ho(f) Yo(Dl—ax($)
|
+|:D &)~

1= [JO+Z L Tor©]

it ‘21)(

fg’f] Ei (—10¢/K).  (39)

Finally,

(39)

unless K>10, in which case (4/7%,)f(¢) is replaced
by (36).

3. Numerical Analysis

The coefficients R,, and Z,,,; have in common a
factor of the type

/2
cos nb
"= — - (f.

o sin 8 (K sin 6) &)

Near =0 the integrand of (40) becomes approxi-
mately
{0[1+ (4/*) In* (vK8/2)]} -

where In y=0.57722. It is convenient to break the
integration into two parts. In the first part 0<6<e
and the integrand is replaced by the small argument
formula (41) The sm(rulaut\' is integrable, a
convenient substitution b(‘mg (2/1r) ln('yKB/Q)*v/
The result of integrating formally in the small 4

region 1s
.’,‘l g e b 2 7Kf> | 9
5 2—|—a1( t(m< In 5 (42)

Numerical integration was used in the remaining
interval, e<0<x/2, and the result added to (42).
The parameter e was always chosen so that the
small argument formula for V(K sin 6) was accurate
to four significant figures. A short table of R,, and
15, coefficients, adequate for the computation of
I(¢) on the range 0<¢<1, is presented in table 1.

(41)

TasLE 1

— = —

K Ro ‘ I, ‘ Ry I
\ N
0.01 | 0.5683 | —1.009 | —0.7759 | 0. 6707
L02 | L6678 | —1.168 | —.8631 | 7283
.04 [ (8054 | —1.383 | —.9694 | .7912
J08 | 1.005 | —1.686 | —1.099 . 8550
. 9035

5 | 1277 ’ —2.086 | —1.244 ‘

Tables of ¢x(¢), to be omitted here for the sake of
brevity, are being prepared for separate publication.
However, a few of the technical details and a quali-
tative description of the results are of general
interest. Recall that ¢x(¢) is defined by

184



— (¢/K) v [—K?

qx($)= I\J l:KD(K) ul)(u)] o )Ju. (43)

The significant features of the design of gx({) are:

(a) For K=10, qx(¢)=0. If K>10, gx({) is not
needed at all since the contribution to i(¢) from the
imaginary axis integration is adequately represented
by (36).

(b) The integrand defining ¢x(¢) is everywhere
finite on a finite range of integration. This feature
simplifies, to a great extent, the problems of accuracy
control and computm programing.

A plot of a typical gx(¢), figure 1, shows that this
function is appreciable near the origin, concave
upward, and highly damped.

The approximations introduced in the third term
of (37) are not serious even for large K. Corrections
can be derived by expanding the integrand in a
series and Integrating term by term. Setting K=0
in yu’—K? simply provides the first term of the
series.  Correction terms turn out to be of the form
I (—10(/11) Near =0 the correction is small.
Near =1 the correction amounts to about 50 per-
cent of the last term of (38) for K=5. The error
(l(‘('l'(‘:lS(‘S for smaller K. However, for ¢ near {=1
the contribution to the total current from the integral
in question is small.  The net effect 1s a small error
in a large term near the origin passing over to a
large error in a small term as ¢ is increased. For-
tuitously, the correction terms may be dropped
entirely even when yu’— K2~ is a poor approxi-
mation.

The singularity in 2(¢) 1s expressed explicitly by
Yo(¢) and £i(—10¢/K). The graph of i(¢) becomes
infinite at =0, decreases rapidly in a short interval,
and then changes in a small transition interval to a
moderate slope.  As ¢ increases i,(¢) decreases and
the Bessel functions in 4,(¢) begin to dominate and
establish the wave character of i(¢). Plots of i(¢)
were made for various values of K. A typical plot
for K=0.01 is shown in figure 2. The singularity
in the current (hslnl)ullon does not appear in the
theory of antennas of finite length as developed to
date. One would like an analogous current distri-
bution in the theory of the infinite antenna. We
have followed the intuitive procedure of extrap-
olating from the slowly varying portion of #({) into
the region of small ¢.  The resulting graph with the
rapidly varying portion of ({) removed is designated
as 1,(¢).  The range of the singularity is arbitrarily
defined by

For small K| z;is a small fraction of a wavelength.
Values of z; estimated from graphs of i(¢) for various
values of K are presented in table 2. The first line
for K=0.001 was estimated from the behavior of the
remaining data. As K is increased the solution turns
very gradually into the logarithmic singularity.
Figure 3 exhibits two extremes with plots of i(¢) for

qk(2)
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Frcure 1. Graph of ¢k (¢) versus ¢ for K=0.01
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Ficure 2. Expanded graph of 7(¢) versus ¢ for K=0.01



TAaBLE 2
K ‘I o )N

P

0.001 ! 0.006 |0. 00095
.01 .008 | . 0013

L02 | 010 | .0016
L04 | 015 | 0024
J08 | .020 | 0032
15 | .024 | .0038
51 7 50
.4
3+
2
K=.0l
2
A il 1 C 1
Mk © t f f
S | 2 3
=cll = 4 -0
-2 4 -20
-3 4 -30
= | 4 -40
-s L J-50

Ficure 3. Graphs of 7(¢) for K=0.01 and K=10

K=0.01 and K=10. The singularity in the graph
for K=0.01 is not evident unless the scale of the
abscissa is expanded considerably.

It is at once apparent that (8) is not an adequate
estimate of the range of the singularity. The tran-
sition from moderate to large slope in the graph of
i(¢) cannot be accounted for entirely by a simple
logarithmic function. The qualitative conclusion
that iterative and Fourier series solutions of feasible
order will not detect the singularity remains intact.

4. Modification for Nonzero Gap Width

According to Silver and Saunders [1950] a gap in
the region — W <z<W is accounted for by a factor
(sin aW)/aWin the integrand of (18). If this factor
is included in the present work it will have very
little effect on the functions 7(¢) and 7,(¢). If the
gap width is a small fraction of a wavelength (sin o)/
aWW will be nearly unity throughout the range of the
integrals which define these functions. The appro-
priate modification turns out to be the inclusion of a
factor (sinh ow)/vw in the integrand of (34), giving

e~

(45)

. sinh »w
(w) . y
0 = d
2 (g_) 7[_[0 )

4 (° :
Jo 1+ DEV1+2) o

where w=FkW.
by F(») for convenience.

Denote the unmodified integrand
Then

D) ro0 T/
9O = [ "D e, (46)
. 4 (= o
Ty <§):7r7 Fv)e"dv, (47)
0J0

where appropriate superscripts have been used to
identify the separate cases. It is easy to show that

: O
W (D=5 157 (©)ds. (48)

2w =

Thus, the required modification is a simple average
over the evanescent part of the current distribution
for a 6-gap. Results for the two cases will be appre-
ciably different only for small {. It is more difficult
to specify how this solution is to be matched to that
for an appropriate transmission line and terminal
zone structure. In thin antenna theory this diffi-
culty is resolved by treating the antenna and termi-
nal zone structure separately by suitable approxi-
mations and combining the results in an equivalent
circuit. Clean separation of these two parts of the
problem is not possible if the rapidly varying portion
of 157 (¢) extends over too large a region.

The simplicity of (48) can be attributed to the
assumption of constant electric field in the gap.
Wait [1959] has pointed out that a more realistic as-
sumption leads to a factor of JJ,(aw) in the integrand
of (18) instead of (sin aw)/aw.

5. Impedance

The conductance of the eylindrical antenna is eas-
ily defined for all values of K. It is given simply by

4 s
a=r0=7 | mepEae

The integral is the definition of the coefficient R,
defined earlier. If K is large the function D(K sing)
takes on its asymptotic value of (7K sin 6)/2 through-
out most of the range of integration. Then the
conductance-circumference ratio 1s

(49)
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= G)2ma~m|Z\. (50)
This is, as it should be, one-half the conductance per
unit lmwlh of a slit in an infinite plane [Jordan,
1950]. ()nl\' one side of the eylindrical surface is
counted because of the original splitting of the total
current into antenna current and tube current. At
K—10 (50) gives a value of 0.0835 mhos compared
to a correct value of 0.0876 mhos. Cylinders with
K>10 are essentially infinite in diameter for the
purpose of admittance calculations.

Susceptance is defined from the smoothed version
of 2(¢) by

B——_i.(0).

L)

(51)

This represents an attempt to estimate, on a plau-
sible basis, the value of susceptance observed in
experimental work. Susceptances found in this man-
ner are analogous to those calculated by the King-
Middleton theory or Fourier series solutions for the

antenna of finite length. As K is increased the
introduction of a smoothed version of 2(¢) becomes

less tenable.  We have arbitrarily selected K=0.15
as that value above which the concepts of thin an-
tenna theory are not to be applied. This is simply
a matter of judgment based on the behavior of curves
of 1(¢) versus ¢ for various values of K.

For K>10 a gap width, 2, can be used in con-
junction with (36) and (48) to define

2w

B=i® (w) ?:)11; J 1P (). (52)
Al JO

the Neumann function in (36) will contribute
Passing to the small argument
carrying out the indicated

Only
appreciably t() (52).
formula for Y, (¢) and
operations ;:i\'(‘s

) 2 (1M g
b= B/2ma~ Z,,A( n Q%ry‘1'+ )

This is the susceptance per unit length for a slit in
an infinite plane when the excitation is defined as a
constant electric field in the slit. The slight differ-
ence between (53) and the corresponding formula in
Jordan [1950] can be attributed to the differences in
assumed excitation.

Table 3 gives the calculated admittances and im-

pedances for small K.
TABLE 3
Admittance [ Impedance
K (v'><103 I$’><1()3 R ' X
=
0.01 1.92 [ 0.761 450 | —178
.02 2.26 1.08 360 7
.04 2.72 1.55 278 | —158
.08 3.40 2.43 195 | —140
.15 4.32 4.39 114 | —116

Altshuler [1961] recently reported the measured
impedance of a traveling wave linear antenna with
K=0.04 as (320~ 110) ohms. The transmission
line in his experiment was a coaxial line with a ratio
of outer to inner diameters of the conductors of 8.13.
The predicted value based on the present theory and
appropriate terminal zone corrections is (346-7 86)
ohms.

6. Conclusions

The following classification of evlindrical antenna
problems according to values of A, the antenna
circumference in wavelengths, is suggested by the
present theory and the literature. For K <0.1 a
smoothed version of the exact solution of Hallén’s
integral equation can be used together with appro-
priate equivalent networks for realizable terminal
zones to predict the behavior of physical antennas.
Smoothing of the solution involves only a small
region near the feedpoint of the idealized model to
which the integral equation applies.  The size of this
region is of the order of a thousandth of a wave-
length. This is much larger than had been previ-
ously supposed but still suffic dently small to justify
the basic approach. Approximations to the kernel
of the integral equation can be safely used for
K<0.02. In particular, the King-Middleton theory
is 1 agreement with high-order Fourier-series
solutions using the exact kernel. For 0.1<K<10
the antenna and terminal zone problems are not
asily separated. A theory to provide both imped-
ances and radiation characteristics for these diam-
eters has not yet been developed. An adequate
theory will have to involve a unified treatment of the
terminal zone and a gap of nonzero width. Above
K >10 the impedance properties of a long cylindrical
antenna are well approximated by those for a slit in
an infinite plane.

The theory and results presented here provide
information about the singularity in theoretical
antenna current. The calculated impedances should
prove useful in the design of traveling-wave linear
antennas.

The author thanks K. S. Kunz and C'. W. Harri-
son, Jr. for continued encouragement and helpful
discussions. J. F. Stanley and S. E. Dickson
performed most of the calculations.
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