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A flexible theoretical model plasma which can be deformed to fit most measured elec-
tron-ion-altitude profiles is employed together with available geophysical data on the iono-
sphere to evaluate reflections and transmissions during quiescent and disturbed propagation
conditions. The reflections and transmissions in the ionosphere are determined rigorously
with the aid of the classical magneto-ionic theory. The complex indexes of refraction of the
medium are deduced, and a coupling in the plasma between ordinary and extraordinary, up-
going and downgoing modes of propagation is investigated. The corresponding reflection
and transmission coefficients are then calculated, and certain phenomena which can be ex-
pected as a result of the action of a solar disturbance on the reflection process are predicted.

The disturbance of solar origin, investigated as an application of developed techniques,
influences the reflected and transmitted LF waves in the lower ionosphere in a complicated
manner. However, the high absorption phenomena exhibited by high frequencies do not
seem to exist for the plasma profiles investigated with the classical magneto-ionic theory.

The electron-collision frequencies of the classical magnetic-ionic theory are modified
to introduce a collision frequency proportional to the electron energy, and the changes
necessary in the formulation of the classical theory as a result of such a consideration are
presented.

1. Introduction

Low-frequency radio navigation and communication systems utilize or are capable of
utilizing ionospheric modes of propagation, especially those systems with great distance trans-
missions. Indeed, the nature of low-radiofrequency wave propagation around the earth is,
in large measure, determined by the shape of the lower ionosphere electron-ion density transi-
tional region, i.e., the lower 40-100 km electron density-altitude, N(k), collision frequency-
altitude, »(h), profiles of the ionosphere. Previous theoretical treatment of the reflection
process [Johler and Walters, 1960] at low radiofrequencies uses a sharply bounded model
electron-ion plasma.

Experimental evidence [Johler, 1961] indicates that such a profile is not always a valid
model. Thus, especially in the case of an ionosphere disturbance, it seems to be appropriate
to utilize a theory which takes into consideration in more detail the changes within the iono-
sphere which affect the reflection process. This paper extends the theory previously pre-
sented [Johler and Walters, 1960] to a flexible theoretical model which can be mutilated to fit
rigorously almost any measured N(h), v(h) profiles. The theory can therefore treat physical
changes within the ionosphere as such changes affect the reflection and transmission processes
and, in particular, the theory can treat a plasma reflection and transmission region with elec-
tron-ion density transitions of quite arbitrary form.

The newly developed model and associated techniques of analysis are then applied to
certain geophysical and theoretical data in the form of the N(h), »(h) profiles of the lower
ionosphere during both quiescent and disturbed propagation conditions. The effect, if any,
of a solar disturbance upon communication circuits which utilize low-frequency propagation is
ascertained.

1 This is an extended and revised version of a paper presented at a special meeting on disturbances of solar origin, of the Avionics Panel of the
Advisory Group for Aeronautical Research and Development (AGARD), NATO, Naples, Italy, May 1961,

2 This work was sponsored by the United States Air Force, Rome Air Development Center, Griffiss Air Force Base, N.Y ., and performed in
connection with tasks 4 and 5 of delivery order A F 30(602)-2488 dated March 29, 1961.
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The classical magneto-ionic theory is modified by the introduction of the concept of an
electron-collision frequency proportional to the electron thermal energy [Jancel and Kahan,
1955; Dingle, Arndt, and Roy, 1959 ; Molmud, 1959; and Phelps, 1960] into the analysis of the
reflection and transmission process at the plasma with transitional electron-ion density.

2. Determination of the Indexes of Refraction of the Medium

The lower boundary of the model electron-ion plasma, figure 1, below which (2<C0) the
ionization is nil (N=0), is considered to be the zy-plane. The region above the xzy-plane
(2>>0) is characterized by an electron density, N, and a collision frequency, », which vary
arbitrarily with respect to altitude, z. A plane wave, [,

E,=|E,| exp l:z <wt—~—(cf’nD>:|, (1)

is incident upon the plasma from the lower region (2<Z0), where the index of refraction (2<0),
n=mn,=1, and ¢ is the speed of light, ¢~3>10® meters/second. The quantity D can be defined
with respect to quantities in figure 1,

D=z sin ¢; sin ¢, sin ¢; cos ¢,+2 cos ¢;. (2)

The field, £, is varying harmonically in time, ¢, at a frequency f=w/2r. The field also is
assumed to be incident upon the zy-plane at an angle of incidence,¢;, and a direction of propaga-
tion or magnetic azimuth, ¢,, measured clockwise from the yz-plane, figure 1. The earth’s
magnetic field vector, 77, is contained in the yz-plane at a dip or inclination angle, I (measured
from the horizontal).

A resultant wave, [/, transmitted into the model ionosphere (2>0), figure 2, is then
assumed to have the form

— . w
E,=|E,| exp [z (wl——;nD)]; (3)
where in the model plasma
nD=x sin ¢; sin ¢,y sin ¢; cos ¢,+z¢, 4)
t
= L e o\ Ureone )} waves
T L No. %p } 7
2 ’Zp | Noo i %p-1}mp-
...... paI— )
%nq Nosis Vnat } e
Lk
%n Nny vn}n
- LR o R o W) R L
X ZL Ns, % } 6
[ ¥
| Y % N5, v5}7s
¢i | :Z Na» v4 } 14
4 ——
i o [ & 2T
Z 'f J‘\ N, %2 }m2
| Y [Io% N R
N ¢f i / 2/ < Mo w b
a a
\ 1 ——— ORDINARY (0 ) MODE \ _ =8 2
\ L e EXTRAORDINARY (e ) MODE Hm
\ | UPGOING (i) AND DOWNGOING (r)
\J WAVES ARE COUPLED AT EACH BOUNDARY

T Ficure 2. Structure of the flexible plasma model,
m illustrating ordinary and extraordinary modes of
propagation, coupled at the boundaries.

Each z,,n=1,2,3 . P, becomes smaller as the number of slabs,
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in which ¢ is in general a complex number, the value of which will depend upon altitude, z,

§={(2).

The quantity ¢ is determined by a simultaneous solution of Maxwell’s equations,®

— =, OH _
VXE_F,“O‘&‘:O; (5)
GxH—j—EO%zo, (6)

and the equation of motion of the electron,
([\7 == - ,— — -
mﬁ—}—mgl +uoe | VXH, )+ eE=0, (7)

with the electric field, E, volts/meter; the magnetic field, 11, ampere-turns/meter; the convection
current density, J=—NeV; N electrons per cubic meter (electrons/cm? 1shoquontl) employed
to deseribe V) with charge, (J, mass, m; and vector velocity, 1 where y, and ¢ are the permea-
bility and permittivity of space respoctivcly. The constant 1'cal collision frequency, g~w, of
the classical magneto-ionic theory is employed initially, but will be generalized to a complex,
frequency-dependent parameter, g, during the course of the paper.

The vectors V and / can be eliminated, whereupon it can be concluded that the field Z
exists in the medium if a quartic i ¢ is satisfied [Booker, 1934, Johler and Walters, 1960]*

Sy 4-a08 -0, ¢ +ap=0, (8)
where
(a2, 1)2 ar,” ILT -S‘—l
= Gins,— | 152 [+ Gin%s 1) S5y [+ ooy (©)
_o hahaty (o,
(1/1428(82_h2) (sin’¢p,—1), (10)
={2[1-atp [t ot b Dty + St (1)
Z 2 hz é(S’ hZ) i ) 2 hZ
hihra ‘
a3=2 a(:“ Th[‘z>—a1 sec? ¢y (12)
- s’—hi .
ay= 5(32 hz) (13)
1—i£:|, (14)
where y=v,, the collision frequency of the particular slab, =, figure 2, under investigation,?®
h:‘:’;fj, (15)
hr=—hsin I, (16)
hy=h cos I, (17)
(1, =SIN ¢y COS ¢y, A7p=SIN ¢y SIN Py, (18)
a=sin ¢, (19)

wyt=Née*/km, (20)

3 Rationalized mks units are employed.
4 See eq (21) of paper by Johler and Walters [1960].
¢ In previous papers [Johler and Walters, 1960; Johler, 1961a] w,=wy, 5 =wy.
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where N=N, the electron density of the particular slab, n, figure 2, under investigation,
wg=ueH ,/m, the gyrofrequency,® (21)
=1l m=ap (22)

Two pairs of roots, ¢, can be found by previously described methods [Johler and Walters
1960] where each root represents either an ordinary or an extraordinary, upgoing or downgoing
wave propagated in the model plasma.

The detailed structure of the flexible plasma model is illustrated, figure 2, as a stack of
plasma slabs of arbitrary thickness (but consistent with computation efficiency) z, except the
topmost slab of thickness z,—= «. The number of such slabs, p, is also quite flexible, since the
notion is implied in this analysis that the measured electron density-altitude and collision
frequency-altitude profiles can be approximated to any desired accuracy by decreasing z, and
increasing p simultaneously until a stable reflection process is obtained.

A constant electron density and collision {frequency with respect to altitude, z, is of course
assumed for each slab, z,; and associated with each such slab a set of four roots, {=¢,, is found
to exist. Two of the roots will exhibit a negative imaginary, Im ¢ negative, corresponding to an
upgoing wave (-z direction, figs. 1 and 2) and two of these roots will correspond to a positive
imaginary, Im { positive, corresponding to a downgoing (—z direction figs. 1 and 2). Except
for the topmost slab, it is necessary to consider both upgoing and downgoing waves in this analy-
sis, whereas in previous analysis [Johler and Walters, 1960] only the upgoing waves were
considered. The previous analysis implied that the upgoing waves were completely transmitted
or absorbed before another reflection could occur, and all reflections occurred at the first bound-
ary. Such a model must be applied with considerable caution. But the restrictions of such a
model are removed by this analysis and, indeed, the sharply bounded model can be replaced in
the limit by a continuum in which the electron density and collision frequency vary with alti-
tude as a smooth but quite arbitrary function. This of course permits the use of the detailed
measured profiles of the lower ionosphere.

The treatment of a continuously varying medium by approximating the medium with one
or more slabs of uniform composition has been utilized by many authors [Hines, 1951 ; Ferraro
and Gibbons, 1959 ; Brekhovskikh, 1960; Wait, 1960 and 1961]. Such methods are exploited
in this paper and carried to the limit, such that the number of slabs, p, for each calculation
depends upon the computation precision required and the particular values of the electric and
geometric parameters.

It is, however, necessary to distinguish between ordinary and extraordinary modes of
propagation for both the upgoing and downgoing waves. This is accomplished by an examina-
tion of the form of the index of refraction function with respect to frequency and altitude (or
electron density and collision frequency which varies with respect to altitude). Thus, the index
of refraction, 5 (as defined by eq (4)),

n’={24-sin? ¢, (23)

is detailed for each frequency and slab z,, 7=n,, and the upgoing ordinary and extraordinary
.. and the downgoing ), ordinary and extradordinary function continuity is examined
in detail as a function of frequency to determine the crossover point of the functions® for
each slab or electron density under consideration. The Re 5 was employed in this analysis,
Thus, above the crossover point the ordinary wave was considered to be the greater of the two.
roots Re 7, >Re 7, and below the crossover point the ordinary wave was considered to be
the lesser of the two roots, Re n,<<Re n,. At precisely the crossover point, the two, of course,
are identical, n,=n, which point, for examples with low electron density examined in this
analysis, was found to be below the critical frequency, fy=wy/2r. The absolute distinction
between the two modes of propagation remains quite arbitrary as in previous analysis [Johler
and Walters, 1960], but the analysis must be consistent between each slab and consistent
within each slab for upgoing and downgoing waves.

¢ Index of refraction, n, continuity analysis to determine crossover was coded as a logic routine for the CDC-1604 computer ,as was the whole-
of this analysis.
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3. Determination of the Reflection and Transmission Coefficients

The reflection and transmission coefficients are determined by the boundary conditions
which-express the principle of continuity of the tangential £ and [ fields and the normal
H fields at each boundary, figures 1, 2, of the model plasma. These fields are equated im-
mediately above and immediately below each boundary. (See eqs. 24 to 28 on p. 85.)
where

Q:E, (29)
E, :
P:ET/) (30)

and the subscripts o, 7e, ro, re refer to upgoing ordinary, upgoing extraordinary, downgoing
ordinary, and downgoing extraordinary modes of propagation. The superseripts n=1, 2,
3. . ., p—1, and p refer to the particular medium, figure 2, under consideration, with cor-
responding values N, », which together with the magnetic parameters, I7,,, ¢4, I, and the angle
of incidence, ¢;, determine the index of refraction, (23). The process is of course continued
until convergence is obtained on the particular profiles of electron density and collision fre-
quency under investigation. Notice that the topmost slab, z,=  n=p, has only two terms
representing the two upgoing waves. The downgoing waves do not exist since the topmost
slab is assumed to be of infinite, homogeneous extent. However, this analysis can readily
determine the transmission coefficient of a finite slab of plasma with an N(h)=N(z), and »(h)=
v(z) profile which varies with altitude, z, simply by replacing the last two terms of eqs (24 to 28)
with
Ex’l CcOS ¢a+Eu’t COS @, sin Pas
— I, 8in ¢+, cOs ¢; cos @,
Eyy cos ¢ sin ¢g—FEr, cOS ¢y, (31)
Eyy cos ¢; cos ¢+, sin ¢,
—E,, sin ¢,

respectively, where £, ,, I, ,, are the components of the transmitted fields.
The reflection, 7', and transmission 7", U, coefficients can now be defined

7 L 7 L gw —Eit 7w L,
ee y ee g eio —
Ey’i Ei/'i Eu’i e Ey’i
T, , 7 (n) (n)
Tem :EI - T;m :EI : Ur(nni)o :g“w s :F;yro
mro
E]/"i Ey’i Ez’i Ez'i
7, L, (n) 7 (n)
Tp=pvr  pp=Be e Bk e Fi
v € B ere =~
Ly E,, Ey, Ay
7 . (n) (n)
Tan=f2t  Th=P=t  pg—Ef g Lo (32)
m n} nJ
Er’i Ez’i Er’i e Ez’i
where, figure 2, n=1.2,3 . . ., p—1,p, and the four 7’s are defined as a transmission coef-

ficient into a topmost slab of infinite extent, 2, and zero electron density, N=0, ,=n,=1.

The reflection coefficients, T,e, Ton, Tme, Toum, describe the reflection into the region below
the model plasma, 2<0. Thus, 7, refers to vertical electric polarization of the incident wave
and a corresponding vertical electric polarization of the reflected wave. 7, refers to the
generation of the abnormal component (horizontal electric polarization) by the incident
vertical electric wave. Similarly, 77, refers to vertical magnetic incident wave and vertical
magnetic reflected wave, and 77, refers to a corresponding abnormal component (horizontal
magnetic).

The transmission coefficients, U, refer to transmission at the particular point in the iono-
sphere under investigation to which the wave has penetrated. There are thus four modes of
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propagation and two polarizations and hence eight types of transmission coefficients: upgoing
and downgoing, ordinary and extraordinary, vertical electric and vertical magnetic.

Thus, the nature of the wave reflected from the plasma, the nature of the wave trans-
mitted through the plasma, and indeed the nature of the wave progressing within the plasma
are completely described by the coefficients determined by this analysis.

Four of the boundary conditions (24 to 27) result in the matrix equation

Sty 31 S8 O, 9 9,0 B, B0, (8 ’—T—em' Y Eo,e' 2. m
U, 85,0 9,809, 652,7 59,652,052, 10 e e
(1) (1)
23,723,823,923,1023,1123,1223,13%3, 14 Ueio! Umio
.......................... ull) yd
........................ A T
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ap.p fogrr e ap, p+ 9 Uero' Umro
(2)Reer ()
D0 B, e B, 89,6 P, 59, 6 Uere' Ymre by, et Po,m
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5 a93.0 59 650 5550800 Y0 U U
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Wy o 5y 6198 6 Wiy iy By s 1y, i Ly ey 2 Ueie’ Umie
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ero’ mro
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Rearrangement of the matrix, such that zeros do not appear on the diagonal, a,, to
dy pso, Tesults in a matrix which can be solved by the previously described methods [Johler
and Walters, 1960]. (Note that the second subscript of the last term of each group is p+9
3 t)
instead of p-+11 since the topmost slab containg only the ordinary and extraordinary upgoing
. o o te)
waves.)

E T ] o]
81 %,2% 3" L4, 5% em’ 'mm oe’ *om
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(,y=COS ¢; SIN P, Uy ="COS ¢,

b,.=C0s ¢; COS ¢y bym=—5In ¢,
Cpo=—COS ¢, Com=CO0S ¢; SIN ¢,
dye=SIn ¢, dyp=C0S ¢; COS ¢,.

The analytic expressions for the complex numbers, P, P{¥ P& P Qi QiF, QW
™ can derived from the definitions (29, 30) by a simultaneous solution of Maxwell’s eq (5, 6)
and the equations of motion of the electron (7) with the following result:

hzh
‘—I:@L?‘f' =k 3 [l—ai— fz— z:l"‘l"‘[aLa/T zjl [an
jo s(s*—h )] —h —h (34)
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where the particular slab, figure 2, n=1, 2, 3 . . . p—1, p, under consideration is designated
by the notation, {=¢™, P=P™ Q=Q"™, and, 7o, ie, o, re refer to the four roots of the quartic
in ¢ for upgoing, downgoing, ordinary. and extraordinary waves respectively in the particular
part z, of the electron-ion plasma under consideration.

The ratio of the fields Q=F,/E, and P=FE,/E, was introduced in the boundary conditions,
eqs (24 to 28) as each slab was matched electrically to its adjacent slab such that the tangential

~.

E and H fields and the normal 77 fields were continuous across the boundary. Notice that only
the first four sets of boundary conditions, eqs (24 to 27), were employed in the matrix, eqs
(33 to 34); the fifth boundary condition served as a check on the entire computation, since it is
automatically satisfied by the other four conditions.

4. Monoenergetic Electron Collision Frequencies

The recent work of Jancel and Kahan [1955], Dingle, Arndt, and Roy [1956], Molmud
[1958], and Phelps [1960] has treated the collision process in an electron-ion plasma with greater
rigor. It can be shown, as a result of these investigations, that the average collision frequency,
g=v, in the equation of motion of an electron (7) is an effective value independent of the
energy, u=FkT/e, where k is Boltzmann’s constant, 7'is the temperature, degrees Kelvin.  How-
ever, the investigations of Phelps [1960] indicate a strong dependence of the collision frequency
upon the energy, u

Phelps has developed integrals of the electron velocity or conductivity tensor. The
integration over a Maxwellian energy distribution, fo=[e/rkT|** exp [—eu/kT], involving a
momentum transfer collision with gas molecules proportional to the energy u, v=»(u) is accom-
plished for an electromagnetic wave of angular frequency, w=2rf. The magnetic field is
assumed to be vertical. The results of Phelps are generalized in this paper to a magnetic field
of arbitrary direction and introduced into the analysis of the plasma model with a transitional
electron-ion density described in this paper.

Indeed, Molmud [1959], demonstrated that the monoenergetic electron collision-frequency
concept can be introduced into the equation of motion of the electron,
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m ‘%erﬁﬂoe(l_/xﬁm) +eE—=0; (36)

as a new collision parameter, g, which has replaced the classical, ». Thus, the classical theory
implies, g~w. _
The velocity, V, tensor can be written,

AA,4;5 B,
J=—NeV= | B.B,B; E, |, (37)
C,C,C E,

where
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e h
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S—hr T s =y BT (8 — 1)

The coeflicients of the tensor matrix can be reduced to the form
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where Bi=—A4,, C,=— A3, C,=Bs, and where Qy=w, Q;=w+wy, QB=w—wgy. A quantity, T, is
found by integrating over the velocity distribution for monoenergetic electron-ion collisions,
v(u), at each frequency, Q=Q,, Q;, Q,,
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47 u3/2 kT[
=5 G an kT e (—eukThin )

which can be written in terms of Dingle, Arndt, and Roy [1956] tabulated functions, &;.(x),

£3/2(x),
RO

whereT=v(u)/Qu=FkT/e, and »(u) = akT/e=au. The complex collision parameter, g, for the
equation of motion can then be evaluated

Rel—i[ImI'+Q|T'f?]
T2

g=T"1—iQ= (40)

The quantity, g, is thus complex and there are three values corresponding to frequencies
Q = Q, Q, ©. Furthermore, the value of ¢ is also frequency dependent. The implication of
the classical magneto-ionic theory that such a quantity can be represented by a real effective
value without a frequency dependence is therefore not in general a valid concept.

The complex collision frequency, g, can be introduced into the analysis by evaluating the
coefficients of the quartic (8 to 13) as follows:

a,=—o’€(O3+iwe), (41)
g :'_20) EO(ZLB;;, (42)
y=w'e A+ By +20;— aL(Bz+(73)”a%'(A1+03)]+’iwfo[—Alos_32(V3_11§+B§+2“’2€3(1_@a] )

3

= —iweoty (A Ag+ A, By) — 20z By(a?—1) (44)
ao= A, B, Cy— 24,4, By + A3 By— A, B+ A3Cs +iweo(A,Cy+ ByCy+ A, By+ A2+ A3— BY)
+iwey (— A, Cy— Ay By— A3— A2) +iwead(— B,Cy— A, By+ Bi— A2) + w?é(— A, — By— Cy)
+ '’ gaz (24,4 B+ Cy) + o’ 1 (A;+2 By +0s) + w*garai(— A — By)
+ofegar (—Ay) — o ar By—io’ g (1—a*)®. (45)

The functions ¢, (x) (p—ﬂ ~) can be evaluated by an application of quadrature techniques to

the integrals [Johler and Walters, 1960], or other methods described by Dingle, and Roy [1956],

s@—(3!) f " b (a2 +p9) " exp (—p) d, (46)
a@—(31) [ @) exp ()i (47)

The quantities P and  are rewritten,” with the aid of eq (37), by substituting for s in eq
(34, 35) the corresponding values of g, Q, @y, O,

4,
p—L aLH’“"f - —§2+wo Mﬁm_][ Sh_weojl (48)
1—a +Z 1—aL—s“2+ :I [ A3 it
= weo_| [ LWeEq
— 1—(l2+%) aLaT+—:|+|:aTs“+——j||: Ls“ere
Q: = i S 2 (49)
1—a2 -2 | [ 1—a2— 2+ :I [
L Tweg_] L Lwe 1weg

7'The constant eo or the factor iwo can be eliminated from eq (37, 41-45, 48, and 49) for convenience. The factor was retained so that eq (37),
would be correct dimensionally, i.e., J=current, amperes per square meter.
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5. Computations and Discussion

The reflection coefficients, figures 524, were evaluated for the continuous electron-ion
density transition, figures 3 and 4, with the aid of the classical magneto-ionic theory. The
typical daytime-noon profile, figure 3 [Waynick, 1957], was selected to represent a quiescent
ionosphere. The disturbed profile, figure 3 [Seddon and Jackson, 1958], was also selected to
give an indication of the intensity of the ionization during disturbed conditions. The region
of the ionosphere below 1,000 electrons/em?® was represented with a Gaussian electron density-
altitude distribution [Budden, 1955],

N=Nnuax exp [—(2—2ua:)*/k’].

where the constants Npax, Zmax, and k&’ were determined by the measured profile, 1,000
electrons/em®.  In particular, NV,,,=26,000 electrons/em?; z,,,=85,000 m, &’ —=1.92 < 10%. This
profile was measured during a high-frequency ionosonde blackout observed at Ft. Churchill,
Canada, 1332 CST, 15 November 1956. Data was therefore made available in the theoretical
form of a continuous electron-ion density transition for a model plasma which represents
approximate conditions of the ionosphere during disturbed phenomena. This ionosonde
blackout is classified as a local auroral-zone blackout which is confined to the auroral zone or
some segment thereof.

The Nicolet/3 collision frequency [Nicolet, 1958; Sedden and Jackson, 1958] was employed
in this analysis. Other profiles, »(h), are illustrated, figure 3 [Compton, et al., 1953 ; Gardner
and Pawsey, 1953; Fejer, 1955]. These collision frequencies are applicable to the classical
magneto-ionic theory employing the approximation, g~ in the equation of motion (7) of the
electron.  Recently Kane [1959 and 1960] re-evaluated the profile, »(h), on the basis of mono-
energetic electron collisions, v=v(u), from which the complex parameter, g, can be deduced.
Furthermore, the reflection coeflicients presented in this paper can be re-evaluated with the
aid of such data and the theory of the monoenergetic electron collision frequency, which task
will be reported separately for comparison with the classical theory.

The computation of the field strength of a radio wave propagated about the earth is
dependent upon the reflection process at the ionosphere [Johler, 1961 b and ¢] and the mode
theory [Wait, 1960] or a geometric-optical theory requires the introduction of reflection co-
efficients into the analysis. Thus, the essential nature of ionospheric propagation is described
by the reflection coeflicients, 7., 7., for vertical polarization, and 7, T.,. for horizontal.

The reflection coeflicients, T,y Tony They Tm, Were evaluated, figures 5 through 11. For
the typical daytime-noon model ionosphere as a function of frequency, f=10 ke/s to 1,000
ke/s, with various values of magnetic azimuth, ¢,=0, 45, 90, 135, 180, 225, 270, 315 deg; at a
temperate magnetic latitude, /=60 deg, assuming a typical magnetic field intensity; 7,,=0.5
gauss and grazing incidence transmission, ¢;=81.79 deg (d=1,000 statute miles for a single-hop
geometric-optical transmission).

The reflection coeflicients, | 7./, | 7| show a steady decrease in amplitude as the frequency
is increased. A small, perceptible rise is noted near the gyrofrequency, however. Such a
steady decrement in amplitude could be imitated by the sharply bounded model ionosphere.
[Johler, 1961 b and c] by suitable selection of a fictitious low-electron density. But such a
model is a primitive theoretical representation of the true reflection process.

The magnitude of the abnormal components, |7/, |7, also show a decrement as a
function of frequency. But these components are quite small (<C0.1 at 10 ke/s, for example).
The corresponding disturbed-blackout reflection coefficients are also illustrated. The angle
of incidence, ¢, was changed slightly as a result of a lowering of the ionosphere. The principal
cause of change as a result of this profile is nevertheless. the re-distribution of the N (k) profile
from the quiescent to the disturbed conditions. It is interesting to note an increased atten-
uation at the higher frequencies, 100 to 1,000 ke/s. However, the high attenuation or ionosonde
blackout which characterizes high frequencies does not seem to exist. Indeed, an enhancement
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mee

in the field is anticipated from this profile at VLF (<30 ke/s). Whereas there is no experi-
mental evidence to establish the non-existence of ionosonde blackout phenomena at LF/VLF,
a search of the literature did not reveal any report of very high attenuation of LF/VLF during

such D-region events.
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Ficure 15. Reflection coefficients (amplitude and
phase) of the lower ionosphere for low frequencies
during blackout conditions illustrating the frequency
dependence of the classical magneto-ionic theory.

| Tee| and | Thmm| are also illustrated for comparison with quiescent
conditions (see fig. 5-9 for complete quiescent reflection coefficients).
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Ficure 16. Reflection coeflicients (amglitude and
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during blackout conditions illustrating the fre-
quency dependence of the classical magneto-ionic
theory.

| Teol and | Tmm| are also illustrated for comparison with quiescent
conditions (see fig. 5-9 for complete quiescent reflection coefficients).
$a=90, 270, vertical polarization, Tee, Tem.

The effect of the Lorentz force, poe(T/'xEm), (7) or the action of the earth’s magnetic
field, on the reflection process is also illustrated, figures 12 through 15. The reflection coeffi-
cients are illustrated as a function of the magnetic azimuth, ¢,. It is interesting to note that,
as in the case of the sharply bounded model [Johler, 1961a], the propagation into the west,
¢,=270°, shows a smaller reflection coefficient than the propagation into the east, ¢,=90°.
Thus, there is clearly a non-reciprocity (interchange of transmitter and receiver) in the propa-
gation which enhances the field propagated into the east relative to the field propagated into
the west. However, the characteristic variation with respect to magnetic azimuth is consider-
ably masked at the higher frequencies (*>200ke/s) ‘for the highly absorbing daytime-noon

model ionosphere employed.
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during blackout conditions illustrating the fre- quency dependence of the classical magnelo-ionic
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theory. |7¢.] and | Thmm| are also illustrated for comparison with auiescent

conditions (see fig. 5-9 for complete quiescent reflection coeflicients).

) . . : ba=225, 315.
| Teel and | Thmm| are also illustrated for comparison with quiescent

conditions (see fig. 5-9 for complete quiescent reflection coeflicients).
$a=090, 270, horizontal polarization, Twmm, Tme.
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magnetic field) in the classical magneto-ionic theory
during blackout conditions.

| Teol and | Thmm| are also illustrated for comparison with quiescent
conditions (see fig. 5-9 for complete quiescent reflection coefficients). | T..| also shown for comparison with auiescent conditions. (See
¢a=45, 135. fig. 10-14 for complete quiescent reflection coefficients.) f=10 ke/s.

6. Conclusions

The reflection coeflicients of the lower ionosphere can be more rigorously determined from
geophysical data on the lower ionosphere with the aid of techniques developed in this paper.
The classical magneto-ionic theory can be employed, but is subject to restrictions as to the
use of the average collision frequency, g~v. It is therefore concluded that the same problem
should be re-investigated with the aid of the monoenergetic electron collision frequency and the
formulation presented in this paper for the determination of the complex parameter, g; com-
parison can then be made with the classical theory.
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Ficure 21. Reflection coeflicients (amplitude and
phase) of the lower ionosphere for low frequencies
wllustrating the action of the Lorentzian force (earth’s
magnetic field) in the classical magneto-ionic theory
during blackout conditions.

| T'ee| also shown for comparison with quiescent conditions. (See
fig. 10-14 for complete quiescent reflection coefficients.) f=20 ke/s.
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Ficure 22. Reflection coeflicients (amplitude and
phase) of the lower ionosphere for low frequencies
wllustrating the action of the Lorentzian force (earth’s
magnetic field) in the classical magneto-ionic theory
during blackout conditions.

| T°¢| also shown for comparison with quiescent conditions. (See
fiz. 10-14 for complete quiescent reflection coefficients.) f=50 ke/s.
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phase) of the lower ionosphere for low frequencies
ilustrating the action of the Lorentzian force (earth’s
magnetic field) in the classical magneto-ionic theory
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| Te.| also shown for comparison with quiescent conditions. (See
fig. 10-14 for complete quiescent reflection coeflicients.) f=100 ke/s.
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The results of this investigation indicate that the total blackout phenomena which
characterize HF do not extend through LF and VLF for the model ionosphere investigated
with the classical theory. Indeed, for the situations computed here the field was found to be
enhanced at VLF. The employment of these models does not alter previous conclusions on
the action of the Lorentz force on the electron in the ionosphere, i.e., the propagation into the
east is enhanced with respect to the propagation into the west, except to a lesser degree at
the higher frequencies, which also exhibit increased attenuation.
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