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Based on a formula derived by Wait, a numerical investigation of the equivalent im-
pedance of a wire grid parallel to the plane interface between two homogeneous media

(ground and air) has been carried out.

The calculations, which are of special interest to

ground wire system design, are carried out for the grid placed in the air as well as in the

ground.

1. Introduction

Many authors have investigated the electro-
magnetic properties of plane wire grids. Among
these, Wait, in particular, has considered the case
of a wire grid placed parallel to the plane interface
between two homogencous media, a configuration
which is of great interest in investigations of ground
wire systems for antennas. It is the purpose of
this paper to describe numerical computations
which have been carried out on the basis of Wait’s
formulas for the above-mentioned case.

2. Formulas Derived by Wait

In three papers Wait (1956, 1957, 1958) has
treated the case of a plane wire grid placed parallel
to the interface between two homogeneous media.

Wait shows that under certain circumstances the
two media and the grid may be considered equivalent
to a composite transmission line being shunted with a
certain impedance defined as the equivalent grid
impedance. This description is valid for (a) oblique
incidence, when the electric vector is parallel to the
wires, (b) normal incidence for any polarization,
(¢) perfectly reflecting interface, for any angle of
incidence and polarization, and (d) oblique incidence,
when the magnetic vector is perpendicular to the
wires.

The system which will be investigated in this
paper is shown in figure la. It is a system which
1s of interest for a simple radial ground wire system
of a wvertical monopole. The incident wave is
polarized in the plane of incidence, and this plane is
parallel to the wires; i.e., the case considered here
corresponds to the case mentioned above under (d).
The equivalent transmission-line deseription 1s
therefore valid. The equivalent circuit is shown in
figure 1b, K; and K, being the characteristic imped-
ances, I'y and T, the propagation constants of the
two transmission lines, and Z, being the equivalent
impedance of the grid.
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The grid consists of infinitely many, ideutical,
equidistant circular wires of infinite length, with the
radius @ and with the distance d between adajcent
wires. The grid is placed in the distance & from the
interface. The material parameters of the wires are
e, u and o', whereas the medium 1 has the param-
eters e, u; and oy and the medium 2 the parameters
€, us, and o,, where e is the dielectric constant, u the
permeability, and ¢ the specific conductivity. It is
assumed that w =wu=p=4r10"7 H/m; i.e. the
permeability of free space. The angle of incidence
of the primary field is called 6,. The corresponding
refraction angle 6, is obtained from Snell’s law;

sin 62:% sin 6, , (1)

where &, and k, are the specific propagation constants

of the two media. Using as time factor e '« we
define the specific propagation constant by

k:w\/ﬂe<1 +7:wi€>, 2)

where w is the angular frequency. The character-
istic impedance ¢ for the two media is given by

o/ ‘/.U' ) (3)
€ l+l~w~>

The wavelength X in the two media is defined by
the equation

2 .
)\:-k 5 (4)

and it is assumed that
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Under the above assumptions the magnitudes
occurring in the equivalent diagram in figure 1b are
expressed in the following way:

The characteristic impedances of the equivalent
transmission lines are

Kg——— o COS B, y (6)

K1:§‘100801 y (7)

and the corresponding specific propagation constants
are given by

Iy=—1k; cos b, , (8)

I'=—1k, cos¥, . 9)

The equivalent grid impedance is given by

> 22
tapd 080 1, 4 _popia ¥,
2m 2ra

(10)

Zy=dZ—

where Z; is the internal impedance per unit length
of the wires

~ 1 / Iw

Zi=gra\ 207 4—9)- (11)

The coefficient 12° is given by

T

(os 0,
cos 00)] +sin?6, I:l—

and

(16)

— /d cos 0.\ 2
A\Ylfz\/mz—*((/ (;\)T 01) )
N \/ ((l oS 62>

The formulas are valid for media with arbitrary
constants. The following considerations are mainly
confined to the case of medium 1 being air and
medium 2 being ground.

(17)

3. Discussion of Formulas

The above-mentioned formulas were derived by
Wait for the case, where the grid is placed in the
medium 1 (air) in front of (seen from the generator)
the interface as shown in figure 1. The equivalent
impedance of the grid when placed in medium 2
(ground) may be derived from these formulas by
replacing index 1 by 2 and index 2 by 1. Numerical
signs have been put around % in the formulas as we
will let positive values of A correspond to a grid in
the air, and negative values of & to a buried grid.
We thus obtain for the two equivalent impedances
7,0 (grid placed in air) and 7, (grid placed in
ground)

lc,(osa):l
ks, cos 6

ky cos 6, cos 6, ki cos 6,
I: (kg cos 02> :I[ (('os 0)] ) [1+<lw cos 0, )]

The coefficient 7" is given by

2m
T=In (1—¢ @ @hitay (13)

and A, which is a correction term that is negligible
for d<<{)\[, is given by

- (12)

1y twpd cos® 9, d 5 <
Zgp=dZ; BETE {ln Sra IaaT+Aa} (18)

) 1092
il e . 92{111 %L—I{QTJrAg}, (19)

°and A have the subscripts corresponding

where
R _aminl _amlnl to air and ground, respectively.
A=>" 1+ R, e @ ™M 1+H°e i (14) In order to discuss these formulas more thoroughly
m=1 N, m the variation of some of the terms (R°, I,, T, A)
will at first be considered, whereafter some simplified
expressions for the impedance valid in special param-
where eter cases will be worked out.
- k1 cos 6, <~ose ky cos 6,
N,+N. > ] [ N, ( 1 212 1 COS
» :[ ey cos 6, o cos 02 N ~ U, cos 6, 02
" ky cos 0 cos 6, k 0
NN, (G —‘)][N w( ) : 1 €08 6y
[ PR R, cos 6, 1+, cosg) | ™ sin?fy "\, cos 6,
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3.1. Discussion of Single Terms

For the sake of briefness we will introduce the
following quantities

1=s1n? 6, (20)
A\
q=<k—1) (21)
N,
a:]\_i (22)
m 5%
B N (23)

3.1.1. The Coefficient R°

The expression (12) for the coefficient 2° given by
Wait may be further condensed. We find

l1—q ki —Fk3?
20— 4 % 2Ty
Be=1 g =2 ke 1" &
and
]l)g:__]_q_'rq _j——lz 120, (25)

From these expressions it is seen that for 6,=0°
(perpendicular incidence)

R2=R°=0. (26)
When the ground is fairly well conducting

(o2>wes) the expressions for R° will become simple

for all values of the angle of incidence. In this
case we have
= ‘ weq
= =D
q -
which shows that
lgl<1,
as €= e when medium 1 is air.
We thus obtain
RS ~t g%, (27)
Ry~—qr, ie. |R;<1. (28)

3.1.2. The Coefficient R,,

Introducing the quantities (20 to 23) in the expres-
sion (15) for 2,, we find

_[M—grtaq(1—2)][1—gr—a (1—2)]+% (1—¢)*

== o trag(1—2) | 1— gz Ta 1—2)]—Fz (1—g)
(29)

and

[l) mg —

—[1—grtag(1—a)][1—gz—a(1—2)]+% (1—¢)*
e g (=) === (=== =
(30)

which show, that R,,, and R,,, only differ by a change
in sign in the first term of the numerators.

3.1.3. The Coefficient T

The coefficient 7', which is given by (13)
7 —2" olh+a)
T=In(1—e @ *“™™),

1s seen to vary monotonically with & between the
limits given for k|- and for h=0



For |h|—w we have B e S oo
=)L) T 3 (39)
T—In 1=0

and for |[h|=0 we get B g =]
Aho—w)(LYIDE S5 L g

2ra q a=im

T~1In <1—<1— >)— 111 P (31)

v AN (1 —22+42%) +*(3—12x+4%) +¢(3—2x) +1 1

A‘l(hAO):()\l) 49(14-¢)*(1—2x) =i (40)
3(1 — 5y Q__9n)_

Ag(/L:O)g<;\—[l>2 ¢(1—2z+422) 4 @2(3— 122 +4a?) +q(3—2x) +1 (41)

3.1.4. The Correction Term A

In the following we shall find the first order
approximations for the correction terms A, and A,
which are supposed to be vanishingly small when

4Q(1+EZ)2(1—Q1) 'm=1713.

It is seen that the two last-mentioned sums are
equal except for the factors (1—z) and (1—gz) in
the denominators as they should be for A=0.

d<|\|. The terms are given by 3.2. Common Case
o e il In order to discuss the magnitude of the terms
A= — B—1+BR, e~ @ 1—Roe™ a ‘"‘} involved in the common expression for 7, we write
m=1 M (18) and (19) in the form
©2) | z,=dz,
B sl il : ,
pa 1 ey { 1+ Rpe o M—Rze e } —u;‘:rd{coﬁ 6, In ;);_LOJ—-(‘OSZ 0,107 +cos? BIAG}
- k -
(33) (42)
We shall only calculate the sums for the extreme | Z,=dZ,
values h=0 and |h|—w. . .
The quantities « and 8 given by (22) and (23) are _toud ) A DO el
developed in powers of the quotient 6 defined by el In ora 08 03T +-cos* 64
\ | (43
-_—_—-.1_5 <Ll_> : (34) )
m2 A\, where
Here and in what follows only the first order terms cos? 6, lgzl;q o (44)
of & are considered. l+q
We thus obtain
e (35) 052 Ry —=—1—1 (4)
54 35 cos? 0,125 1T¢ qx 5
1\? ¢®(1—2z+42%) +@2(3—12x+42?)+q(3—22) +1-&, 1
08? 0,4,(h=0) =c0s? 0,4, (h— g(‘—> : =
cos? 0,4,(h=0)=cos? 6,A,(h=0) N 10+ 205 (46)
~ 2 ~ i)z (=g &, 1l ~
B 6) co8t BA (i >:<m LS @
where we in the approximation for « have made the
further assumption that also COS? BaA (fr—>— w>~<d (l—qJ > ;’11_ (48)
f=h

0

@<<1. (37)

Introducing the expressions (29) and (30) for
R,, the expressions (24) and (25) for R°, and the
above expressions for « and 8in the formulas (32) and
(33) for A, and A, we finally find

The numerical value of the factors cos® 6,R° and
cos? 6,13 will always be less than unity, as the real
part of ¢ never becomes negative. Therefore, as the

d

most significant value of 7" is—In 5’ the greatest
T
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. . d
second term in the bracket is In —;
2ma

the same as the greatest value of the first term in
the brackets. The terms cos? 6,A, and cos? 6,A, are
as will be shown numerically in the next section
always very small as compared to the other terms in
the brackets and may usually be neglected.

The term dZ; is usually much smaller than the
other term in the expression for Z,. Only for large
positive h (7—0) in the case of 6, approaching 90°

value of the

d o
<(-os2 6, In ()—a——90> dZ;becomes significant. Because
T

of this, the phase angle of Z, is very near to—90°
except for ;=90°, h—-+w  where it 18—45°.

3.3. Special Cases

We shall now work out some simpler expressions
for the equivalent impedances valid in special cases.
The correction term A will be omitted.

3.3.1. Grid in Interface, h=0

In this case the two impedances Z,, and Z,, are
equal and given by

=" =17 ——Mln (os 0, (1 +RY ). (49)

If the ground is assumed to be fairly well con-
ducting, so that Ri~tg* 6, we get the following

expression for the impedance.

Z,~dZ, #f‘”“”lll-f’»-,
-7{' A

2ma (80)
which shows, that 7, in this case is independent of the
angle of incidence 6; and of oy, provided only that
T,>>> WEs.

However, the same expression for 7, is obtained
when the gloun(l is poorly conducting, but only for
0,—0°, as ° in this case is zero and cos® §,—

3.3.2. Grid in Ground

When || becomes large we have that 7-0 and
consequently get

d
Lipeg—0dZ— ng cos® 6.

) wud 1

(51)

For the fairly well-conducting ground we have
|[Rg|<1, and as the greatest value of |7 is the same

as the other term (ln —) in the brackets we may

neglect the term 797 and therefore get

d .
1 1 5‘;55 (00)

1wud
2

Zy—=dZ—

the same value as was obtained above for h=0.
There is consequently no variation of 7,, with 6,, h
or ¢, when the grid is placed in a ground, which is
fairly well-conducting.

Independent of the conductivity o, we have /79=
for perpendicular incidence, 6,=0, and as cos®f,=1

in this case we again get the value
o, tepd d -
=0 5 In 5 (50)

3.3.3. Grid in Air

When [i] becomes large we have T—0; we there-
fore obtain

Toud d o _
iz L 52
= 5 In 5rq 08 6y, (52)
which is independent of the ground constants. Krom

this expression it is seen, that for 6,—90° the equiva-
lent grid impedance is exclusively determined by the
internal impedance 7; and the distance between
adjacent wires

= (53)
As I°=0 for perpendicular incidence, 6,=0°, we
again get the value
Twud d
Lg=dZ;=— . 50
& ! 2w 2ra ()

3.3.4. Survey of Formulas for Special Cases

A. The equivalent grid impedance is given by the
expression

d
5 (50)

Z,—dZ, _7wp,(/

‘)7[_
in the following cases:

(a) 6,=0°, h, and o, arbitrary.
(b) Well-conducting ground, grid in ground (includ-
ing h=0), h, 6,, and o, arbitrary.

B. When the grid is placed in the
interface, h=0, of a poorly-conducting
impedance 1s

ground-air-
ground the

i w,u([

Ley=dZ,— ln—(os"’ 0, .(1+R; . (49)

C. When the grid is placed in the ground and
h—>—o the impedance is

9 wu(] d

Zy=dZ;— 1\

(1)

cos?0,.
T

D. When the grid is placed in the air and h—e
the impedance is

wu(/ | d

—dZ,—
=) 1 9ra

cos? ;. (52)

E. When the grid is placed in the air, 6,=90° and
h—o the impedance is

Zg:(lZi. (53)
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4. Numerical Computations

In order to give a more instructive picture of the
variation of the grid impedance numerical compu-
tations have been carried out for the following
parameter values:

Ploquon(' 7= 200 kHz
Radius of { the wires a=0.001 m
Specific conductivity of the wires ¢’=5.8-10" S/m

(copper)
Medium 1 is air with

€,=8.854-1072F/m
a1=0 S/m.

Medium 2 is ground with

=10 ¢,—=8.854.10~ " F/m
a;=10725/m or 107°S/m (Fairly well conducting
and poorly conducting ground, respectively).

The distance d between the wires varies from small
values (determined by the condition d>a) up to
8 m, and as the wavelength in air is 1,500 m, the

i )\i<<1 is fullfilled.
1

2
The coefficient q:(%) will for the two sorts of
2.
ground be given by:

—40.0011 (6,=10"2.8/m)
(0:=10-5S/m)

7= 0.1

so we have

I:i:'  [2.6:107 (6;=1072S/m)

[¢] dmax | 2.9:107% (6,=10"°S/m),

which shows that the condition (37) is fulfilled for
both sorts of ground.

The correction term Acos? 8, which is proportional

to d? will be calculated for d=8m, the greatest value
of d used in this investigation. As we have
2,1
PR
we find
h A cos® 6 A cos® 0
(0,=0°) (6,=90°)
+ o 1.7-107° 0
0s=10"2S/m 0 1 7.8:107° 17.81073
==G8 7 1.6-1072 721.6-1072
(o 1.7-107° 0
6=108/m<{ 0 94107  8.1.107%
—Ce 1.7-107* 1.4-107*
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These quantities should in all cases except for
h=-+e,6,=90° where all terms in the brackets are
zero, be compared with a term of the order of

magnitude In —i; which for d= 7.2
2ma

This shows that in the present computations
A cos® 6 could be neglected in the case of the poorly
conducting earth and that A cos® 6 has a small
influence in the case of the fairly well-conducting
ground, however, the influence is so small that
A cos? 6 in most calculations may be neglected. This
has been done in the computations described below.

Figures 2a and b and figures 3a and b show the
variation of Z, with the distance h of the erid from
the ground surface with the angle of incidence 6, as
a parameter. Figure 2 applies for the fairly well-
conducting g_)lound (05=10"2S/m), whereas figure 3
applies for the rather poorly conducting ground
(63=107°S/m). In both cases curves have been
given for the numerical value as well as for the phase
of Z,. The figures show that the grid impedance
varies considerably with the angle of incidence when
the grid is placed above the ground surface, whereas
this variation is small when the grid is placed on or
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Froure 2. Equiwalent grid impedance as a function of the
distance from the wire grid to the ground-air interface (nega-
tive values of h correspond to a buried grid).

Well-conducting ground o3=10-2S/m.

a, Numerical value of impedance.
b, Phase angle of impedance.



below the surface; in the case where the ground is a
good conductor there is practically no variation when
the grid is placed in the ground, as found in the
foregoing section.

The strong variation in the numerical value of the
erid impedance in the case where the grid is placed
in air is illustrated further by figures 4, 5, and 6.
In figure 4 |Z,] has been plotted as a function of 6,
with the specific conductivity of the ground o, and
the distance d between the wires as parameters in
the case where the wires are placed on the ground
surface (h=0), and when the presence of the ground
surface 1s not taken into account (h=w). Figure 5
shows corresponding curves for d=1m and for
various values of h.

Finally figure 6 shows |Z,] as a function of the
distance d between the wires in some of the special
cases mentioned in section 3.3.4., namely the cases
A, B for ,=90°, and E. Curves of the phase of 7,
corresponding to the three last mentioned sets of
curves have been omitted since the variation of the
phase angle in these cases is very small.
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Fraure 3. Equivalent grid impedance as a function of the
distance from the wire grid to the ground-air interface (nega-
tive values of h correspond to a buried grid).

Poorly conducting ground, e2=10-5S/m.

a, Numerical valne of impedance,
b, Phase angle of impedance.
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Freure 6. Numerical value of the equivalent grid impedance
in some special cases as a function of the distance between
adjacent wires.

Z¢(A) is valid for
(a) 6;=0°, h and o3 arbitrary
(b) Well-conducting ground, grid in ground
(includlng h=0), h, 6;, and o3 arbitrary.
7¢(B) is valid for h=0, 2=10-5S/m.
7Z,(E) is valid for a grid placed in the air, k>, 6;=90°,
a3 arbitrary.
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5. Conclusion

The equivalent impedance of a wire grid placed
parallel to the plane interface between air and ground
has been investigated numerically, and curves have
been plotted of this impedance as a function of the
dimensions of the grid and the parameters of the
ground.

The computations show that the approximation
usually made in calculations regarding ground wire
systems, namely to use the grid impedance corre-
sponding to perpendicular incidence, is justified when
the wire system is placed in the ground, but that
considerable errors may occur when the grid is placed
above the ground surface.
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