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The theory of extremely low frequency radio wave propagation from vertical and
horizontal electric dipoles in a half space, separated by an infinite siab from another half
space, is discussed and application is made to the specific case of the sea water-atmosphere-
ionosphere problem, with dipoles located in the sea water. KEach of the media is assumed
homogeneous and isotropic. When attention is restricted to the frequency range 1 to 1,000
¢/s, integration in the complex plane leads to consideration of the pole corresponding to the
TEM mode of transmission and two branch cut integrals. One of these (that giving rise to
propagation of energy along and in the ionosphere) is found to be important in the case of the
horizontal dipole.

1. Introduction

The “mode theory” of VLF and ELFK radio wave propagation has been well developed by
several investigators (such as for example Wait [1960b] and Brekhovskikh [1960] who also give
extensive bibliographies). An integral representing the Hertz potential in any layer of a
multilayered medium due to a source in the same or any other of the layers, is readily obtainable,
the most common representation being as a superposition of cylindrical wave functions.
Typical integrals of this sort are not easily evaluated, however, except in the very simplest cases.
For this reason, most of the analytical effort in the past has been confined to models associated with
rather common physical situations, as for example the propagation of seismic waves in the
earth [Pekeris, 1948], or the electromagnetic wave radiation from lightning strokes in the
atmosphere [Schumann, 1952].

In this paper attention will be directed to the particular three-layer model which simulates,
in plane parallel geometry, the sea water-atmosphere-ionosphere problem of radiation from
electric dipoles submerged in the sea water. The situation is illustrated in figure 1. It is
expected that the results will approximate those of a spherical model reasonably well out to
distances from the antenna on the order of the earth’s radius [Wait and Carter, 1960]. The
equivalent two layer problem (dipoles submerged in sea water with the atmosphere assumed
homogeneous and semi-infinite) was first investigated by R. K. Moore [1951] and later by
Bafios and Wesley [1953, 1954].

As is customary in such problems, integrals expresssing the Hertz potentials are deformed
into the complex plane and their determination is reduced to the evaluation of residues at
poles, plus integrations around appropriate branch cuts. In the frequency range 1 to 1,000
¢/s only one of the poles—that corresponding to the TEM mode of transmission—is of impor-
tance at appreciable distances. Asymptotic estimates of the branch line integrals are made,
and it is found that the contribution from one of these, in the case of the horizontal dipole
and the lower portion of the frequency range, is not generally negligible in comparison with
the mode solution. This corresponds physically to the fact that appreciable energy is prop-
agated along and within the ionosphere.

1 This work was performed at the University of New Mexico under Nonr contract 2798(01).
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2. Development of the Hertz Potentials

2.1. Vertical Electric Dipole

The development in this and succeeding sections is given in terms of the Hertz potential,
designated by the vector 7. The boundary conditions can be satisified, for the vertical dipole,
with a single component, which will be considered a z-component, corresponding to dipole
orientation along the z-axis of a cylindrical coordinate system. Subseripts 1, 2, and 3 will
later be identified with sea water, atmosphere, and ionosphere in that order. Each of the
three media is assumed homogeneous and isotropic. The time dependence is taken to be
as ¢'“" and is thereafter suppressed.

The parameter £, is defined by

k2 =i, — T, =1, 2,&

with the understanding that the square root having negative imaginary part is to be taken.
This may also be written

2_; - B .
k2=wu €, =1l 2, &

Lo 1 UII
where €,=— ¢,+~
1w

is the so-called “complex permittivity.” The quantities e,, u,, and o, are permittivity, per-
meability, and conductivity, respectively. M. K. S. units are used throughout.

The water-air boundary is designated by the plane z=0, and the air-ionosphere boundary
by z=h. The dipole location is at z=—2z, (see fig. 1). Representations for the Hertz po-
tentials are made as superpositions of cylindrical wave functions, and upon application of the
boundary conditions we find for regions 1 and 2 (where we are mainly concerned with the fields.)
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in which K, (\) :%P@’ =123

with B, a separation parameter defined by
; Y
B‘Izl_lf;l X-

and I?,=0,4iwe,. The imaginary part of 8, is taken as negative.
The identity

Ti0) =5 [ () +H (09)]

allows the integrals for = and m, to be written as the sum of two integrals of which the first is
deformed into the first quadrant of the complex A-plane; the second into the fourth quadrant,
as shown in figure 2. It can be shown that the only contributions arise from integrations
around branch cuts 2 and 3, and the residues at poles. At appreciable distances the contribu-
tion from branch cut 3 will be small, so that it can be omitted from consideration.
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The formal expression for the residues at the poles is, for region 1,

2%7rM - i1 (z—2y)
Z H@E (N\p)); m (2.3)

where B =(ki—\)"? and the \; are the zeros of (K;+75).
For region 2 the residues at poles are

e~ 8192 (K, cos Bz—1 K sin Boz7]
e e 24

In evaluating the branch line 2 integrals it will be necessary to make some approximations.
For the frequency range 1 to 1,000 ¢/s it is permissible to state

2eM 33 HE (M)
J

k? ~ — T w0
k3~ oo
k%z—iwuoas. (25)

Designating k;=a(1—1), defining a new parameter of integration, ¢, by
A=a(l—i—1t)

and replacing the Hankel function by the first term of its asymptotic series, the branch line 2
integral for the Hertz potential in region 1 becomes

iry = —2Ma™e"/%,54 \/ 7?2,, e"“"“”f tVEF (t) e dt (2.6)
0
where
[t+2(1+4) V2 (1—1—1t)V2BeiPre—2
D(\(t))

()=
in which the g’s are expressed in terms of ¢, and
D(N) = 6363 (816 +61825) *— B3 (815 —518:¢) .

The definitions 6;= 0,/ we, 83 = 03/ wey, s=sin Bh, and ¢=cos B,h are used.
The first term of an asymptotic expansion, obtained by integrating terms resulting from a
Maclaurin series expansion of F(f), gives
Bldeibl(z_zo) e—dp(1+i)
Bg(blz_*—albgg)z p2

I, ~2y2M ¢34 (2.7)

where b,= (k,*+2ia*)"? n=1, 2, and s=sin bs;h, ¢=cos boh. Since |k,*[>|2ia?| it is quite accu-
rate to take b, =~k,.

Succeeding terms in the series would go as p™%, p~* ete. The factor exp [—ap(1-+1)],
or exp [—1iksp], indicates the physical process to be one of propagation along and within the

jonosphere.
Similarly the branch line 2 contribution to the Hertz potential in air is found to be

1“”23/2(1516—”/46—1‘@4 i ~ap(1+z)
BB T ab (O i Boe—bibs cos Bee) “—p— L

2
I5,~

Evaluation of the mode solutions requires knowledge of the poles, \;. Taking reasonable
values for the physical constants involved, it can be shown that the pole for the lowest order
mode is given approximately by

)\o—lcz[H—h = ]”2- (2.9)

W’2w#00 3
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Approximate formulas for poles of arbitrary order are available (see, for example, Wait
[1960a and b]). For the frequency range under consideration here only one pole, that which
for perfectly conducting boundaries would be related to the TEM mode of transmission, is
very close to the real axis of \. The others are located near and to the right of the negative
imaginary axis, and their relatively great imaginary part insures that they are heavily damped
at appreciable distances from the source.

Thus the important mode solution for the 1 to 1,000 ¢/s {frequency range is, in region 1,

8,0 (2—zp)
I,V = ZWM Mo, (Nop) (76+7—MT (2.10)
il (19 =X
and in region 2
2r M\ e~ 1Y% 58,0 cos 8,0 z48, sin 8,z
I,2="—"0H O30 Lt R i 2.11
01 0 ( op) ﬁz(O) (Kl‘J{‘Zz)/A:)\O ( )

2.2. Horizontal Electric Dipole

The development in this case is similar except that two components, m, and ., of the Hertz
vector are required to match the boundary conditions, for a dipole oriented along the z-axis.
Lack of symmetry in azimuth gives rise to Bessel functions of order 1 in the formulation of the
a, component. 1t is found that for the z-component

i f Lo, () 1=50] 2 T (hp) A (2.12)
0 1

raM [ (VAO) =B e] 25 ¢ Ty (rp)i (2.13)
0 1

M J V(N e ifs? % =510 Jo(Ap)d) (2.14)
0 ‘M1

={
61+U

Bo+1B5 tan Boh

By B:+U,
Bs Bi+UY

where WIO\)—

with U,=8,

and V,(\)=—16, =

Bi Be—
Wg()\) '&61 63 6 _}_(]

Region 3 will not be further considered.
For the z-component we have in regions 1 and 2

JlO\P)

e conlo L 1) erce=z0 DR) 3o @.15)

e f [1//2()\)6"52 +¢2<x)6162] J.0w) & )\“’dx 2.16)

where
— 81) (B3s—83B2¢) (Boc +1B38) — 6, (1 +65) 87
(300 +1355) (8382¢— Bs3s) (B11-Us) (B 1+ X>)

2(%'—51)61]
Bi+U,

2(1—61)B4
B1+U,
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in which X;=—1¢,7,, and s and ¢ are defined as before. Contour integration as in the case of
the vertical electric dipole gives, for the important contributions in region 1,

—ap(1+1)
IBLQ(II) ~2\ 2 ‘1(16‘1”/4G<0) e (217)
- eibl(z-zo)
where G<O)~——(b15—!—ibg§)z
with b,, n=1, 2, defined as before. In addition
4@2 ) o e—ap(H»i) )
IBLQ(ZD ~M cos ¢W 61k1(' '0) —pg—' (215)
and the mode contribution (excited only by =) is
50 ~2mM 08 GAH® (Agp) ™" (=0 ') (2.19)
('—*)(51 A’?)x N
where ) ) )
F(M:('L_al)(ﬁss_asﬁzc) (62(.7“"1533)_51(7/ +53)B§
(63B826— Bs) [B1 (B2¢ +1B38) + B2 (Bsc+1625) |
In region 2
‘ . o= P+
I3 ~2Me'™'*a'/2S(0) — (2.20)
P
where
~ 2a'?e~"1%0(b, cos boz-+ib, sin byz)
$(0)= (bic+ibs5)?
in/a —ipze (D2 COS Doz 410y sin byz) e~ 20 1+D
152, ~4M cos ¢pa?s e /te~ 0170 22 2b2b§c - = (2.21)
and for the mode we have
_iﬂ(ln) 2 -
199 =2 M cos GAH® (p) Lo - TR012) (2.22)

BY  (BitXoion

where

r(n,z) =080 (Bas—b:8:0) (Bac+-iB58) —01(i+03) B3] (B sin By2—6,B, cos By2)
<— %(;) (Bae+1Bs5) (65826 —B3s) (B1+U2)

3. Field Components

3.1. Vertical Electric Dipole

The field components are found in the usual way by differentiation of the Hertz potentials.
In the following the superseript (v,m) will be used to denote “vertical electric dipole, mode
solution” (assuming that only the one mode contributes substantially), and (2,6) will denote
“vertical electric dipole, branch line solution.”” It is noted that the term (ki—B{®2) is equal to
N, but otherwise the approximation g{” =k, can be made throughout. The field components
in the sea water are:

27I’M 6ikl(z—zo)

Fom — 2] [I @\ - 3.1
1p I ( Op) (K1+Z2))\=)\0, ( )

, 2imM ; gtz

Eem —__ 3772 P 3.2

1z o >\0H0 (AOP) (K[ +Zg))\=)\0’ ( )
. eikl(z—zo)
HiEm™ =2ixM (3.3)

)\(2)H1(2) ()\()P) (K1+Za)): )‘ x
A=)
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10303
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where )
q(N\,2) =06,8; sin Byz— By €oS PBoz

P(X,2) =8, cos Byz+B:/B: sin Bsz.
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3.2. Horizontal Electric Dipole

Using the superscript (f,m) for the mode solution in this case, and (k,0) for the branch
line contribution, it is found that in the sea water,

where

Etem =2Mikmw cos ¢N[Hi(Nop) — Hi(Nop) Je 1 (>~
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In the atmosphere the field components are:

where

and
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—iky2g

E{I™=2ixM cos pASH? O\Op)
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2 —ap(14+1)
H®Y=—sin ¢ M (by sin byz—1b, cos byz) e—P—z——— (3.28)
1wk P
. . e—ap(1+i)
Hl Y =cos ¢pB3(bs cos byz-+1b; sin b,z) ra (3.29)
. . —ap(1+1)
H Y =sin ¢ Aa(1+1) (by cos byz+1b, sin by2) o (3.30)
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232/ gt I4qe =170

(b Fibs)?

—4‘][(,/1'3#/451026—1'171:0
b2h2e

B=(k3+2ia®) A, +a(1+1)b,A4,,
BQ:A'§112+Q(1‘i) bg[ll,
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B3:(l(]. +7:)1’1g+’l:b2111.

4. Conclusions

Not too many numerical results have been obtained from the formulas as yet. Some calcu-
lations have been carried out, however, for the fields in sea water at a distance of 1,000 km and
frequencies of 1, 10, 100, and 1,000 ¢/s. Conductivities of 4 and 10~° mhos/m were assumed for
sea water and ionosphere, respectively. The ionosphere height was taken to be 90 km, a figure
which has been used with some success in KLF studies [Wait and Carter, 1960].

The more important results can be summarized as follows: (See also fig. 3.)

1. The mode solution (corresponding approximately to the TEM mode in a parallel-plane
waveguide) involved here is excited more efficiently by the vertical than by the horizontal
electric dipole. This is not unexpected.

2. The branch line contribution (corresponding to energy transmitted along the air-
ionosphere boundary, but within the ionosphere) in the case of the horizontal dipole is greater
than the mode contribution at 1 and 10 ¢/s by as much as 10® depending on the component
concerned.

3. At 1 ¢/s the field components due to the horizontal dipole are greater than those of a
vertical dipole of the same moment by virtue of the branch line contribution. At 10 ¢/s and
higher the field components of the vertical dipole are greater by virtue of the mode solution.
At greater ranges, the vertical dipole mode solution would predominate even at 1 ¢/s, due to
its much smaller attenuation with distance.

4. The system attenuation between half wavelength (in water) ““coaxial antennas” [Moore,
1951] separated by 1,000 km is more than 250 decibels for any frequency in the range consid-
ered, not including attenuation in the z-direction, that is, attenuation due strictly to the sea
water. 1In view of the fact that noise power is substantial in this frequency range, the difficulty
of practical communication under such conditions would seem to be great.

5. At distances less than 1,000 km the branch line contribution will be important even in
the higher portion of the 1 to 1,000 ¢/s frequency range, and should therefore be investigated
more carefully. Since the asymptotic series expansion is usable only for large values of p,
some method other than that of asymptotic expansion must be used. Perhaps numerical
integration would be in order. At closer distances it is possible that substantial contributions
from the more highly damped modes may occur; therefore these may also require investigation.

More details as to the actual figures obtained by computation are available in a report, by
the writer, published by the University of New Mexico, Engineering Experiment Station,
Technical Report KE-44, February, 1961.
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The reader will note by reference to figure 3 that since the magnitude of the field compo-
nents increases with frequency in the case of the mode solutions, and since attenuation due to
travel in sea water increases monotonically with frequency, then at any combined depth of
receiving and transmitting antennas there is evidently an optimum frequency. There is no
optimum for the branch line solutions, however.

It should be mentioned that in view of the large system attenuation at distances of 1,000
km or greater, it is perhaps only of somewhat academic interest to consider refinements in the
model which would take into account the anisotropy and inhomogeneity of the ionosphere.
As pointed out by Wait [1960a] the assumption of a refractive index increasing exponentially
with height causes an attenuation rate which varies more rapidly with frequency than that for
a homogeneous ionosphere. The experimental data seems to require this more elaborate
model. In the problem considered here, however, experimental testing of the theory is prob-
ably not feasible except at distances less than 1,000 km or so, and at such distances it is not
expected that the results will be drastically changed by the different attenuation rate. The
effect of the anisotropy caused by the earth’s magnetic field is likewise expected to be relatively
minor [Wait, 1960a] at such distances.
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