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Employing an idea of Brekhovskikh, an expression for the reflection coeflicient of a
continuously stratified ionized medium is derived. The result is in the form of a series
whose first term is a Fresnel-type coefficient and succeeding terms account for the finite
thickness of the transition layer. This result is then fitted into previously developed theory
for propagation between a spherical earth and a concentric ionosphere.

1. Introduction

In the mode theory of VLE radio propagation it is often assumed that the lower edge of
the 1onosphere may be represented by a sharply bounded and homogeneous ionized medium
[Wait, 1960]. This assumption could be criticized as being unrealistic as it is known that the
boundary between the non-ionized lower atmosphere and the ionosphere is “gradual.” Un-
fortunately, the profiles of electron density and collision frequency, in the height range of
importance for reflection of VLF waves at oblique incidence, are not well known. At these
low heights (i.e., around 70 km), the rocket measurements are not reliable and vertical inci-
dence ionosondes give even less information. Some important qualitative data have come from
the use of weak backscattered echoes at medium frequencies [Ratcliffe, 1960]. Among the
findings of such work is the occurrence of very sharp gradients in electron density in the height
regions of 60 to 80 km.

In view of the preceding remarks, the sharply bounded model is not completely unjustified.
Furthermore, it agrees with much of the experimental data at VLE if attention is restricted to
highly oblique incidence. Nevertheless, it is desirable if more attention is paid to the possible
influence of the “gradualness” of the ionosphere boundary. By making use of a digital com-
puter some excellent progress has been made in this direction [Ferraro and Gibbons, 1959;
Barron, 1959; Johler, 1962; Budden, 1961]. In particular, Johler [1961] has made a careful
comparison between full wave solutions for certain gradual and sharply bounded models. His
results indicate that the sharp boundary is often quite adequate.

It is the purpose of this paper to outline a relatively simple approach to the problem and
to fit the results into the mode theory.

2. Formulation

To start with we shall assume an inhomogeneously stratified medium. With respect to a
Cartesian coordinate system (z,5,2), the refractive index N(z) is assumed to be only a function
of z.  As z tends to positive and negative infinity the refractive index is assumed to approach
constant values. That is

N(Z)]Z‘—)—Fco :.Z\"Tl
and

N(2)]»--=1.
At z=— =, a plane wave is incident at an angle 6, with respect to the positive z direction.

1 The research reported in this paper has been sponsored by the Advanced Research Projects Agency, Washington 25, D.C.
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To simplify the discussion the earth’s magnetic field is neglected. This is justified, at
least in part, since the collision frequency is somewhat greater than the gyro frequency of
electrons in the lowest ionosphere.

Thus N(2)=|:1—i c?:r

9
. wy
where « is the angular frequency, and w,(z)=——"

(1)

v+iw

where wy and w are the (angular) plasma and collision frequencies, respectively [Ratcliffe, 1959].
These latter quantities are also functions of the coordinate z. It is convenient to introduce a
dimensionless factor L.(z) in the following manner.

1

NG) :(1-%}5

= q 1 _w7(2>~ wg D)
Uk I(2)” w ~Ootiow &
Then

L)t e=14
and

L(2)]:r— o= .

In most applications at VLLF, » > >w, so that L(z) can be regarded as a real parameter.

The problem is to calculate the reflected wave at z=— . If the electric vector of the
incident wave was perpendicular to the z axis, the resulting differential equations can be solved
in terms of known functions provided certain profiles of N(z) are used. The elegant analysis
of P. S. Epstein [1930] for normal incidence can be carried over directly to this case (i.e., for
horizontal polarization). Other closed-form solutions for the case of F-parallel polarization
are also available in the literature [Brekhovskikh, 1960]. Unfortunately, the differential
equations for H-parallel polarization (i.e., for vertical polarization) are somewhat more com-
plicated and closed-form solutions for special transition profiles do not seem to be readily
available. Thus a perturbation procedure is adopted following the suggestion of Brekhovskikh
[1960].

3. Differential Equation for the Reflection Coefficient

Without any loss of generality, the 77 vector is taken to have only a ¥ component. Thus,

for a time factor, ¢'*’, Maxwell’s equations are given by
OFE. OF,
oz O

=—1iuwH,, iewE,z—%?(; zln(lieszz%ig (3)

where p and e are the magnetic permeability and permittivity of the medium. For sake of
generality, both u and e can be regarded as functions of z.  Of course, in applications to the
ionosphere u can be replaced by its free space value . The retention of a variable p in the
theory permits one to readily adapt the results to arbitrary polarization. Furthermore, the
analogy in acoustics is readily brought out.

Now the sum of the incident and reflected waves is defined in the following manner.
The sole magnetic field component is written

H,=[A(z)+B(2)] exp [—1(ep)*Sz] 4)
while the two electric field components are written
E,=[A(2) — B(2)] Clu/e)texp [—i(en)*Sz] ®)
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and

E,=—[A(2)+ B(2)]S(n/e)* exp [—i(en)*Sx) (6)
in terms of S and € which can be regarded as sine and cosine of angle # which is itself a function
of 2. At z=— o the incident wave is taken to have an angle of incidence 6,.

In these equations, k= (eouo)iw where ¢ and g, are the constants of free space, while A(z) and
B(z) are not yet defined. Since these field components are to satisfy Maxwell’s equations, it is
required that

(em)*S=constant

and since S=sin 6, e=e, p=p, at z=— it follows that
()} S = (eguo)? sin 6, (7)
which is just a statement of Snell’s law. Furthermore,
C*4-82=1.

Again, as a consequence of Maxwell’s equations, A(z) and B(z) must satisfy

- 1+ WBAFT(A—B)=0 ©)
dl
' A)=0 (9)
where
o= (ep)¥(
and

Equations (8) and (9) are easily combined into a single equation for the ratio B/A=R(z). Thus

1(]1[—‘_9 isR+-T(1—R? (10)

where £(z) is, by definition, a reflection coefficient. Results, more or less equivalent to (10)
have been given by Budden [1961] and Brekhovskikh [1960].

4. Tterative Solution

To obtain a solution, £(z) is written in terms of a new function #(z). Thus

p9)vE)—g, ' -
o) T, (1
where 9() =5, (N80 K=, Sy=sin 6,
1
e 51— 15 9() =7 (V=89 K=/

Now, since ™ R(2)=0, it follows that ™ w»(z)=1. The differential equation for »(z) 'is
obtained by substituting (11) into (10). This can be written in the relatively simple form

__(!7: ke N g _/1< qj ‘2>
g K JIT (8152

where &= (eu)? w and N, K, and ¢ are functions of z. Using a method of successive approxi-
mations (see for example, Z. Kopal [1955]), the solution can be expressed as an ascending
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series in powers of k. For example, the zeroth approximation is to replace the right-hand
side of (12) by zero, thus » is a constant which must be unity to satisfy the limiting condition
at z—>oo. The first approximation is obtained by replacing »* on the right-hand side by unity.

Thus ,
,
z‘:l—l—ikglf Ak —"—) dz (13)

where the limits of the integration are chosen so that » satisfies the limiting condition at z= .
The second approximation is then obtained by substituting the latter result for » into the
right-hand side of (12). In general, the nth approximation, »,, can be found from the (n—1)th

approximation, v,_;, by using
. N?
v,,zl—}—q,lcglf (1 v2_ 1>d7 (14)

5. Some Simple Extensions of the Solution

While these results have been developed with specific reference to an incident wave with
the electric vector in the plane of incidence, the results are also applicable to the other polari-
zation. If the magnetic vector of the incident wave is in the plane of incidence (i.e., horizontal
polarization), the results are still valid if the following transformations are made.

H,—E, E,—~—H, E,—~—H, u—e, and e—>pu.

Thus the formula for the reflection coefficient R, given by (11), is still valid if K is replaced
by €/en and N is not changed.
There is also a well-defined acoustic analogy to the problem being discussed. In this case

(2)——ﬁ where ¢(2) is the velocity of sound and ¢, is the limiting value of cat z=— . Thus

the velocity is varying from a constant value ¢, to a differing constant value ¢; at z=- .
Also, K(2)=p(z)/po where p(z) is the density and p, is its limiting value at z= «. The com-
ponent /), is then analogous to the acoustic pressure and £, and £, are analogous to the z and z
components, respectively, of the particle velocity.

6. Discussion of the Form of the Solution

It is interesting to note that for the zeroth approximation (corresponding to »=1), the
reflection coefficient may be written
K 9\ 1
O—pt (N3-S}
R— L where Cy=cos 6, and S,=sin 6,. (15)

aﬁﬁyN%aﬁ

This is the Fresnel reflection coefficient for the reflection of a plane wave at oblique incidence
from a sharply bounded and homogeneous medium. Thus the higher terms in the ascending &
series account for the “gradualness’ of the boundary.

In the general case, the reflection coefficient may be written

— (Ky/N3) (N3—S8)/v(20)
00+(K1/N )(Ni—=88)¥/v(20)

R( 0)"‘ (16)

where z, is some convenient level, below which K(z) and N(z) may be regarded as unity. Thus
the total field in the region z< z; can be written

Hyzlloe—ikrso[e—ik(z~20\6‘0 —|—R(zo)e+"k("+zo)00] (17)
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where I is the value of the incident wave at the fictitious interface, z=z. In the second
approximation, neglecting terms in £* and higher,

v(zo)glJrikglf ok 1—2)(17+2sz X U i 1—-=‘L>d ]d/. (18)

Succeeding terms quickly become more complicated. Tt can be seen that the integrands con-
tain the factor 1—(g/g1)? in each of these terms. The presence of this factor permits one to
replace the upper limit of each of these integrals by z,, where z, is the level above which N(z)
and A(z) may be replaced by N; and K;. Thus the transition region may be defined as the
interval z,<2<(z. On this basis, it is apparent that the nth term in the series for »(z,) is the
order of [k(z;—zy)]". Consequently, the series converges rapidly when the electrical thickness
of the transition layer is small.
As an interesting check, the transition is replaced by a homogeneous slab. Thus,

ZV(Z):],V and K(z) —K when 20 2<2,.
In this case, the reflection coefficient is given exactly by Wait [1958].

O (z0)— (N3— SHHE,/NY) i

B =) T (V= S)IE /N

provided

20 AT2_ Q2\} 5 =
14 ENVIZ S0 4o itz — 20 VAP — 3]
B NVi(V7— S)° : (20)
K Ni(N*—8)?}
K, N (Ni— St

v(20)=

S
14~ tanh [tk (21— 2,)V N?*— S§]

If ]k(sl—zo)w/ﬁ”— 3|<C<1, it is seen that to a first order,

{20 A2 Q23 foate Rre_ Q2
IO EELAC i [1—K N SO} k(21— 20) (1)
: Kk R i

which is consistent with the first two terms of the series given by (13).
For some applications to VLF propagation, it is desirable to express the reflection coefli-
cient in the following form

600"‘ 1
R= B0, F1 (22a)
where
Z\lep(go) (22b)

PR NS
Then, if B} is regarded as a small parameter, the following expansion results

R=—e~94 2 (80— (80)*+ ... (23n)

Thus if |BC,|*<1,
R~ — ¢=%C0 (23b)

which is a convenient form when the incidence is highly oblique and the frequency is not too
low. On the other hand, if g} is regarded as a large parameter, it is convenient to use the
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expansion

_C\P< 8C ) 3 (6(70).5'}“3 (6(70)4‘*‘ (24)

which can be approximated by the first term if [SC[*>>1.

7. Application to Terrestrial VLF Propagation

The results developed in the above form may be readily fitted into VLF propagation
theory which has been developed recently in a very general form [Wait, 1961]. The source
of the field is a vertical electric dipole located on the surface of a smooth spherical earth of
radius a, conductivity ¢ and dielectric constant e. Spherical coordinates are chosen with the
dipole located at »=a and 6=0. A concentric reflecting shell is now located at r=a +h. The
electrical properties of the interfaces at r=a and r=a-h are defined in terms of two dimen-
sionless factors, ¢ and ¢;, respectively. These are defined explicitly below. Then, for har-
monic time dependence, the electric field is written, apart from a constant factor, in the form
[Wait, 1961]

3 e—ikao n 5

"= a6 s )} (25)
where

V= 3> V, (26)

Jj=0,12, ...

The V; can be identified as sky waves or “hops”, as they have a precise ray interpretation in
the domain where geometrical optics is valid. Actually, in terms of the parameters of the
problem [Wait, 1961],

Vimet(E) Gt L4 By (272)
for 7 even, while
V=t ()P e gty 4O BOIT =D

for j odd. In the above, z=(ka/2)"? 6 and y= (2/ka)® k(r—a).
The contours of the integrations are to enclose all singularities of the integrands. The symbol

¢t has the following meaning
, (ka\'?
—o=(%)"c (29)

where €' can be geometrically interpreted as the cosine of the (complex) angle of incidence on
the earth’s surface at r=a. Furthermore,

<yo—t>%=(’ﬂ o (29)

Y3
where 1,= 2 kh and C’ can be geometrically interpreted as the cosine of the (complex)
Ta ¥ P p

angle of incidence at the surface, 7=a-h, which is regarded as the lower edge of the ionosphere.
Other factors, found in (27), are

__ [wit—yo)+ qawi(t—y,) ‘
A= [w;<t—yo>+qiw2<t—yo> 60!

and

__[m®)—qun(®)
BO=—| F=mto o

where w; (t) and w,(f) are Airy functions, defined elsewhere [Wait, 1961]. The factor ¢ occurring
in the above is defined by
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ka\"? [ degw \? e P
"= ( ) <o+2ew>|: <r+1'~ew]’ (32)

since o> >ew in most cases of interest, this can be written

1/3
q:(k__a G%e—iﬂ'm (:;3)
2
where
SRNCOCU
G“ ag

To relate the factor ¢; to the properties of the ionosphere reflecting layer, a somewhat
heuristic approach is used. First, it is assumed that y,—¢ has a real part somewhat greater
than unity; thus, w,(t—v,), etc., may be replaced by the first term of their asymptotic expan-

sions. Then
C'— T .4 ka ma GYh
A=y (‘P[ 19Ty ‘2‘) (& >] {5

¢ 1/3
where Ai:(£>/ 1¢,. As indicated in a previous analysis [Wait, 1961], (C"—A)/(C'+A,) is a
reflection coefficient referred to the bottom of the layer »=a-h. Therefore, A; may be identi-
fied with the factor 1/8; this is certainly evident on comparing (22a) and (34). Implicitin the
above identification is that the local reflection process at the ionosphere does not depend on
earth curvature. It should be emphasized that, in general, ¢; and B are functions of (7 and
thus, in turn, they are functions of ¢, the variable of integration. However, for propagation to
ereat distances, ¢; and g may be replaced by a (complex) constant appropriate for grazing in-
cidence (i.e., Sp—1).
On utilizing (2), (21), and (22b), it is seen that to a first order in £,

Tt i ([ =—(1=1Y L s
(=) ), (1_2'-)[<1 7)-(1-1p) 7] (3)
I

B

2

or

Then, iq;= (ka/2)"* (1/8). In the above, it is understood that L is a function of z in the tran-
sition region extending from z, to z. If k(z,—z) is not small compared with unity, it is necessary
to obtain higher order terms.

As has been demonstrated before [Wait, 1961], the waveguide modes are found from the
equation

A@)B(t)=¢—12" (37)

where 7 is an integer. Some of the methods developed for solving this equation in the sharply
bounded limit (i. e., z,—2,) are also applicable to the “gradual” model.

8. Application to ELF Propagation

At ELF (extremely low frequencies), the influence of the finite transition region can be
quite simply indicated. In this case, the modal equation can be written

R (C)R(C)e = ¢="x2 (38)
where .

R, (C)=exp [—(2/0) ViG] (39)
and

R.(C)=exp [—(2/C)(1/B)]. (40)
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These are valid subject to the restrictions that [C]>> (%)7; (;E)i; [1/8], and v/G. Equation

(38) may be written

khC=mn—+1 %Where A=A+1G+1/8.

This is solved as a quadratic to yield

™ ™m\>, . A7

The positive sign before the radical is chosen since it reduces to C,= (xn/kh) when A approaches
zero. The corresponding values of ¢ are then found from

(—tw)i=(ka/2)}C.

Individual modes propagate in the horizontal direction according to (sin 8)~* exp (—1at,)
exp (—ikad) which is equivalent to

[sin (d/a)]~% exp (—1kdS,), with d=a#,
where S,=(1—2)}. Since |A| kh<<1, the radical in (41) may be expanded to yield

2 1
Sﬂ:[]—(}%ﬁ) —3 ]2?2] “forn=123... (42a)
and
SO=|:1—i kAh] (42b)

Usually the zero-order mode is of greatest interest since the higher modes are beyond ‘“cut-off.”
Furthermore, in most cases [A|<<kh; therefore, the propagation is adequately described by
the zero-order mode which may be expressed in the form

~ __/I:—A—— __.__?2_ l in/4
Sy~1 =1 Qkhl: ++/Ge :| (43)
The attenuation in nepers per unit distance is thus given by

—kIm Sogﬁ I:Re %-{—\/6’/—.‘2] (44)

(5 (o),
E

When b tends to zero, corresponding to a sharp boundary, the integral term vanishes and the
attenuation factor is given by

where

1 h+b
Re Eg\’]11/2+k]41f
h

—k Im So~—— [VL;+ /6]
v 2h

which is well-known. When the dependence of L(z) with height is specified it is a relatively
simple matter to calculate the correction resulting from the “gradualness’ of the boundary.
In general it can be seen that, for the ELF range, the contribution from the second integral
is always positive since L.>">1, over the transition region. Therefore, the presence of the
transition layer is to increase the attenuation relative to that of a sharply bounded model.

Specific numerical results for mode characteristics based on this approach will be given
in a later paper. In particular, it is hoped to make use of the extensive numerical results of
Johler [1961, 1962] for the plane wave reflection coefficients.
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