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Employing an idea of Brekhovskikh, a n expression fo r t he r eflection coeffic ient of a 
cont inuously s t ratified ion ized medium is deri ved . The r esult is in t he form of a seri es 
whose firat t er m is a Fresnel-type coefficient a nd succeeding t erms a ccount for t he fini te 
t hickness of t he t ransit ion layer. This r e ul t is t hen fi tted in to previously developed t heory 
for propagat ion between a spherical ear t h a nd a concentric ionosp here. 

1. Introduction 

In the mode theory of VLF radio propagation it is often assumed that the lower edge of 
the ionosphere may be represented by a sharply bounded and homogeneous ionized medium 
[Wait, 1960] . This assumption could be cri ticized as being unrealistic as it is known that the 
boundary between the non-ionized lower atmosphere and the ionosphere is "gradual. " Un
fortunately, the prof-tles of electron density and collision frequency, in the h eight range of 
importance for reflectio n of VLF ,vaves at oblique incidence, are not well known. At these 
low height (i.e., around 70 km), the rocket meas urements are not reliable and vertical inci
dence ionosondes give even less information. Some important qualitative data bave come from 
the use of weak b ackscattered echoes at medium frequencies [Ratcliffe, 1960] . Among the 
findings of such work is t be occurrence of very sharp gradien t in electron den i ty in the height 
r egions of 60 to 80 km. 

In view of tb e preceding remarks, the sharply bounded model is not completely unj ustified . 
Furthermore, i t agrees with much of the experimental data at VLF if a t ten tion i res tricted to 
highly oblique incidence. Never theless, it is desirable if more attention is paid to the possible 
influence of the "gradualness" of the ionosphere boundary. By making use of a digital com
puter some excellent progress has been made in this direction [F erraro and Gibbons, 1959; 
Barron, 1959 ; Johler, 1962; Budden, 1961] . In par ticular, Johler [1961] has made a careful 
comparison between full wave solutions for certain gradual and sharply bound ed models. His 
results indicate that the sharp boundary is often quite adequate. 

It is the purpose of this paper to outline a relatively simpl e approach to the problem and 
to fi t the results into th e mode theory. 

2. Formulation 

To s tart with we shall assume an inhomoge neously stratified medium. With respect to a 
Car tesian coordinate sys tem (x, y ,z), the refrac tive index N(z) is assumed to be only a function 
of z. As z tends t o positive and negative infinity tb e refractive index is assumed to approach 
constant values. That is 

and 
N(z)].-7+",,=N 1 

N( z)] Z--7_"" = 1. 

At Z= - co , a plane wave is inciden t a t an angle (Jo with respect to th e positive z direction. 

1 Tbe research reported in this paper h as been sponsored by the Advanced Research Projects Agency, Washington 25, D.O. 
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To simplify the discussion the earth's magnetic field is neglected. This is justified, at 
least in part, since the collision frequency is somewhat greater than the gyro frequency of 
electrons in the lowest ionosphere. 

Thus N(z)= [ l - i wr~Z )T 

w2 

where W is the angular frequency, and wr(z)= +0, 
II ~w 

(1) 

where Wo and J..L are the (anguJar) plasma and collision frequencies, respectively [Ratcliffe, 1959]. 
These latter quantities are also functions of the coordinate z. It is co nvenient to introduce a 
dimensionless factor L(z) in the following manner. 

where 

Then 

and 

N(z) = ( 1- Lfz)Y 

1 
L(z) 

Wr(z) w5 
W '" (lI + i w)w 

L (z) ]z-H", = L 1 

L (Z)] H - ",= 00 . 

In most applications at VLF, II> > w, so that L(z) can be regarded as a real parameter. 

(2) 

The problem is to calculate the reflected wave at Z= - 00 . If the electric vector of the 
incident wave was perpendicular to the z axis, the resulting differential equations can be solved 
in terms of known function s provided certain profiles of N(z) are used. The elegant analysis 
of P. S. Epstein [1930] for normal incidence can be carried over directly to this case (i.e., for 
horizon tal polarization ). Other closed-form solutions for the case of E-parallel polarization 
are also available in the literature [Brekhovskikh, 1960]. Unfortlmately, the differential 
equations for H-parallel polarization (i.e., for vertical polarization ) are somewhat more com
plicated and closed-form solutions for special transition profiles do not seem to be readily 
available. Thus a perturbation procedure is adopted following the suggestion of Brekhovskikh 
[1960] . 

3 . Differential Equation for the Reflection Coefficient 

Without any loss of generality, the H vector is taken to have only a y component. Thus, 
for a time factor, ei wt , Ma},,'"well's equations are given by 

d · E oHy 
an ~EW z= ox (3) 

where J..L and E are the magnetic permeability and permittivity of the medium. For sake of 
generality, both J..L and E can be regarded as functions of z. Of course, in applications to the 
ionosphere J..L can be replaced by its free space value J..Lo. The retention of a variable p. in the 
theory permits one to readily adapt the results to arbitrary polarization. Furthermore, the 
analogy in acoustics is readily brought out. 

N ow the sum of the incident and reflected waves is defined in the following manner. 
The sole magn etic field component is written 

H I/= [A(z)+ B (z)] exp [- i(EP.)fSx] 

while the two electric field components are written 

Ex= [A( z)-B (z)] O(p./E)iexp [- i( EJ..L)tSX] 
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(5) 



and 
(6) 

in terms of Sand G wbich can be regarded as sine and cosine of angle 8 which is itself a funct ion 
of z. At Z=- en the incident wave is taken to have an angle of incidence 80 • 

In tbese equations, k = (foMo)lw where fO and Mo are tbe constants of free space, wbile A (z) and 
B (z) are not yet defined. Since these field components are to satisfy :-laxwell 's equations, it is 
req uired that 

and since S = sin 80, e= fo, M= Mo, at Z=- en, it follows that 

(fM)tS = (fO.uo)i sin 80 

\\Ohich is just a statement of Snell's la w. Furthermore, 

Again, as a consequence of \ Iaxwell's equations, A (z) and B (z) must sa tisfy 

where 

and 

dA +ioA+ r (A- B )= O 
dz 

dB -ioB+ r (B -A)=O 
dz 

(7) 

(8) 

(9) 

Equations (8) and (9) are easily combined into a single equation for the ratio B jA = R (z). Thus 

where R (z) is, by definition , a reflection coefficient. Results, more or less equivalell t to (10) 
have been given by Budden [1961] and Breld10vskikh [1960]. 

4. Iterative Solution 

To obtain a solu tion, R (z) is written in terms of a new function v(z). Thus 

R g(z)v(z)- g[ (11 ) 
, g(z)v(z)+ g[ 

where g(Z)= ~<;2 (}.p-S~)~, K = M/.uo, So= sin 80 

and 

Now, since ;~'! R(z) = O, i t follows that Zl~';" v(z) = l. The differential equation for v(z) 'is 
obtained by substituting (11 ) into (10). This can be 'written in the relatively s imple form 

_iiv...= ikN2g[ (1 - i V2) 
dz K gl 

(12) 

wb ere k = (fO.uo)! wand N, K , and 9 are functions of z. Using a m ethod of successive approxi
mations (sep for example, Z. Kopal [1 955]) , tb e solution can be expressed as an ascending 
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series in powers of k. For example, the zeroth approximation is to replace the right-hand 
side of (12) by zero, thus v is a constant which must be unity to satisfy the limiting condition 
at z-;. co. The first approximation is obtained by replacing v2 on the right-hand side by unity. 
Thus 

r oo N2( 2) 
v= 1+ ikg1Jz K 1 -~1 dz (13) 

where the limits of the integration are chosen so that v satisfies the limiting condition at z= co. 

The second approximation is then obtained by substituting the latter result for v into the 
right-hand side of (12). In general, the nth approximation, V n, can be found from the (n- 1)th 
approximation, Vn- l, by using 

(14) 

5. Some Simple Extensions of the Solution 

While these results have been developed with specific reference to an inciden t wave with 
the electric vector in the plane of incidence, the results are also applicable to the other polari
zation . If the magnetic vector of the incident wave is in the plane of incidence (i.e., horizontal 
polarization), the results are still valid if the following transformations are made. 

Thus the formula for the reflection coefficient Il, given by (11), is still valid if K is replaced 
by ~ / ~o and N is not changed. 

There is also a well-defined acoustic analogy to the problem being discussed. In this case 

N(z) = c~~) where c(z ) is the velocity of sound and Co is the limiting value of cat z= - 00. Thus 

the velocity is varying from a constant value Co to a differing constant value Cl at z=+ 00 . 

Also, K(z)= p(z) /po where p(z) is the density and Po is its limiting value at z = co. The com
ponent Ely is then analogous to the acoustic pressme and Ex and Ez are analogous to the x and z 
components, respectively, of the particle velocity. 

6 . Discussion of the Form of the Solution 

It is interesting to note that for the zeroth approximation (corresponding to v= l ), the 
reflection coefficient may be written 

(15) 

This is the Fresnel reflection coefficient for the reflection of a plane wave at oblique incidence 
from a sharply bounded and homogeneous mediUlll. Thus the higher terms in the ascending k 
series account for the "gradualness" of the boundary. 

In the general case, the reflection coefficient may be written 

00 - (K dND (Ni-S5)tjV(Zo) 
00+ (K dND (Ni-S5)tjV(Zo) 

(16) 

where Zo is some convenient level, below which K(z) and N(z) may be regarded as IUlity. Thus 
the total field in the region z< zo can be written 

(17) 
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whero l-lo is the value of the incident wave at the fictitious interface, Z= Zo. In the second 
approximation, neglecting terms in P and higher, 

(18) 

Succeeding terms quickly become more complicated. It can be seen that the integrand con
tain the factor 1- (g/gl)2 in each of these terms. The presence of this factor permits one to 
replace the upper limit of each of these integrals by ZI, where ZI is the level above which N( z) 
and K( z) may be replaced by Nl and K 1• Thus the transition region may be defined as the 
interval ZO<Z<ZI. On this basis, it is apparent that the nth term in the series for v(zo) i the 
order of [k( ZI- Z0)] n. Consequently, the series converges rapidly when the electrical thickne s 
of the transition layer is small. 

As an interesting check, the transition is replaced by a homogeneous slab . Thus, 

A A 

N (z)= N and K (z) = K when ZO<Z<Z I. 

In this case, the reflection coefficient is given exactly by vVait [1958J. 

provided 

R 
Oov(Zo) - (N~- S5) !(KI/ N D 
Oov(zo) + (N~- S5) t (KJ/N i) 

A A 

KN2(N2- S 2)t I A 1+ Al 0 tanh [ilc(z l-zo) -V N 2- S 5J 
KlN2(N~- S5)t 

If Ik(z l-zo)-J N2- S~ I < < 1, it is seen that to a first order, 

A [A A ] ( ) "'I+N2(N~-S~) t I _ K 2Nt ]lP- S 5 ·k ( _ ) K l 
V Zo = N 2 A A ~ Z I Zo A 

1 K~N4 N~-S5 K 

which is consistent with the first two terms of the series given by (13). 

(19) 

(20) 

(21) 

For some applications to VLF propagation, it is desirable to express the reflection coeffi
cien t in the following form 

(22a) 

where 

(22b) 

Then, if {jOo is regarded as a small parameter, the following expansion results 

(23a) 

(23b) 

which is a convenient form when the incidence is highly oblique and the frequency is not too 
low. On the other hand, if (300 is regarded as a large parameter, it is convenient to use the 
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expanSIOn 

( 2) 21 41 
R = exp - (300 -3 «(300)3+3 «(300)4+ ... (24) 

which can be approximated by the first term if 1 (30013» 1. 

7. Application to Terrestrial VLF Propagation 

The results developed in the above form may be readily fitted into VLF propagation 
theory which has been developed recently in a very general form [V'hit, 1961]. The source 
of the field is a vertical electric dipole located on the surface of a smooth spherical earth of 
radius a, conductivity CT and dielectric constant E. Spherical coordinates are chosen with the 
dipole located at l' = a and (J = O. A concentric reflecting shell is now located at l'= a + h. The 
electrical properties of the interfaces at l'= a and l' = a+ h are defined in terms of two dimen
sionless factors , q and qi, respectively. These are defined explicitly b elow. Then, for har
monic time dependence, the electric field is written, apart from a constant factor , in the form 
[Wait, 1961] 

e- ika8 

E - V 
T- a«(J sin (J) 1 (25) 

where 

V = ~ V j (26) 
j=O,1,2, ..• 

The V j can be identified as sky waves or "hops", as they have a precise ray interpretation in 
the domain where geometrical optics is valid. Actually, in terms of the parameters of the 
problem [Wait, 1961], 

(27a) 

for j even, while 

V .=ei1l,/4 (~)trf: e ~ixtW2( t - y) [A (t)) j~l [B(t) 1 j;l elt 
} 7r j w1(t) - qW1(t) (27b) 

forj odd. In the above, x= (ka/2)1/3 (J and y= (2 /ka)1/3 k(l'-a). 

The contours of the integrations are to enclose all singularities of the integrands. The symbol 
t has the following meaning 

where 0 can be geometrically interpreted as the cosine of the (complex) angle of incidence on 
the earth's surface at l' = a. Furthermore, 

( ka)1/3 
(Yo-t)t= '2 0' (29) 

where Yo= (ffaY /3 kh and 0' can be geometrically interpreted as the cosine of the (complex) 

angle of incidence at the surface, l' = a+ h, which is regarded as the lower edge of the ionosphere. 
Other factors, found in (27), are 

and 

A(t)=_[ W; (t-yo) + qiWl(t - yO)] 
w2(t -Yo) + qM2(t - yO) 

(30) 

where Wl (t) and W2(t) are Airy functions, defined elsewhere [Wait, 1961). The factOl' q occurring 
in the above is defined by 
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i =(ka)1/ 3 (~)~ [1_~J~; 
q 2 o- + uw o- + Uw 

ince 0-> >~W in m ost ca e of in ter est, this can be w:ri tten 

(ka)1/3 
q= 2 G!e- i 7r / 4 

where 

T o :rela te the factor qi to th e properties of the ionosphere reflecting layer , a omewh l1t 
heLiristic approach is used. First , it is assumed tha t yo- t h as a r eal par t somewhat greaLrr 
t han uni ty ; thus, WI (t - yo) , etc., m aJ be r eplaced by th e first term of th eir asymp toLic expall 
SlOIl S. Then 

A ( ) 0 ' - Ll i [ . 7r .4 (ka) (O' )3J t f:;t,O ' + Ll i exp -~ 2-~ :3 2 (34) 

where Ll i=C~y/3 iq,. As indicated in a previous analJsis [W ait, 196 ] ], (O' - Ll. i)/(C' + Ll t) is a 

r eflection coefficient r efcrl'cd Lo th e bollom of th e layer l'= a + h. Therefore, Ll t m ay b e iden ti
fied with th e factor 1/{3 ; t his is cer tainly eviden t on comparing (22a) and (34). Implicit in the 
above ici cn tificalion is th at th e local r eflection pl'Oces at the iono piler e doe no t depend on 
earlh curvature. IL bould be ernphasized that, in general , qi and {3 are function of 0 ' and 
thu , in t urn , they ar e functions of t, the variable of in tegrat ion . However , for propagation to 
gr ea t dis tances, qt and {3 m aJ b e r epJ aced by a (complex) constan t appropriate for grazing in
cidence (i.e., So~ 1) . 

On u tilizing (2), (2 1) , and (22b) , it is seen th a t to a first order in Ie, 

(35) 

or 

(36) 

Then , i q;= (ka /2)1/3 (1/{3). In th e above, it is und er s tood th at L is a function of Z in the tran
sitionregion extending from Zo to z. If k (zj-zo) is not small compared with unity, itis n ecessar y 
to obtain higher ord er terms . 

As' has been demonstrated before [Wait, 1961], the waveguid e mod es are found from the 
equa tion 

A (t )B (t ) =e-i2rrn (37) 

wh ere n is an integer. Some of the m ethods dev eloped for solving this equation in the sharply 
bounded limit (i. e., Zj ~zo) are also applicable to the "gradual" mod el. 

8. Application to ELF Propagation 

At ELF (extremely low frequencies), the influen ce of the finite tn1l1sition rcgion can be 
quite simply indicated . In thi case, the modal equation can b e written 

R g( O) R i( 0) e- i2khC= e-t2.-n (38) 
where 

R g(O) f:;t, exp [- (2/0) -v'iG] (39) 

and 
R t(O) f:;t, exp [- (2/C) (1/{3)]. (40) 
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These are valid subject to the restrictions that 10 1> > (~y, (k~Y' 11/131, and ..jG. Equation 

(38) may be wTitten 

khO= -rrn+i V where t1= .f{G+ 1/13. 

This is solved as a quadratic to yield 

(41) 

The positive sign before the radical is chosen since it reduces to On= (-rrn /kh) when 11 approaches 
zero. The corresponding values of t are then found from 

Individual modes propagate in the horizontal direction according to (sin 8) -~ exp (-ixtn ) 

exp (-ika8) which is equivalent to 

[sin (d/a) ]-t exp (-ikdSn), with d= a8, 

where Sn=(1 - 0~) t . Since 1111 kh< < 1, the radical in (41) may be expanded to yield 

[ ( -rrn)2 . 2t1] ! S n= 1- kh -~ kh forn = I ,2,3 .. . (42a) 

and 
S [ . t1 ] ! 

0= 1-~ kh . (42b) 

Usually the zero-order mode is of greatest in terest since the higher modes are beyond "cut-off." 
Furthermore, in most cases 1111< < kh; therefore, the propagation is adequately described by 
the zero-order mode which may be expressed in the form 

S "' 1-~-1-~[!+ /riG i7r/4] 
0 = 2kh - 2kh 13 "Vue (43) 

The attenuation in nepers per unit distance is thus given by 

- k 1m SO';;;f,2~ [ Re ~+..jG/2] (44) 

where 

When b tends to zero, corresponding to a sharp boundary, the integral term vanishes and the 
attenuation factor is given by 

which is well-known. When the dependence of L(z) with height is specified it is a relatively 
simple matter to calculate the correction resulting from the "gradualness" of the boundary . 
In general it can be seen that, for the ELF range, the contribution from the second integral 
is always positive since L > > Ll over the transition region. Therefore, the presence of the 
transition layer is to increase the attenuation relative to that of a sharply bounded model. 

Specific numerical results for mode characteristics based on this approach will be given 
in a later paper . In particular, it is hoped to make use of the extensive numerical results of 
Johler [1961 , 1962] for the plane wave reflection coefficients. 
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