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This part concerns the height-gain differential equation in order to obtain a series for
the complete solution which starts with the extended W. K. B. approximation discussed in
part I. The coefficients of this equation depend for each mode amongst other things on the
parameters A; fixing the refractive-index profile. However, the explicit dependence on
these parameters can only be given in terms of expansions with respect to (ka)=%3 (koa= cir-
cumference of the earth divided by the wavelength). In turn these expansions are derived
with the aid of other ones for the complex turning point connected with the height-gain
differential equation. The final expansion for the solution of the differential equation is
substituted in the boundary condition at the earth’s surface. This leads to corresponding
expansions, with respect to (koa)~?3, of the quantity wu;(a), and next of the eigenvalues [
themselves.

16. Canonical Form of the Height-Gain Differential Equation

According to section 3 the field of a dipole situated in a spherically symmetric stratified
medium can be expressed in terms of a single scalar quantity II. The latter can be expanded
in modes f,(r)P, (cos #) the radial parts of which have to satisfy the height-gain differential

eq(8), viz, ,
]- 2 2 )
{(—‘,,,z+ka mi (r) } {1f,(r)} =0

According to (9), (14), and (15) m; is defined as follows in terms of the profile M,;= (7/a)n.q:
my(r) =" VM) — (65)

Moreover, the height-gain functions should fulfil the radiation condition at infinity, as well as
the boundary condition (23) at the earth’s surface.
Following the methods of Langer [1937] and Pekeris [1946] we introduce the new variables:

uz(r’)ZkJT my(s)ds=koa @\Mm( s)— ('} (66)
vy

L]
and

Gz—\m, ) fi(r)= \/a {M2%:(r)—C3}V4f,(r), (67)

the former of which has been discussed in section 5. The influence of the refractive-index
profile enters explicitly by the occurrence of M., and implicitly by that of the turning-point
level 7, defined by (14). The height-gain differential equation then proves to be equivalent to
the new equation:

= G1+P1(U1)Gl* (68)
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in which

dm,) d*m,
du, 1 du? )
4 m3 2 m,

P(u,)=

(69)
The eq(68) will be the starting point for our further investigations.

17. First Expansion for m(r) as a Function of u,(r), With Coetficients Depending
on r,

In order to solve (68) we have to determine P;(u;) as a function of %,. This can be done
for each eigenvalue / in terms of an expansion the’coefficients of which depend on the parameters
Ajof (17). The latter characterize the refractive-index profile. In view of (69) we start with
the determination of m, as a function of %;. The tedious derivation of the coefficients of the
corresponding expansion will be given in steps, to be discussed in the next sections.

We first notice that m? could be expanded into a Taylor series in 7»—7;, since m7 is a contin-
uous function of 7 according to (65). However, this series starts with the linear term; in fact,
the relation M ¢ (r;) =C; (see (14)) involves m;(r;)=0. Weinfer a proportionality of m,(r) with
(r—ry?% for small values of »—r;. In view of (66) this involves a corresponding proportion-
ality of u; with (r—r;)*? or of 7—r; with u7/®, and therefore of m; with «}®*. Similar considerations
show the proportionality of the next terms of the expansion of m,; (in terms of u;) with u}”,
wyB i ete.  We therefore put:

o 1 I
W=k0m,—-aZB" —(k 1D (70)
the dimensionless coefficients B’ of which are to be determined next. In this section these
coefficients will be connected with the properties of the profile near the turning point 7,.
We first multiply the expansion (70) by itself, so as to obtain

® udGHstD
— 2) (l)
"g g BBy (k )i’

We substitute s=m—j, and invert the order of summation with respect to 7 and m. The

resulting expansion reads:
) u:(m—i-l)

da2mi=> T (I/)Z(m 2)ZB<”B,‘,P - (71)

m=0

The coefficients Bf” can now be obtained from the derivatives of (71) with respect to r,
taking r=r,. For instance, the first order derivative yields, applying both (70) and (71),

d(m%) d o a(m+1) m
i _— . W RW
koa dr ""'dul m2=0 (koa)“(""z) 2 B Bm —j

B(l) u,3(2”+1) .
E " Tr@) i (72)

Since 7=7; involves u;=0, we have only to derive the term m=n=0 in order to get the value
of the left-hand side at r=r;. Similarly, a further differentiation of (72) with respect to u,
multiplied by (70), yields the second derivative of m7; its value at =7, reduces to the constant
term of this new expansion, and so on.

We mention the expressions thus obtained for the first few derivatives of m? at r=r,:

r_ d(m3) “2 (1)13.
mM=a i r=r,_3{B0 18

a*(m 20
{ e },=, 3BénaBl(z)’.
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e {dd(m;) %Bé”e‘{14Bé”Bé”+19B1<l)2};

S

v 4 d*(mi) 16, nayys W RO R 2 RO @3 i
nV=a e r=r,=§{B° 13{160 B B® B +54 B&P* B{P 465 B{¥°} (73)

From these relations we may solve in succession the coefficients BY, BY, etc. We obtain:

3.,7’ 1/3
nng{?l} :
Bf’)~ { }

N/ 1917//2
(l)__
By = {37”} { 95 7,2 }’
2/3 o rre ¢ r3

O mom 213 m -
B {3m} {mm o 72800 7 (74)

18. Second Expansion for m,(r) as a Function of u,(r) With Coetficents Depending
on the Profile-Function M(r)

According to (73) and (74) the coefficients B’ of (70) depend on the position of the turning
point 7; which may be derived from (18). In this latter expansion the parameters A ; are param-
eters known from the given profile of the refractive index. In order to obtain the turning
point frem (18) in its complete explicit dependence from the profile, we shall have to know the
coefficients m,(a) entering in (18). Therefore, we next want to obtain a connection between
the latter and the profile parameters A;. It can be arrived at from an expansion of m,(r) in
terms of u,(r), to be derived as follows.

We start from the expansion (21). In view of (65) it can be represented by

() =k 3 ay(r) (), (75)
Jj=0
in which
. 1
229 2 & 1l
air)=(—1DIZ25 ... dMz, } (76)
35T 4B d{MAW()} | v J

We invert this series, taking into account that the first term proportional to mj in the original
series involves a first term proportional to u}’® in the new one. The complete inversion series
can be put in the form:

malr)=Cale) {%;([7)} oo {40} oo {201 o {=2"

In fact, substituting this expansion itself and the corresponding expansions for its suc-
cessive powers, such as

mi(r)=C3 “’} 42 (1«'{—’»’—’-} NG I m{,ﬁ} +2<(*03+0(2>{ }

into (75), we find by equating the corresponding powers of %; in both members unique relations
for the determination of the new coefficients C';(#) from the other coefficients a;(r). The first
relations of this type read exolicitly:
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¥ AT 1 *
Co(r)= {ay() ] 173’

=Ty

Cy(r)= 40i(r) = 3ay (1) e (r)

all/SO,,)

s ai(r) | oy (r)as () ay(r)
o S e R o) 9)
)= STal/3(r)

These coefficients thus determine the expansion (77) for m () in terms of u,(r).
19. An Expression for the Position of the Turning Point in Terms of the Param-
eters u,(a) and A,

Such an expansion can now be derived by applying (77) to r=a. We find

(@)= { 0L, {0, {0 {HOLT )

where v,=C;(a) follows from a substitution of r=a in (79). Introducing the new quantities
B;=a;(a) we then have:

1
Yo= 7173’
i
=B
Y1 362
4B 3BiB:
Y= 93(1)1/3 4
B BiB: 63
—65 90 —
- Sy Wl ) (&1)
3 8151/3

Further, these coefficients 8; are connected as follows with the profile, in view of (76) for r=a,

222 2 &’ 1
b=357 @y [d{M AORE :| : L
dr r=a

All derivatives occurring here can be expressed in terms of higher-order derivatives of M2
For instance, we find:
d* M2,
d - 1
Mz d ugﬁ_ szﬂ> dMgﬁ>3’
dr

A*M M "M\ *
d? | 3 drt 1 drt +3 dar* J
(dMZ;)* dﬂlﬁﬂ_ <d Mfﬁ> R ((1’ > AMZ; )4 dMZ; )

“dr

dr
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We only need all these quantities at 7=a in order to evaluate the coefficients 8; from (82).
All terms then occurring can be expressed in terms of the profile constants A;, by applying the
definition (17). The first few prove to be given by:

Bz
e 15( A3 ’
62:1 35 y X2§ BAEAS +3;\;)
Bs= 91 460 < —}—E‘,\,’,,;\‘}]\E f"\4+!3}3—¢0u 2Ag 1 '; 3\: “

The coefficients v; of the expansion (80) can thus be evaluated numerically by first computing
the B,’s with the aid of (83) from the profile constants A ;, and next applying (81). For a further
evaluation of the expansion (18) for the position 7; of the turning point, we further have to
determine the even powers of the expansion (80) in order to arrive at an explicit representation
of 7, in terms of both A, and w;(a). Obviously we then get an expansion of (7;—a)/a in terms
of increasing integral powers of the quantity

wi(a) )
b
ko

with coefficients depending explicitly on both v; and A,;. This rather tedious procedure leads
to the following final representation:

—a_ {u,((z } {u,(a)} {u,(a)} {g,((L} (84)

the new coefficients of which can be derived as follows from the constants determined previously:

P==1"
P 21“7‘ ~— b
p=—2 vmzrlvm ﬁ; (Byiri+29272) +(A3 iA2>W‘ +< 5 A,A\g 5 1:5 zifi?) A (85)

Summarizing, all coefficients of the expansion (84) can be evaluated numerically by first
deriving the 8,’s from the profile parameters A; with the aid of (83), next the v,’s from the g;’s
with the aid of (81), and then the p,’s from the v,’s with the aid of (85).

20. Successive Developments Resulting in an Expansion of the Coefficients
B,(I) in the Expansion (70) for the Dependence of m,(r) on u(r)

Such an expansion is required for the subsequent analysis enabling the numerical evalua-
tion of the eigenvalues and the corresponding expression of the field components. We start
with a derivation of a series for the parameters /¥ of (73) in terms of the turningpoint co-
ordinate 7,.

Let us first differentiate the square of (65). The definition of »; then involves
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" [ (M2, (r)—oz}] ,

=i

which reduces, applying (14), to:
, dz‘lsz(r) }
m= 7,

e , i
M ﬁﬂ(f)—gg]’.—! (r—a)’ (86)

The Taylor expansion :

may be used here for a further reduction which results in:

3
,(lm

52

’I}Oa/]<] 1),(7"1 (l)

The higher-order coefficients n{* are obtained in a similar way. For instance, by differ-
entiating twice the square of (65) we obtain first:

1
(; 5 ‘2‘ 14 113&(7‘)*0?}]

2 —
1 =
r=ry

which can be reduced with the aid of (14) to:

o0 4 [ dMZ%:(r) 1 [ d2Mz2:(r) ]
e e e effNTYS = X
m =a [ 7,113 { dr }r:rl+r% { dr2 s

When substituting the first and second derivative of (86) we arrive at:

A;(ri—a)’™! A (ri—a)’™?
["?Za’j (G—D)! tan :I

37 =1 = (_/ 20l

By a continuation of this procedure we get expansions for all coefficients ¥ in terms of
powers of 7,—a, divided by another power of ;. In its turn, the latter power can be developed
with the aid of the binominal expansion for

When assembling identical powers of 7,—a we thus obtain expansions of the form:

- . J
=2 (ij{u} ’ (87)
=0 ©

the lower-order coefficients of which prove to be given by:

A
Qu=A1; gu=~A;—2Ay; 912=3A1—2A2+?3

A
Jig== =2\ +3A2_A3+€47

As,

Q14—5A1—4A2+ A3 24

3+

A s

qZ0:~4A1+A2; g21:12A1_6A2+A3; QQ2:—24L\1+15A2 4A3+

q23:40A1—28A2+9A3 = A4+4&5
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Gu=—604,+45A:— 164, +5 A, — 240

Q30— 18A1_6A2+A3, Q31:'—72A1+36A2_8A3+A4,

Gor—1804,— 108A2+30A3—5A4+%§

g33=—360A1+240A2—76A3+15A4—2A5+‘—‘bﬁ,

‘ 21 7 A-
Gas=630A1—4504,+15505— 344+ As—15 Avti 5

qo=—96A,+36A,—8A;+Ay;
Q41:480A 1 24OA2+60A3— 10A4+1\ 5;

13="3360A,— 21 60A,+ 680A;— 140A 21 A;— A6+—7

AS

qa=—6720A,+4620A,—1560A;-+345A,—56A;-+7As— A + (88)

As a next step we may substitute in (87) the expansion (84) and the successive powers of
this expansion. A new power series for 7{”, viz

(k)_zt {ul(a) % )

k o

then results. Its lower-order coefficients can be represented as follows:
tno=no; tn1= Qi P1; tnz= Q1 Pa+ Gual;
tns= @ D3t 2Qua 1 P2t QusPi;
tns= QuiPat Qu2 (PiF-2P105) +3Qus PID2+ Guall- (89)

If these coefficients are also known we are enabled to derive also expansions of the co-
efficients B{", defined by (74), in terms of the quantity u;(a)/k,e. For instance, we have

() =) [t {42} {52} T
~(Gen) [rrpn{ e} " (gt {10}, ]

2/3
< 12 t20+t21{ul(a)} +t22{ukl_<;l)
Blmzi’ll_: 0
10 ;10
" t10+t11{ul<a)} +t12{“’(“)}
3 1 fﬂ_tn uy (@)
10t10|:1+{t20 tw}{ koa

and




+{f11 t91t11 t>z tP}{ul(ﬂ) 4/3...:],

10 tZOtl() t’O th

and so on. In this way we get in general expansions of the form:

) S ) ul(a’) 2/3j_
B =33 BM{ o (90)

The first few of these new coefficients are connected as follows with the former quantities ¢,
Bu—(3 1 >%-B —lu (3, f-B {3, >%-
00— 2 10 ’ 01 3110 2 10 ’ 02 3t10 91‘%0 2 'IOv 2
t 2ttt 7 5 &
3 o i 2ltule (58] (

Bus= 3t 9 1% su 2““ :
e th 2tutn, 5 tuth 10 th) /3, \}
B— 14 bt atlnbiz, o lely 1Y in (_ >
o4 {3tw 0,79 1, T2 6, 2a3th, f\al

_ B3t p 3 Jta_ tulwn] .
B”’“‘wtw’ B“_IO{tw 2 }’

B=3 { iz _tuta_ tute +t20tf1};

10 Lttt

E 3 t23 tllt22 t]2t21 13t°0 tlltllt 20 t?ltfl t20t:131 .
Bia=— - o
T\t Bt T2 B T ’

0 t?O t%O
9 ( 2 >% ts 19 t3
Bu=c: () < 22—
56 3t10 tm 25 th

_9 ( > ts 4 t30t11 38 t20f21+1 33 t3otu \
By 56 3t to 3 th T2 tho 75 th j,
- ( ) 4 tg()tu twtso___é t31t11+@

2- 06 3t10 3 t10 t%o 3 tfﬂ tlo

38 tutnta 38 thth 19\ "¢,
75t 75 th 25

2
tio

38 t?O <t12t20_t?1t20 tlthI_t )
25 t%o th t%o th -

) tn_19 L)
9t10 3t 10 tw 25 th
o 2 \*® t40 fzot'so 213 t;o
B’”‘(:ztw) {16t10 2, 72800 £,

B :(_2_>2/3 t41 __'_'5_ t40t11 t20t31 t21t30 [ é t11t20t30
87\ 3t40 166, 48 83, T, hH'2A &,

639 t3t 781 tutd
3500 #%, 2800 4, )

These coefficients, occurring in the expansion (90), determine the dependence of m, on u, accord-
ing to (70).
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21. Explicit Form of the Differential Equation (68)

The expansion (70) for m; as a function of u; can also be differentiated in order to obtain
corresponding expansions for dm,/du, and d?m,/du;. Tt is also possible to] deduce from the
latter developments of the quantities
dm,>2 d*m,

du, uj
L2 and
ny my

occurring in (69). This elementary formal procedure leads to the following expansion for the
coefficient P; of the final differential equation (68):

5 @ (V(l)
L

Aok - =) (ko,q)%<n+-2>

P(w)=1+ udtn=b, (92)

Its first few coeflicients read:

O &= Bl(l)z éé“gﬁ
0 _938”2_9 ]g((‘p,’

o8 BB 4B 2 B
“/1 N

"9 pw' T 3B{P 9 pw’

8 B 8 By 2BP By 14_1])’{“2&” 1 BY*

OP=—2 =

3BPTY B®* B®? ) BW? EB((JU“

a_ 40B® 28 BB 32 BB 8B{B® 26 BBy 22 BB 4BP
Cs ~T 9 BP Ty @wz g @2 3 s 9 1)? 9 nt 9 po? (93)
9 B" 9 B 9 B 3 B’ 9 B 9 By 9 B

when derived straightforwardly with the aid of (70). In its turn the quantities B{’ are
connected with the eigenvalue parameter u,(a) according to (90). The later analysis requires
the explicit dependence of the coefficients Cf” on this latter parameter. This dependence is
obtained by determining the powers of the expansion (90) and also the relevant fractions
resulting from the divisions of such powers.

The evaluation of this procedure leads to further expansions of the form:

O w,(a) 5
0P=530, { e (94)

the new coefficients of which may be computed by performing the mentioned procedure nu-
merically, without applying the complicated analytical expressions which connect the C,’s with
the coefficients B,; determined previously. However, for convenience we give the expressions
for the simplest coefficients Cy;:

(o 4B 1B
"9 By 9B
_é&_i_‘iBzoBm‘l‘?BmBllh%B01B;120)
9 By 983, 9 B

Cm -

o 4By +4(Bngm+B20Bn2)+2BmBm+Bﬁ_4BzoB31+Bm(4BmBu+QBmBm> ‘ B?OBSI,
B9 By, 9Bz, 983, Ry
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§BuBuctgBuBat BBy (BhBut g BaBoBa

@ __é& gB?OBm
" 3 Boo By B, 3 By’
2By Byt B:
Oy SBuy T 9T® 14 BBy (L Bl 95)
03 By 2 9 B "3B

22. Solution of the Differential Equation (68)

This equation depends completely on the function /; which is represented by (92) as a
power series in (kya)*%. The only term remaining for k—c involves the solution G(u)
=yuH%(u) known from the “extended W.K.B. approximation.” The next terms may be
considered as corrections for large finite kg and suggest the following representation for the
complete solution:

Gw=33 (g"(“) (96)

k (1/)2"'/3

We substitute this series into (68) and assemble the contributions proportional to one and the
same power of (kea)~*%. It leads to the following set of equations:

&g 5 Vo
du? +<1+36u2> =0,

(l2g| b) > o
o <1+36u2 9:=0,

Tot (145

36u Z 0 u(2/3)(n—m—3)gm(u)' (nz 2)

Starting from the normalized “extended W.K.B. approximation’ g,(u) =~uFH%(u), satis-
fying the first equation, we may take g;=0. Taking into account these special Values of gy
and ¢;, we find the next equations:

<(lu2+ . +36u“’> g:=Cou™""Hija(w),
(5ot1+ 50 ) 55— OV,

2 5
(J@Jr 1 +36—uz> gs= O™ "H{fy(u) -+ Cou™*/*gs(u),

etc. All these equations can be solved easily in succession, by substituting for the unknown
function in any further equation the sum of (a) the Hankel function H{}3(w) multiplied by a
finite number of (positive or negative) powers of 4® with indefinite constant factors, (b) the
Hankel function H{ (%) multiplied by another number of such powers. The powers to be
introduced here, as well as the coefficients in front of them, can be determined conveniently
by applying the following identity:

2
(5t 1 s w0+ T <u>}={§<n2—n>anu*n—%

5 e @m 1)t b 0+ { — e nagun g (et} H W,
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The resulting functions ¢,, substituted into (96), yield the following first terms for the
complete solution of (68) that starts with the “extended W.K.B. approximation”:

Al 3 —iT Ou%H,_EU u Ch A e —im/3,,36 LT (1)

(23w H0+2 et

+ (koa)8/3
30._'300) (1)<u)+e—zwl3{<3 (\10 C1>u/6+ (Y'L( /6}]](1)(u)
14 3 4 0~1 /01T 14 3 2/3 (97)
B )"

23. Equation for the Eigenvalues in Terms of the Functions G and m,

This equation results from the boundary condition (23) holding at the earth’s surface
(r=a). It reads as follows for the individual modes II,=7,(r) ;(cos 6):

o) T
Py (lfl}»E rf, at r=a.

In view of the definition (67) for the function G this proves to be equivalent to:

dmy
10G 1 dr I
e s —_— E —_— OR
Gor 2 m, a atr=a. (98)

We shall pass from » to the variable  which can be performed with the relation

(/ul

&
resulting from (66). The equation (98) then transforms into:
1d@G ko dm,
Giu —— koam, 2du—1‘atr a@. (99)

24. An Explicit Form for the Equation for the Eigenvalues

The function G(u) is represented explicitly by (97). Its derivative d@/du can also be
expressed in terms of the functions 75 and /3, using the identities:

Hijy (w)= —~H1‘ (w)—e™ " H jy(w)s

HE5 (1) =— o )+ e HB ).

We thus find the following expansion corresponding to (97):

- { -mp - ”H;;aw)}
ar
o wHHBw e H;,J<u> AT +“3”)Hf}a u>+(~'m‘“H<l><>
5 a
+5Co e 2 (koa)?

{(____ (7z+(zz 1/6_|_ 0 uls/e} 1(}3&(“) +c—iw/3 (g Og+%> u7/ﬁHé'1“)5(u>
(I(,' a)8/3

P e
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A division of (97) by this new expansion leads to the following corresponding representation

for (dQ/du)G:

dG ul/s{ 1— gim/3 Hé}:%?(u)
iy ! HML?
{{g:.(i —in/3 H2/3 u))+<; (w 1/3 (u)
G \6u HY(u) , - (ko) 3
§ oim/3 H () - Cio I{(l)(u)Q
+—‘ (3001+(10)+ OIOH%{?( ) =gk 1+ H%Z(u)Z
(koa)*
_E D) _2_ ¥ -3 2 § ei™/3 2(}1)32 )
+< 4(700-{—15 (/go)u +(10020+2 002‘*‘ ) { 1(1/%2(11)
(koa)¥'*
e (2 e!"/3C H(w) | 9 H‘}f(u)
ir/3 (s ) 11} 2/3°12/3 C 9/3 _—-2/8 \ ™)
+{ (56 5 J " HB@TE" metw
(ko)

In order to evaluate the first term of (99) the latter expansion has to be multiplied by that
of keam, which, in its turn, is obtained (in the special case r=a) with the aid of (70) and (90)-
We find, for each eigenvalue /

53

koam (w) = (ko@)?® Boou'’* + (Boy+ Bio) u+ (Boa+Bi + Bao) 75—+ (eo)?

7/3 3
+(Buw+Bis+Bu+ By (,j‘TJr (Bu+Bis+Bu+Bu+Bu) (7“0—) .. for u=w,(a). (100)

The product constituting the first term of (99) can thus also be expanded with respect to
(kow)=/*. 'The corresponding expansion of dm,/du, entering in the next term, follows from the
derivative of (70); it depends on the same coefficients B,; of (90) since we have to take r=a
throughout. By these procedures we arrive at the following final form for the equation (99):

P —ir ('U) —=1x (u
=i B TR (ha)**+ { durtameu A

HY (1)2
2/3 —in/3 Hjy(u) im/3 H3jy (w)
U ate A Froy +e a2 )
{ H{})(u) HS (u)

+ (k.oa)Q/‘s
ir/3 : o (1) ) (l)
u4/3{020+<e—u(2+€_”“022 23132534‘617/30 Z? Eui}
+ (ko) 3 = L
o
o ) } HS
+(13o+(1'31u2+(6_1"“032‘*‘6”/3(133)’“Hi;?gu;+€_W/3(134USH?£ZEZ;
(koa)®
iring o (W) H“’s(u)
e ) T
= o - (101)

in which % is short for u,(a) whereas the new numerical coefficientsintroduced here are defined by:
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—B
(100:'*@—1“; ap=—(Bo1+By),

Bll

a 10—‘ ( 00Boo— 3

2
3 B'ZO,V
011:—(B02+B11+B20>;
ap=—3 000B00a

(1'20_ 0 (3(701+010)+ (BOI+B10)DOO 9 Ijll BbO)

1
(1'21:§ BOOOI(h
Q2= (303+B1z+B>1+Bao>;
3
:'—{Bno< (Y01+ >+ (Bo1+Bm>(oo}
. 8 o o
az= By <—Z Coo +E 02())’
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The equation (101) fixes the eigenvalues / of our problem since it determines the value of

i (@) =koa f B G0, (103)
Tl <

which leads to a well defined value of C,=+/l(l-+1)/ke. This will be discussed further in sec-
tion 26.

25. Solution of the Equation for the Eigenvalues

A first approximative solution of this equation is obtained when neglecting all terms but
the first in the right-hand side of (101). The corresponding value wu, of u,(a) satisfies the
equation
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I/=—e¢ "3 Byul? H?ggu((g (104)

if we put I'=(ko)**T’. In the case of a homogeneous atmosphere the relation (104) constitutes
the base for the conventional diffracticn theory for the propagation of radio waves round a
smooth spherical earth.

The decrease proportional to powers of (kya)~%® of the next terms in the right-hand side of
(101) suggests to expand the rigorous solution as follows, for each eigenvalue u=wu,(a).

. Uy U2 Us
=0t Gy ) TR £
It is then necessary to expand all coefficients in (101) accordingly, with the aid of Taylor

series around u=w,. This will be indicated in detail for the first coefficient, viz,

wSHB W) P HS ) | d [ W HE ) w0 L1 Lt HG )
T Hieg) Tdu U HRW S e 0 53 \ THRW

(u—mup)?* . . ..

U=‘M0

After substitution of (105) we get an cxpansion with respect to (ko) *® that starts with:

weHf)_urHi 1 wSH G, (0)
- 4 u
H{})(u) H(ug) " (koa)™® ™ du ;X
1 ud d? W PH D ()
F o)™ a)‘”3(2 it 2du>{ W) S weng
. 1/3H(1) (u
+(k0a)2<6 du3+u1u2 Zu2+u3 du){ H,‘};(u) u=u0+ e (106)

All higher-order derivatives occurring here can be expressed in terms of the Hankel func-
tions of the orders 1/3 and 2/3, by applying a number of times the elementary rules known from
the theory of Bessel functions. Ior the evaluation of the present coefficients we need the
relations

d ’u”af]m(u) 1/3 in/3_]_,—im/3 IIZ/SZ(U)
g =

& HR_ 6o T e TR g s R
e R s IR T 5 i HR@?

a3 w3H (w)
dud (1) 0 (u)

1 ' 2 H;}?;(’U/) =im/3( ©9,,1/3 1 5}%2(,“)
0u ) 3 Hlg(u) T (2 g ()

it VAN PLTE (ul/a__

i 3
2 HP () g oSN (),

u?® H S (w) HO (u)

In all these coefficients we may substitute, in view of (104),

2/3(’“0) el _Il
1/3(“0) Boo U(l)/g

In this way we get the following expansion replacing (106):

I2
1/3
u”"‘Hé}%(u) eur/3 T Uy <1 +B Oug/3>
HB(m)  Be (koa)*?
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Corresponding expansions are found for the other quantities entering in (101). They start
with:
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Substituting all these expansions into (101), and equating to zero the total coefficient of
one and the same power of (k) #* [with an exception of the power (ky)¥® which leads to
I'"=T"] we obtain relations from which u;, s, . . . can be derived in succession. In fact, the
wu with highest suffix always occurs linearly so that we only have to solve linear equations in
order to derive 2, from g, u, from wu;, and wu,, uz from wu,, u,, and u,, etc. The first few coeffi-
cients of the expansion (105) for the eigenvalues w=wu,(e) can thus be obtained from the
relations:
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1 Qo1 Uy
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26. Determination of the Eigenvalues Themselves

We now have to pass from the quantities u=w,(a), determined by (105), to the parameter
[ which eigenvalue constitutes the complex order of the Legendre function entering in the
rigorous mode expansion (24). The connection between u,;(a) and [ is obtained by combining:

(a) a relation resulting from (9), for r=a, and (14), viz:

L(l+1)
kia®

=Ci=nZ(a)—mi(a), (108)

(b) the expansion (78) for r=a, which reads:

mi(a) = yO{uz(a } 42y l{uz(a)} +(‘Y%_|_9‘sz){u,(a)
+2(vevs+v1v2) {uléfs) }8/3+. .

In the latter expansion we substitute for each power of {u;(a)/ka}?® the proper power series
fellowing from (105) with the aid of a binomial series. We thus arrive at:

Yol 2viu,  yiud
s 2( °1,3+vmu“3> <3u(i/a 924,134- Yoy 1Up 3u1+71u0+27072uo>
mj(a)=

(k a)?/‘"‘ (ko) *’® (kow)®

+ 1 2vgus 273U1u2+i73u1+4‘)’0‘)’1u1
T (koa)*? 3ubPT 9wl TSLwWIR T w2

+3 7071u2u0’3+2(71+2707 ) Ut +2 (yovstyov2) ug } S

The quantity C7 is obtained next with the aid of (108), while its square root C,~1/(k.a)
can be expanded into powers of (k,@)~** by a further application of the binomial power series.
The final result starts as follows:

'YOuI 4/3
l AR T B A
koa Ci="nu(a) T 2neg(@) (ko) (o) N (@) Sniz(a)
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The convergence of this expansion can be proved in special cases, one of which will be treated
in part I11.

According to (40) the exponentials exp (i/0) determine the behavior of the individual modes
at large distances. In particular the factor

’(3“0” :g—lm o0

is decisive for the attenuation at these distances, if /, represents the eigenvalue with the smallest
mmaginary part. Obviously, the eigenvalues / depend on the numerical coefficients v; and the
quantities u;,. In view of (107) the latter follow in succession from the other numerical coeffi-
cients and from u, In its turn u, has to be determined from (104) which equation, to be
discussed now in more detail, represents the zero-order approximation for large values of

(ko).
27. Equation for the Zero-Order Approximation in the Case of the Electrical
Solution

The equation (104) can be put in the form:

» ][2}3(u0) _e""/”l‘ ’ '
! 1%(“0) By,

(110)

The quotient I'"/Bgy can be reduced as follows to the physical data. According to section
6 the parameter IV =T/(k.)*? is given for the electric solution as follows in terms of the atmos-
pheric refractive index n(a), its derivative n’ (@) and the refractive index 7, of the earth:

Vni— an’ (a)

n: (kow)”*n(a)

T’ =i (ko) "*n(a)

In the second term we can introduce the definition of the effective earth’s radius a.q, viz,

1 n’ (a)
21; (I, l’b((l,) (1108,)
Hence, also:
__1>
Rl )1/371((1 \))1 21 ( 111)

n; (kom)™*
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Further, we find with the aid of (91), (89), and (88):
3 \U3
Booz<§A1> 5 (112)

On the other hand, A, can be expressed, with the aid of (17), (15), and (6), in terms of higher-
order derivatives of the profile function n(r) at the earth’s surface. After some reduction
we find (again for the electric solution):

A1_20,n2(a)_£{<2—{- ><g;b‘7/2_7}1%>},=a’ (113)

and a corresponding value for By,.
In terms of the new constant:

B()O

6eﬁ:31/—31—\7’

(114)

which can thus be computed with the aid of (111), (112), and (113), the equation (110) reads:

1/3 H2/3(u0) 6”/3 .
H i (ug) 3%

Substituting u,=(—27)¥%/3, we get the alternative form:

1) (=27)%2
Hz/s{ 3 gin/3

—2 =— ) 115
w/ THI(}:);{ (*‘27)3/2} Oetr ( 2l
3

which is identical with a basic equation in the conventional diffraction theory for a homo-
geneous atmosphere provided that 6 is replaced there by 6. [See H. Bremmer, Terrestrial
Radio Waves, page 43, eq (21a).] The eigenvalues 7; satisfying this equation are in the first
quadrant, and —27;is defined as a quantity in the —2"d quadrant.

The techniques for solving (115) in the case of a homogeneous atmosphere can now also
be applied here. In particular, the following two expansions could be derived from a Ricecati
equation equivalent to (115) [loc. cit., page 45, formulas (27) and (28)]:

2 1 4
Tz:Tz,o-aeﬁ_rgTz,0535+§5:ﬁ_57§.052ﬁ sy
3 7 5
111 L__<1+4r?.w> 1 (§+4r?,m A
L 271, 0 Ot 875, o O 1277 , 0% 3277 o O
The numbers 7, o and 7, ., are defined such that x,,oz—% (—27,0)%* and x,,mz—% (—271;, )%

represent the zeros of oJy;s()+oJ_15(@) and of Jos(@)—J o). We can obtain the corre-
sponding expansions for (—27)%* and thus for u,. The resulting expressions, viz,

( 27'! 0)3/2[ 3 5eff 3 5§ﬁ )
Uor="""3 1= T8, i

5 \ 3 ‘I
+<4T, 0+128T 0) Oen— <5 ”°+4T 25670 )5 e

=1 ~(gitioms)— (G tans, Dt -
e = 327,m5 ST 1257,m % \6473 20457 R

(116)
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are particularly useful for computations concerned with small and large values of |6/,
respectively.

28. Complete Evaluation of the Eigenvalues C,

The final complete procedure for arriving at the numerical values of the parameters (),
in the case of a vertical dipole can be summarized as follows. First of all, the physical data
to be given are:

(a) the function n(r) representing the smooth profile of the refractive index of the atmos-
phere,

(b) the refractive index n, of the earth. It is given as follows in terms of the dielectric
constant e of the earth relative to the atmosphere, and the earth’s conductivity ¢ in
electrostatic units:

Amo
nt=e+1i——-
w

The complex parameter TV then follows from (111), the effective earth radius being defined
by (110a). The parameter A; can be evaluated next with the aid of (113). It leads to a
corresponding value of By according to (112), whereupon (114) yields the parameter 6.y.
The successive eigenvalues %, ; can be computed next with the aid of (116). This concludes
the determination of the zero-order approximation (extended W.K.B. approximation).

The further corrections depend on a sequence of real parameters starting with the quan-
tities A,.  With the aid of (17), (15), and (6) we verify that the latter can be represented by:

(d CHT (Yl =
A]-:(LJ (—[—,7“12(7')} B ‘_‘;;._;(l»j 2(—177] l"’l?r(“lP(?—b)} ~ ’ (1]4)

M(r) =§ n(r)

in which

is the modified refractive index of the atmosphere. The second term of (117) is small compared
to the first one for most relevant frequencies, but it may become important at the lower end
of the spectrum.

With the aid of (83) we derive from A; the new parameters §,, next with the aid of (81)
from B, the quantities y,. The quantities y; and A; now being known, we derive with the aid of
(85) the p,’s, whereas the g,;'s follow from (88) if we just know the A;’s. Having derived both
the ¢,;’s and p,’s, the t,;’s can be computed with the aid of (89). The knowledge of the t,,’s
and ¢,,’s enables the derivation of the B;,’s from (91). Next we compute the C,,’s with the
aid of (95). The a,,’s can then be computed according to (102). All numerical coefficients
necessary for the derivation in succession of uy, uy, 3 . . . from (107) are then known.
Finally, C; can then be computed with the aid of (109), remembering the definition (6) for 2.y,

29. Limiting Cases I"'=0 and I"==

These special cases are of particular interest. First of all, the evaluation of the final
expansion (109) becomes much simpler here than for some finite value of I'”.  On the other
hand, the eigenvalues are generally expected to be situated in the complex plane between
those corresponding to the two limiting cases.

The value I'"=0 is approached for a perfectly conducting earth. In fact, the first term of
(111) then vanishes since n,—= © while the second term is small but for extreme low frequencies.
The other limiting case I'V=o is characteristic for short waves for which the earth behaves
mainly as a dielectric; the factor n(a) (n,’—1)*n,” in the first term of T/ then is of the order of
unity so as to have a modulus of this term which is of the order of the very large quantity
(ko).

49



We first deal with the limiting case I'=0. The relations (107) representing u;, u,. . . in
terms of u, here reduce to:

UIZ'BG‘OO”—s:
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B}, " By 6330“8/3
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3= > U .
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We substitute these expressions into the eigenvalue expansion (109) while approximating
ners(@) by unity. This approximation amounts to an error which is certainly smaller than that
introduced by taking I'"=0 for some practical conditions. The resulting expansion reads:
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We next pass to the other limiting case I''=c which is simpler. Evaluating (107) we
first find u;=0. However, when determining the limit for I'"—>w in the successive terms for
the higher order u,’s, we have to take into account the approximation

forlarge I''.  We then obtain the following expressions:

U =0
(13T 1/3
Uo=—7 WUy
By,
11120/01 23
Uz=— +B Uy.
0[) 00

Substituting these values into (109), again taking n.;(a) =1, the eigenvalue expansion for
I'"=o proves to start with:
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Examples of the limiting eigenvalue expansions (118) and (119) will be worked out nu-
merically in part TI11.  The first few terms of the expansions (118) and (119) are rather simple
even when all its parameters are expressed explicitly in terms of the profile constants A,.  The
complete evaluation of these parameters results in expansions starting as follows:

3 2/3 o 3 1/3
/ (6‘ A’\l> /llo'/'; (‘5 AI> 3 0
o | . e . S =\ 4/3 A
{k(,(l} I —o 2 (ko@)=/3" (o) ® { 161 5 Al } + =

1 S 18 Ay, 3 A, A2— 27 A3 )
P 7A>4~) - / A —'; ol Boraditen. o ﬁ npe
(keott)? {3 50 ‘>0(\”L 175 2 +;)A\1+()4 7350 A;} "

+ ... (120)

21 10 ' 40 10,A{ 1404\1 2501\

3 2/3 3 1/3 1 A~_) g -
0 __Q;Ax) w2 ,(5 ) {5(‘+K; “1;‘;_}“0
k(](l l":a_

D) (A'na)mT (/\”0(1)”3
«\ A\) 3] A\'; .) o 27 ,A._E 2
Ua) [{ 350 70 “’*‘)4‘173 \1+;{) A Tea AT 50 A‘;’} "o

3A, 1A 9 A}
e E .. (121
(‘0+'0 A, 728 A, 280 Ag):l+ (

30. Plane Stratification as a Limiting Case

(___‘\. Az 16 Ay 3 As_ ) (

()00 u(,

The theory for a concentrically symmetric medium can be reduced to that for a medium
with a flat stratification (refractive index dependent on an orthogonal coordinate z instead of
the radial distance 7). The determination of solutions and eigenvalues of the “flat height-gain
differential equation’”” has been investigated by various authors who discuss extensions of the
W.K.B. approximation, comparable to those of the present paper. We mention in particular
articles by Cherry [1950], Imai [1956], and Erdelyi [1960]. Recently the problem has been
approached in detail by Logan [1961] for the eigenvalues. However, we only considered the
spherical problem in view of its direct applicability to far-distance tropospheric propagation.
As a matter of fact, results for a flat stratification may be derived from those given here with the
ald of a limiting procedure. This will be explained now.

Our basic differential equation has the following form, in view of (8), (9), (15), and the
coefficients (17) of the Taylor expansion for M2;(r) around r=a:

+A’{ R = o [

e
We substitute
r=a+z; A;=a’Aj; rf(r)=F(2); {(I+1) ~P=Na’, (122)
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and next take the limit for a—o. The differential equation resulting reads:

{ 2-|—<k2 2’ A2 }F(z) 0. (123)

On the other hand, the boundary condition (23) becomes, with I'=~a,

g—g:-yF at 2=0. (124)

In view of the relation I'= (kq)*? T’, and the parameter

3 1/3 3 \1/3 3 \1/3 3 , 1/3
Bm=(§tlo> =<§Q10} =(’2‘A1) :(§U'A1> ,

the equation (104) defining the roots u, may now be represented by:

/3 22/3\%o) 2/3(“0) eir/s,),( 2 )1/3,
¢ H{y(ug) kA

The solution of the differential equation (123), with the boundary condition (124) at z=0
and the radiation condition at z=+ =, constitutes a very general eigenvalue problem. Its
properties can be derived from those in the present paper by substituting (122) into the latter,
and then passing to the limit for a—«, As an example we can give the expansions which
correspond in the spherical case to (120) and (121):
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