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This part concerns t he heigh t-gain differe ntial equation in order to obtain a series Jor 
t he complete solu t ion wh ich star t wi t h t hc extended VV. Ie B. approximation discussed in 
part 1. The coefficients of t his eq uat ion depend for each mode a mongst other t hings on the 
parameters Aj fixi ng t he r efr active-index pro file. H owever, t he explicit dependence on 
these para mcLers can only be given in terms of expansions wi t h respect to (koa)-2/3 (koa = cir­
cumferencc of t he earth divided by t he wavelength). I n t urn these expansions are derived 
with t he a id of other ones for t he co mplex t urning poin t co nnected with t he heigh t -gain 
differential equation. The final expa nsion for t he solu tion of t he differential eq uation is 
substituted in t he boundary condit ion at t he ear t h 's surface. This leads to correspondin g 
expansions, with reo pect to (koa)-2/3, of t he quantity 111(a), and Il ext of the eigenvalu es I 
themsel yes. 

16. Canonical Form of the Height-Gain Differential Equation 

Accol'cLing to section 3 the fi eld of a dipole situated in a spherically symmetric stratified 
medium can be expressed in terms of a single scalar quan tity II. The latter can be expanded 
in modes i t(r) P , (cos IJ ) the radial par ts of which have to sa tisfy the height-gain differential 
eq (8), viz, 

According to (9), (14), and (15) 1n, is defined as follows in terms of the profile M eff = (rj a)neff : 

(65) 

Moreover, the height-gain functions should fulfil the radiation condition at infini ty, as well a 
the boundary condition (23) at the earth's surface. 

Following the methods of Langer [1937] and Pekeris [1946] we in troduce th e new variables : 

(66) 

and 

(67) 

the former of which has been discussed in section 5. The influence of the r efractive-index 
profile enters explicitly by the occurrence of ]I,![eff, and implicitly by that of the turning-point 
level 1' 1 defined by (14). The height-gain differential equation then proves to be equivalent to 
the new equation : 

(68) 

1 Part I . J . R esearch NBS 64 0 (Radio Prop. ) ~o. 5, 467-482 (Sept.-Oct. 1960). 
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in which 

(69) 

The eq (68) will be the starting point for our further investigations. 

17. First Expansion for lTl 1(r) as a Function of u l(r), With Coefficients Depending 
on r z 

In order to solve (68) we have to determine P1(UI) as a function of UI. This can be done 
for each eigenvalue l in terms of an expansion the 'coefficients of which depend on the parameters 
Aj of (17). The latter characterize the refractive-index profile. In view of (69) we start with 
the determination of ml as a function of UI. The tedious derivation of the coefficients of the 
corresponding expansion will be given in steps, to be discussed in the next sections. 

We first notice that m~ could be expanded into a Taylor series in 1' - 1'1, since m~ is a contin­
uous function of l' according to (65) . However, this series starts with the linear term; in fact, 
the relation NJelt (1' I) = 0 1 (see (14» involves mlCrz) = 0. Weinferaproportionalityofmz(r)with 
(r- rz)~ for small values of 1'- 1'1' In view of (66) this involves a corresponding proportion­
ality of ulwith (r - 1'z)3/ 2, or of 1'- 1'1 with U~/3 , and therefore of m1with u)l3. Similar considerations 
show the proportionality of the next terms of the expansion of ml (in terms of Ul) with U~/3, 

Uf /3 ,U;/3 , etc. We therefore put: 
dUI k 1 ~B (l) ul(2n+1) 
a;:= oml=(j, ~ n ""Ck;-oa-;):-'-i'(n--""'"'"l)'· (70) 

the dimensionless coefficients B~l) of which are to be determined next. In this section these 
coefficients will be connected with the properties of the profile near the turning point 1'1. 

We first multiply the expansion (70) by itself, so as to obtain 

We substitute s= m- j, and invert the order of summation with respect to j and m. The 
resulting expansion reads: \ 

'" H m+ l) m 
k 2 2 2_"'" Uj "B (l) B (!) Oam1 - L.....J (k ) Hm-2) ~ j m-j' (71) 

m= O oa }= O 

The coefficients BjZ) can now be obtained from the derivatives of (71) with respect to 1', 
taking 1' = 1'1, For instance, the first order derivative yields, applying both (70) and (71) , 

2 3 d(mD _~{ '" U1 H m+ l ) m (I) (l) } 

koa d - d 22 Ck Y(m-2) ~ B j Bm- J l' UI m=O oa 3 }=o 

'" uzt(2n+1) 
X "'" B (l) • 
~ n Ckoa) i(n-l) (72) 

Since 1'= 1'1 involves uz= O, we have only to derive the t erm m = n = O in order to get the value 
of the left-hand side at r = r z. Similarly, a further differentiation of (72) with respect to u , 
multiplied by (70) , yields the second derivative of m~; its value at 1'= 1' , reduces to the constant 
term of this new expansion, and so on. 

We mention the expressions thus obtained for the first few derivatives of m~ at 1'= 1'1 : 

'= a { d(m7) } =~ {B (l)}3 . 
71 1 dr T~ r l 3 0 , 

" = 2 {d2(mD } _ 20 B Cz)3 B (l) . 
71 1 - a d".2 _ - 9 0 1, 

I T - T Z 
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.,'" == a 3 {d3(mD} =~ B (l)3{ 14B (l) B (l)+ 19B (l) 2} . 
' / ! dl>3 _ 27 0 0 2 I, 

T - TZ 

(73) 

From these l'elations we may solve in succession the coefficients B(~) , B (P, etc. We ob tain : 

{ 3 ' } 1/3 BJ!)= ~ ! ; 

(l)_~{~} 113{ 'r/;"_19 'r/ ;'2 } . 
B2 - 56 3 / ' 25 '2 , 'r/ l 'r/ ! 'r/ ! 

(74) 

18. Second Expansion for 1TIJ{r} as a Function of u/{r} With Coefficents Depending 
on the Profile-Function M{r} 

According to (73) and (74) the coefficients B~!) of (70) depend on the position oHhe tmning 
point 1'1 which may be derived from (18). In this latter ex-pansion the parameters Ai are param­
eters Imo,,,n from the o-iven profile of the refractive index. In ordor to obtain the tmning 
point from (18) in it complete explicit dependence from the profile, we shall have to lmow the 
coefficients m/(a) entering in (18). Therefore, we next want to obtain a connection between 
the latter and th e profile parameters A j • It can be arrived at from an expa,)l sion of m /(r) in 
terms of u /(1') , to be derived as follows. 

We star t from the expansion (2 1). In view of (65) it can be r epre enLed by 

in which 

'" ul(1') = koa ~ ak) ml(r)2i+3, 
j~ O 

(75) 

(76) 

We invert this series, takill g in to accoun t that the first term proportional to m~ in the original 
series involves a first term. propor tional to ul/3 in th e new one. Th e complete inversion series 
can be put in the form : 

m/(1')= Oo(1') {Uk~) } 1/3 + 0l (r) {~;~2 } 3/3 +02 (1') { ~;~) } 5/3 +03 (1') { Vk~) } 7/3+ . " (77) 

In fact, substituting this expansion itself and the corresponding expansions for its suc­
cessive powers, such as 

(78) 

into (75), we find by equating the corresponding powers of u! in both m embers unique relations 
for the determimttion of the new coefficients OJ(r) from the other coefficients aj(l'). The first 
relations of this type read exulicitly : 
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1 
{ ao(l') } 1/ 3' 

- al (l') 
0 1 (1') = 3a5(l') , 

27 a3(r) 
ag(l') . 

These coefficients thus determine tho expansion (77) for ml(l') in terms of ul(l'). 

(79) 

19. An Expression for the Position of the Turning Point in Terms of the Param­
eters u j(a) and Aj 

Such an expansion can now be derived by applying (77) to l' = a. We find 

{ uzea)}1/3 { uzea) 'I 3/3 {ul(a) } 5/3 { ul(a) }7/3 
m l(a) = 1'0 koa +1'1 koa )- +1'2 koa +1'3 koa . .. , (80) 

where I'J= Oj(a) follows from a substitution of l'=a in (79). Introducing the new quantities 
(3 j = aj(a) we then have: 

4{3i- 3{30{32 
9{3a1/3 ' 

1'3 
(81) 

Further, these coefficients {3j are connected as follows with the profile, in view of (76) for l' = a, 

(82) 

All derivatives occurring here can be expressed in terms of higher-order deriva tives of }.IF. 
For instance, we find: 
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'Ye only n eed all Lhe e quantiti es at 1' = a in order to evaluate the coefficients (3 j from (82). 
All term then occUl"ring can be expressed in terms of th e profile constants A), by applying the 
defini tion (17). The first few prove to be givell by: 

( 3) 

The coefficients "I j of the expansion (80) can thus be evaluated nwnerically by first comp ut lng 
the (3/ s wi th the aid of (83) from the profile constan ts A), and n ext applyin g (8 1). For a fur ther 
evaluation of the expan ion (1 ) for the position 1' , of Lhe tUl"niIl g poin t, we fur ther have to 
determin e the even power s of the expansion ( 0) in order to arrive at all explici t r epresen tation 
of 1'1 in terms of both A j and u,(a). Obviously we then get an expansion of (1' z-cL) /a in terms 
of in creasin g in tegral powers of the quantity 

with coefficien ts depending explicitly on both "I j and A j • This rath er tedious procedure leads 
to the following final represen tation : 

( 4) 

the new coefFicien ts of which can be derived as follo"~s from the constan ts determined previously: 

2A2 3 +( Aa A~ ) 6 
A~ "10 "11 6A1- 2Af "10 ' 

( 5) 

Swnmarizing, all coefficien ts of the expansion (84) can be evaluated numerically by fu'st 
deriving the (3/s from the profile parameters A j with the aid of (83), next the "1/ from the (3/s 
wi th the aid of (81 ), and then the p /s from the "I/s with the aid of (85). 

20. Successive Developments Resulting in an Expansion of the Coefficients 
Bn(I) in the Expansion (70) for the Dependence of m/(r) on u/(r) 

Such an expansion is r equired for the subsequent analysis enabling the numerical evalua­
tion of th e eigenvalues and the corresponding expression of the field componen ts. W e s tart 
with a derivation of a series for the parameters 11 jk ) of (73) in terms of the turningpoint co­
ordinate 1'1. 

Let us first differen tiate the square of (65). The defu1i tion of 11; then involves 
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which reduces, applying (14 ), to : 

7) ;= a3 {dM~rr (l') "'\ . 
ri dl' J T~ rl 

The Taylor expansion : 

(86) 

may be used here for a fur ther reduction which results in : 

,-~ :t Ai ( _)H 
7) z-rr j~oaj(j- 1 ) ! rz a . 

The higher-order coefficients 7) lk ) are obtained in a similar way. For instan ce, by differ­
entiating twice the square of (65 ) we obtain first : 

7) ;' =a2 dd~2 [~: {M;rr (r) - G }] 
1 1 T~T Z 

which can be reduced with the aid of (14) to : 

7) ;' = a4 [ _ i { dNI;rr (r) } +l { d2M;rr(r) } ]. 
1'1 clr T ~ T I rr dr2 T ~ T l 

When substituting th e first and second derivative of (86) we arrive at : 

7) ;'= a4[ _ i :t A j (rz- a)j- l+l:t A j (1'z - a )i- 2] . 
rIj~ laj (j - I ) ! rr j~2 aj (j - 2) ! 

By a continuation of this procedure we get expansions for all coefficients 7) lk ) in terms of 
powers of rl-a, divided by another power of 1'1. In its turn, the latter power can be developed 
wi th the aid of the binominal expansion for 

When assembling identical powers of rl - a we thus obtain expansions of the form : 

(k ) 00 { rl- a } j 
7) z =~ q k j - a- , (87) 

the lower-order coefficients of which prove to be given by: 
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q4o=-96A I + 36A2- A3+ A4; 

Q41 = 480A I - 240A2+ 60A3- 10A4 + As; 

Q42=-1440A I + 40A2-240A 3+ 45A4- 6As+ j~6 ; 

~ .-- -~~~-

(88) 

As a next step we may substitute in (87) the expansion (84) and the successive powers of 
this expansion. A new power series for 1/ lk) , viz 

(k)_ ~ t { uz(a) } ~J 
1/ 1 -~ kj -ka ' 

)=0 0 

then results. Its lower-order coefficients can be represented as follows: 

(89) 

If these coefficients are also known we are enabled to derive also expansions of the co­
efficients Bi!), defmed by (74), in terms of the quantity uz(a) /koa. For instance, we have 

(l) _(3 ,)1/3_ (3)113 [ { uz(a) } 2/3 { uz(a) } 4/3 J1/3 Eo - -2 1/ z - -2 tlO+ tll - k- +t12 -,,- . . . 
oa eoa 

=(~ tlO)1/3 [1 +! tll { U1(a) } 2/3 ~(! tI2_! tI; ) { uz(a) } 4/3 ... J, 
2 3 tlO koa 3 tlO 9 tiO koa 

and 

t + t { uz(a) } 2/3 +t? { ul(a) } 4/3 ..• 
3 17;' 3 20 21 koa _2 koa 

E m - - --- ~~~--:-~~~~~~~~-=-~~ 
1 - 10 1/ ; - 10 { uz(a) } 2/3 { u z(a) '" 4/3 

tlO+ tn -k- +t12 -k- ~ ... 
oa oa ) 

=~ t20 [1 + {~_~} { u z(a) } 2/3 
lOtIO t 20 tlO koa 
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and so on . In this way we get in general expansions of the form: 

(90) 

The first few of these new coefficients are connected as follows wi th the form er quan tities t nj : 

B = {~_~ tIlt12+~ t ~l } (~ t )!. 
03 3tlO 9 t ~o 81 t ~o 2 10 , 

B ?o=!i (~)! { t30_ 19 go}; 
- 56 3tlO tlO 25 tro 

+ 639 t~o t21_ 781 tllt ~O } . (91 ) 
2800 t ~o 2800 tio 

These coefficients, occurring in the expansion (90), determine the dependence of mz on Uz accord­
ing to (70). 
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21. Explicit Form of the Differential Equation (68) 

Tbe expansion (70 ) for m/ as a fUllction of U j can also be differentiated in order to obtain 
corresponding expan ions for dm ddu/ and d2mdclui. It is also possible to: deduce from the 
latter developments of the quan tities 

occurring in (69). This elementary formal procedure leads to the followin g expansion for the 
coefficient P I of the final differential equation (6 ): 

5 '" 0 (1' 
P (u)= l + --+'" " u~(n-l' 

1 36u2 ~ (k ):l(n+v • n-O of[, 3 

Its first few coefficien ts read : 

B (I) 8 B (1)2 2B (1) B (I) 
0(1)--- _ 4 + __ 2_+ 1 3 

2 - 3 B (I) 9 B (02 B (I )2 
o 0 0 

40 B (n 28 B (O B (O 32 B (l) B (1) 0(1) - - - _ 5_ + _ 2 3 + _ 1 4 
3 - 9 Brin 9 Ed l)2 9 BJl)2 

8 Bln BJl)2 
"3 BJI)3 

(92) 

4 B {l )5 --, 
9 BJ0 5 

(93) 

when derived straightforwardly with the aid of (70 ). In its turn the quantities Bkll are 
conne.cted with the eigenvalue parameter u I(a) according to (90 ). The later analysis requb:es 
the explicit dependence of the coefficients Oko on this latter parameter. This dependence is 
obtain ed by determining the powers of the expansion (90 ) and also the relevant fractions 
resulting from the divisions of such powers. 

The evaluation of this procedure leads to furth er expansions of the form : 

(94) 

the new coefficients of which may be computed by performing the mentioned procedure nu­
merically, without applying the complicated analytical expressions which connect the Ok/ with 
the coefficients B nj determined previously. However, for convenience we give the expressions 
for the simplest coefficien ts Okj: 

1 _ _ ~B30+~BIOB20_~mO, 
0- 3Boo 9 B 60 9 Bgo 

609993-62---4 39 



(95) 

22. Solution of the Differential Equation (68) 

This equation depends completely on the function P! which is represented by (92) as a 
power series in (koa) - 2/3 . The only term remaining for koa-'7oo involves the solution G(u) 
= ..fUl-I{}1(u) known from the "extended W.K.B. approximation." The next terms may be 
considered as corrections for large finite koa and suggest the following representation for the 
complete solution: 

(96) 

We substitute this series into (68) and assemble the contributions proportional to one and the 
same power of (koa) - 2/3. It leads to the following set of equations: 

(n~2). 

Starting from the normalized "extended W.K.B. approximation" go(u) = -iUl-Im (u) , satis­
fying the first equation, we may take gl = 0. Taking into account these special values of go 
and gl, we find the next equations: 

(!!!"'-+1+_5_) _ If - 1/ 6E7(1l ( ) du2 36u2 g2-l.JOU LlI3 U , 

(dd~2+ 1 + 3:U2) g3=crful-If}1Cu) , 

(t~+ 1 + 3:U2) g4= C2u7/6l-IDHu) +COU- 2/ 3g2CU) , 

etc. All these equations can be solved easily in succession, by substituting for the unknown 
function in any further equation the sum of Ca) the Hankel function l-ImCu) multiplied by a 
finite number of Cpositive or negative) powers of U 1/ 6 with indefinite constant factors, (b) the 
Hankel function l-I~)Hu) multiplied by another number of such powers. The powers to be 
introduced here , as well as the coefficients in front of them, can be determined conveniently 
by applying the following identity: 

+~ ei"/3C2m+ l) {37nU~m-l} l-I{}1 Cu) + { -~ e-i"/3nanUl"-!+~ (m2-m) {3mUtm-i } l-ID1Cu). 
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The resul ting functions g", substituted into (96), yield the following first terms for the 
complete solution of (68) that starts with the "extended W.K.B. approxim ation": 

G(u) = 'uIl (J) (u)+~ e-i7r/3 Oou%H J}§(u) + 0 1 i.JuIlm(u) +e-i7r /3u%IlJ}§(u) 
yu, 1/3 2 (koa) 4/3 2 (koa) 2 

(_~ 02+02) u 7)JIl(I ) (u)+l. e- i7r/3C ul %Il (1) (u) 8 0 5 1/3 10 2 2/3 

+ ~~m 

(~ 03-~ 0001) uIHH i}Hu) +e- i7r/3{ (~ 0001-~ 03) U~"+~ 03UI }€, } IlJ}§(u) 

+ (koa) 10/ 3 

(97) 

23. Equation for the Eigenvalues in Terms of the Functions G and !TI l 

This equation r esults from the boundary condition (23) holding at th e earth's surface 
(1'= a) . It r eads as follows for th e individual modes il /= jl(I')Pl(cos 0): 

o r 
;;;- (ri/) =- ljl at r= a. 
u l ' a 

In view of the definition (67) for the function G this proves to b e equivalen t to : 

clml 
1 oG 1 clr r 
----- =- at 1'= a. 
G 01' 2 ml a 

' Ve shall pass fronl r to the variable u which can b e perform ed wi th th e rehttioll 

clUI k 
(ii= oml 

rcsultillg from (6 6). The equ ation (98) then transforms into : 

1 dG lcoadml G du kOaml-T clu = r at T= a. 

24. An Explicit Form for the Equation for the Eigenvalues 

(98) 

(99) 

The fun ction G(u) is r epresented explicitly by (97). Its derivative dG/du can also be 
expressed in tenllS of t he functions Ill/3 and Il2/3, using the identiti es: 

Hi~h' (u)=- 3~ Ilm(u)-e-i7r/ 3Il~}§(u), 

I-J(I )I(u) =_2 H(!) (u) +ei7r/3FI (1) (u) . 2/3 3u 2/3 1/3· 

W e thus find the following expansion corresponding to (97): 

dG = {_1_ HOl (u)_e- i7r/3 'uIl(J)3(U) } clu 6{U . 1/3 yu, 21 

ui H(1) (u) + e- i7r /3 U- 1
/

6 I-PI) (u) ( _ 1_+u3/2)H(!) (u) +e- i7r /3 ' 1U EP !) (u ) 3 1/3 6 2/3 0 1 9 U 1/3 6 2/3 

+2 00 (koa) 4/3 + 2 (lcoa) 2 

{ ( _ 15 02+ 02) u1/6+1... C UI3/6 } Il(I) (u) +e- i7r/3 (~ 0.2+02) u7l6I-I(!) (u) 16 0 6 10 2 1/3 8 0 4 2/3 
+ (koa) 8/3 + ... 
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A division of (97) by this new expansion leads to the following corresponding representation 
for (dG/du)/ G: 

In order to evaluate the first term of (99) the latter expansion has to be multiplied by that 
of koamz which, in its turn, is obtained (in the special case 1'=a) with the aid of (70) and (90)· 
We find , for each eigenvalue l 

5/3 

koam(u) = (koa) 2/ 3 B OOUI / 3 + (Bol + BlO)u+ (B02 + BII + B 20) (k:a)2f3 

The product constituting the first term of (99) can thus also be expanded with r espect to 
(koa)-2/3 . The corresponding expansion of dm ddu, entering in the next term , follows from the 
derivative of (70); it depends on th e same coefficients B n } of (90) since we have to take 1'= a 
throughout. By these procedures we arrive at the following fin al form for the equation (99) : 

f =- e- itr/3B UI /3H J)Hu ) (k a)2/3+ { a + a e-i7r/3uHJ)HU) } 
00 H iiHu ) 0 09 01 H nHu ) 

{ H (J)(u ) H W\u) } U2/3 a +e- i7r /3a u _ 2_/3_+ eitr/3a 2 / 3 
10 II H W (u ) 12 17m 2 ( ) 

+ I ~ 21 ffl u 
(koa) 2/3 

4/3 { + ( eitr /3a 21+ -i7r/3 )Hm(u)+ i7r/3 H m\U) } u a2C e a22U TT (J ) () e a23 2 
U n 1l3 U Hm (u) 

+ (koa) 4/3 

. . H~[) (u) . H C!) (u) 
a + a u 2+ (e - 17r/ 3a + e'7r/3a )u - --/3_ + e-'7r/3a u 3 _ 2/_3_ 

+ 30 31 32 33 H m(u) 34 H i)Hu) 

(koa) 2 

(101) 

in which uis short for ul(a) whereas the new numerical coefficients introduced here are defined by : 
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azz=- (B03+ B1Z+ Bn + B30) , 

Cln=- { Boo G 001 + ~O)+~ (B01 + B lO ) oo} J 

a30= Boo ( -~OlO+ l~ OZO} 

(102) 

The equation (101) fixes the eigenvalues l of our problem sinee it determines the value of 

(103) 

which leads to a well defined value of 0 1= "I/£(l + l) /lcoa. This will be disc llssed further in sec­
tion 26. 

25. Solution of the Equation for the Eigenvalues 

A first approximative olution of this equation is obtained when neglecting all terms but 
the first in the right-hand side of (101). The corresponding yalue Uo of u l(a ) satisfies the 
equation 
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(104) 

if we put r = (koa)2/3r'. In the case of a homogeneous atmosphere the rela tion (104) constitutes 
the base for the conventional diffraction theory for the propagation of radio waves round a 
smooth sphel'ical earth. 

The decrease proportional to powers of (koa)-2/3 of the next terms in the right-hand side of 
(101) suggests to expand the rigorous solution as follows, for each eigenvalue u = u/(a). 

Ul U2 Us 
u=uo+ (koa) 2/3 + (koa) 4/3+ (koa) 2 ••• 

(105) 

It is then necessary to expand all coefficients in (101) accordingly, with the aid of Taylor 
series around U= Uo. This will be indicated in detail for the first coefficient, viz, 

Ul /3H~}Hu) 

H {%(u) 

After substitution of (105) we get an expansion with respect to (koa) -2/3 that starts with: 

Ul/3H~}Hu) 

H m(u ) 

(106) 

All higher-order derivatives occurring here can be expressed in terms of the Hankel func­
tions of the orders 1/3 and 2/3, by applying a number of times the elementary rules lrnown from 
the theory of Bessel functions . For the evaluation of th e present coefficients we need the 
relations 

d UI/3H~}Hu) 

du H m(u) 

d2 Ul/3H~}~(u) 

du2 HI}~(u) 

d3 Ul/3Hi}~ (u) 

clu3 HI}~ (u) 

ei7r/ 3 l-I(l ) (u) e- i7r / 3 H(l )2(U) 
+2U1/3 _ 2/_3_ ___ 213 

3U2/ 3 H (!) (u) 3'U2/ 3 T[(l)2( ) l ~ £ l~ U 

In all these coefficients we may substitute, in view of (104), 

H m(uo) 
H i%(uo) 

ei7r/3 r' 
- Boo UA / 3' 

In this way we get the following expansion replacing (106): 

U l / 3H m(u) 
H i}Hu) 
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( 1/3+UlU 2 +U~ 1/ 3 U~ ) r' (2 u~ )+r'2 ( U3 UIU2 +4 u~ + 2 U~) 
U3Uo 3U2/ 3 -3 U o - 27u5/3 -B U I U2-9u B 2 U I/3-3u 4/ 3 -3 U 1/ 3 27 U 7/ 3 +ei ". /3 o · 0 00 0 00 0 0 0 0 

(koa) 2 

+f' 3 ( _ 2UIU2+~)+r'4 U~ 
B 3 2/3 3 5/3 B 'l + i"./3 00 Uo Uo 00 UO + 

e (koa) 2 ' , , , 

Corresponding expansions are found for the other quantities entering in (101), They star t 
with: 

H~)Hu) 
U H m(u) 

2/3_ 2/3 2 UIU; 1!3 
U - u o +"3 (koa)Z/3 + ' , " 

(
5/3 4 r ' 1/3 + r , 2 ) 

} 7 0) ( ) , UI Uo -;- -B U o B2 Uo 
5/3 J. 2/3 U _ei7r/ 3 ~ u4 /3+ei 7r /3 3 00 00 + 

U H !g(u) Boo 0 (lcoa )ZI3 ' , " 

ZI3 H m2(u ) 

U H m\u) 

4/3 H~}Hu) 
U H i}Hu) 

7/3 H m(u) 
U 

H m(u) 

H (])2( ) 
U 4/3 2/3 U 

H m\u) 

i7r/3 r' + -e -B UO .. " 
00 

i ,,/3 r' Z+ 
e Boo Uo " " 

, f, 2 
_ e-,,, /3 _ U 2/ 3 

B50 0 .... 

Substituting all these expansions into (101 ), and equating to zero the total coefficient of 
one and the same power of (koa) -Z/3 [with an exception of the power (koa)2/3 which leads to 
r' = r'] we obtain relations from which UI, U2, ' , , can be derived in succession, In fact, the 
U with highest suffix always occurs linearly so that we only have to solve linear equa tions in 
order to derive Ul from Uo, U2 from Ul and Uo, Us from U2, U l , and Uo, etc, The fir t few coeffi­
cients of the expansion (105) for the eigenvalues u = ul(a) can thus be obtained from the 
relations: 
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+ alIUO _ 2 +r/2 Ui +aOOu1uO a£ + ~ 4/3 ) ( ? Jl3 ) r/3 " } 
B Ul 6B 4/3 B2 B2 B2 2/3 ' 

00 ooUo 00 00 ooUo 

(107) 

26. Determination of the Eigenvalues Themselves 

We now have to pass from the quantities u = ul(a), determined by (105), to the parameter 
l which eigenvalue constitutes the complex order of the Legendre function entering in the 
rigorous mode expansion (24). The connection between u l(a) a.nd l is obtained by combinin g: 

(a) a relation resulting from (9) , for r= a, and (14), viz: 

l(l + 1) _ 02 _ 2() 2() - k? 2 - I - n eff a - m l a , 
iia 

(l08) 

(b) the expansion (78) for r= a, which reads: 

m2(a) - 2{ UI(a) } Z/3 + 2 { ul(a) } 4/3+ ( 2+ 9 ) { u l(a) } 2 
I - 1'0 koa 1'01'1 koa 1'1 ~I'o 1'2 koa 

{ u l (a) } 8/3 
+ 2(1'01'3+1'11'2) koa + ... . 

In the latter expansion we substitu te for each power of {u /(a) /koa } 2/3 the propel' power series 
following from (105) with the aid of a binomial series. We thus anive at: 

+~1'01'IU2U&/3+ 2 (l'i+21'01'2) UOUI +2 (1'01'3 + I'II'Z)ug/3 } + ... 

The quantity Of is obtained next with the aid of (108), while its square root Ol ~l/ (koa) 
can be expanded into powers of (koa)-2/3 by a further application of the binomial power series . 
The final result starts as follows: 
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3 'Yo - 3 Uo 'YIUO - 8 8/3 
o 'YoUo 

5 ('YOU l + 8/3 ) } 

+8 n~ff(a) + 2048 n~fT ((L) + ... (l09) 

The convergence of this expansion can be proved in pecial case, one of which will be treated 
in part III. 

According to (40) the exponential exp Cite) determin e the behavior of the individual modes 
at large distances. In particular the factor 

is decisive for th e attenuation at the e di tance , if to represents the eigenvalue with the small est 
imaginary part. Obviously, the eigenvalues l depend on the numerical coefficients 'Y j and the 
quantities Uj. In view of (107) the latter follow in uccession from t he other numf'rical coeffi ­
cients and from Uo . In its tUJ"Il Uo has to be determined from (104) which equation, to be 
di cussed now in more detail, represents the zero-order approximation for large values of 
(leoa )2/3 . 

27. Equation for the Zero-Order Approximation m the Case of the Electrical 
Solution 

The equation (104) can be put in the form : 

1/3 H m(uo) 
Uo H iiHuo) 

(110) 

The quotient r' jBoo can be reduced as follows to the physical data. According to ection 
6 the parameter r' = r j (leoa)2/3 is given for the electric solution as follows in terms of the atmos­
pheric refractive index n(a), its derivative n'(a) and the r efractive index n. of the earth : 

r ' = '(Ie ) 1/3 ( ) .. /n~- l _ an' (a) 
'/, oa n a 2 (Ie ) 2/3 ( ) n. oa n a 

In the second term we can introduce the definition of the effective earth 's radius a. lI , viz, 

H en ce, also: 

~=~_+ 7/' (a). 
a.1f a n(a) 

r' =iCko'1) 1/3 n(a)~tp 
• 
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Further , we find with the aid of (91 ), (89 ), and (88 ): 

(112) 

On the other hand, Al can be expressed, with the aid of (17 ), (15 ), and (6), in terms of higher­
order derivatives of the profile fWlction nCr) a t the earth's surface. After some reduction 
we find (again for the electric solution): 

_ 2an2(a) c2{ ( d)(2n I2 n il) } A I - ---- 2 2+ a -d - 2 - - , 
,aeff w r n n T= a 

and a corresponding value for B oo. 
In terms of the new constant : 

Boo 
OCff= 31/ 3r / 

(113) 

(114) 

which can thus be computed with the aid of (111 ), (112), and (113), the equation (110) reads: 

1/ 3 H m(u o) 
Uo H Ol( ) 

1/ 3 uo 

e i 7r/ 3 

- 3 l130Cff' 

Substituting uo= (- 2T )3/ 2/3, we get the alterna tive form : 

H ( I) { (- 2T )3/2} 
__ 2/ 3 3 ei7r/3 

.,j- 2T = - --, 
H Ol { ( - 2T )3/2} Oeff 

1/ 3 3 

(115) 

which is iden tical with a basic equation in the conventional diffraction theory for a homo­
geneous a tmosphere provided that 0 is replaced ther e by Oeff ' [See H . Bremmer, Terrestrial 
Radio Waves, page 43, eq (21a).] The eigenvalues T Z satisfying this equation are in the first 
quadrant, and - 2T j is defined as a quanti ty in the _ 2nd quadran t. 

The t echniques for solving (115) in the case of a homogeneous atmosphere can now also 
be applied here. In par ticular , the following two expansions could be derived from a Riccati 
equation equivalent to (115) [loco cit., page 45, formulas (27 ) and (28)] : 

_ 2 3 + 1 4 4 2 5 + 
TZ - T Z.o - Oeff - 3" TZ.OOeff :2 0eff-S TI.OOerr ... , 

( 1+_3 ) (Z+_5) 
_ __1_~ _ _ 1 _~_ 4Tt ", ~_ 3 4TL" ~+ 

T 1- T I '" 2 ' 8 3 ,2 12 2 3 32 4 '4' .• 
• T Z, c:o UefI T Z, O) Ueff T Z,Q) Oef! T Z, co Ueff 

The numbers TI.O and TI.", are defined such that XI.O=-~ ( - 2T Z.O) 3/ 2 and xz.",= -~ (- 2TI. ",)3/2 

represent the zeros of J 1/3(X) + J - 1I3 (x) and of J 2/3(X) - J - 2/3(X), We can obtain the corre­
sponding expansions for ( - 2T )31t and thus for Uo. The resul ting expressions, viz, 

UO.I= (- 2T I.O) 3/2 [1 -~ Oeff +~ °Irr - ( 1- - 1-3- ) O~ff 
3 2 T Z. O 8 Tl,o \ 16TI. o 

UO.I 

(116) 
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aro particularly useful for computations concerned with small and large values of 1150 [1, 

re pectively. 

28. Complete Evaluationof the Eigenvalues C 1 

The final complete procedure for arriving at the numerical values of the parameters 01 

in the case of a ver tical dipole can be summarized as follows. First of all, the physical data 
to be given are: 

(a) the function 11,(1') representing the smooth profile of the refractive index of the atmos­
phere, 

(b) the refractive index 11,. of the earth. It is given as follows in terms of the dielectric 
constant € of the earth relative to the atmosphere, and the earth 's conductivity 0" in 
electrostatic units: 

2 + .471'0" n.=€ ~-. 
w 

The complex parameter r' t.hen follows from (111), the effective earth radius being defined 
by (110a). The parameter Al can be evaluated next with the aid of (113). It leads to a 
corresponding value of Boo according to (112), whereupon (114) yields the parameter Se[l' 

The successive eigenvalues UO .I can be computed next with the aid of (116). This concludes 
the determination of the zero-order approximation (extended W.K.B. approximation). 

The further corrections depend on a sequence of real parameters tarting with the quan­
titie A,. With the aid of (17), (15), and (6) \ve verify that the latt.er can be represented by: 

in which 
l' 

1\11(1') =-n(1') 
a 

(117) 

is the modified refractive index of the atmo phere. The second term of (117) is small compared 
to the fiTSt one for most relevant frequencies, but it may become important at the lower end 
of tbe spectrum. 

With the aid of (83) we derive from A j the new parameter f3" next with the aid of (8 1) 
from f3 J the quantities 'Y j . The quantities 'Y j and A j now being known, we derive with the aid of 
(85) the pis, whereas the qn/s follow from (88) if we just know the A/s. Having derived both 
the qn/S and pis, the tn/s can be computed with the aid of (89). The knowledge of the tn/s 
and q,,/s enable the derivation of the B kj's from (91 ). Next we compute the On/ s with the 
aid of (95) . The an/s can then be computed according to (102). All numerical coeffi cients 
necessary for the derivation in succession of UI, U2, 'U3 • •• from (107) are then known. 
Finally, 0 1 can then be computed with the aid of (100), remembering the definition (6) for ncr!. 

29. Limiting Cases r ' = 0 and r ' = 0:> 

These special cases are of particular interest. First of all, the evaluation of the final 
expansion (109) becomes much simpler bere than for some fini te value of r '. On the other 
hand, the eigenvalues are generally expected to be situated in the complex plane between 
tbose corresponding to the two limi ting ca es. 

The value r' = 0 is approached for a perfectly conducting earth. In fact, tbe first term of 
( Ill) then vanishe since n. = CD while the second term is small but for extreme low frequencies. 
The other limiting case r' = CD is characteristic for short waves for which the ear th behaves 
mainly as a dielectric; the factor 11,(a) (11,/- 1)t/n .2 in the first term of r' then is of the order of 
unity so as to have a modulus of this term wbich is of the order of the very large quantity 
(koa)i. 
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We first deal with the limiting case r '=o. The relations (107) rcpresenting U[ , U2 . .. ll1 

terms of uo here reduce to : 

( ? ) ? _ CLoo CL10 1/3 aDo 
Uz - B 2 +-B Uo - 6B2 5/3' 

00 00 oou o 

= (aEoaol +CLI laOO+ CL1OaOl + a20) +~ (alOaoo+2 a50aol- a~0) ~+ 5 ago . 
U3 B 3 B 2 B Uo 3 B2 B 3 54 B 3 3 

00 00 00 00 00 Uo ooUo 

vVe substitute these expressions into the eigenvalue expansion (109) while approximating 
neu(CL) by unity. This approximation amounts to an errol' which is certainly smaller than that 
introduced by taking r' = 0 for some practical conditions. The resulting expansion reads: 

{ 
2+ 2+4 2 +1 4 2 2 2 a11aOO'YO alOaOI"(O aOO"(O'Y1 -2 'Yoaoo + aooa0

3t'Y0 + ? 

3Boo 3£00 

We next pass to the other limiting case r' = 00 which is simpler. Evaluating (107) we 
first find U[ = 0. However, when determining the limit for r' -'700 in the successive terms for 
the higher order u/s, we have to take into account the approximation 

for large r'. We then obtain the following expressions: 

Substituting these valucs into (109), again taking nerr(a) = 1, the eigenvalue expansion for 
r' = 00 proves to start with: 
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- - 1 { l } 
lcoa 1',_",-

I'5U5/3 

2 (koa) 2/3 

1 [ ( + 3 2 2 I'h2 3 5 5 8) 8/3 - (koa) /3 1'01'3 I'l'Y2+4 1'01'1 +2+ 8 1'01'1 + 2048 1'0 Uo 

_~ { 2 (a12a01 + a23 )+41'0l'laI2 +1'6 ~ } 2/3J + 
3 1'0 B2 B B 2 B U o .. • 00 00 00 00 

(119) 

E xamples of th e limitin g eigenvalue expansions (118) and (119) will be work ed out nu­
merically in part III . The first few terms of the expansions (1l8) and (1l9) are rather simple 
even wh en all its parameters are expressed explicitly in term s of the profile constan ts A j . Th e 
complete evaluation of th ese parameters resul ts in expansions star ting as follm\-s: 

- - 1 { l } 
koa 1"="'-

_ (~+_3 A2+~ A3_~ A!)J+ . .. (121 ) 
70 / 0 Al 2 Al 2 0 Ai 

30. Plane Stratification as a Limiting Case 

The theory for a concen trically ymmetric medium can b e reduced to that for a medium 
with a flat stratification (r efractive index dependen t on an or thogonal coordinate z instead of 
th e radial distance r). The determination of solu tions and eigenvalues of the " flat h eigh t-gain 
differential equation" 11as b een investigated by various authors who discuss extensions of the 
W .K .B. approximation, comparable to those of the present paper. We men tion in par ticular 
ar ticles by Cherry [19 50], Imai [1956], and Erdelyi [1960] . R ecently t he problem h as b een 
approached in detail by Logan [1961] for the eigenvalues. However , we only considered the 
spherical problem in view of its direct applicability to far-distance t ropospheric propaga tion . 
As a matter of fact, results for a fla t stratification may be derived from those given here with the 
aid of a limiting procedure. This will be explained now. 

Our basic differential equation has th e following form, in view of (8), (9), (15), and the 
coefficients (17) of the Taylor expansion for NI;rr(r) around 1'= a: 

[ d2 +lc2 { a2 ~ ~ (- )j_ l (l + l) }J (1) - 0 I 2 0 2 L..J j" r a lc2 ,2 1 I - . er r j=O a J . 01 

We substitu te 

(1 22) 
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a nd next take the limit for a-7 co • The differential equation resulting reads: 

(123) 

On the other hand, the boundary condition (23) b ecomes, with r = ya, 

of 
oz = yF at z= O. (124) 

In view of the relation r = (koa)2/3 r' , and the parameter 

the equation (104) defining the roots Uo may now b e r epresented by: 

1 /3 H~}Huo) _ _ i7r /3 ( _ 2_ ) 1/3 . 
Uo H i}§ (uo) - e y 3k6A; 

The solution of the differential equation (123), with th e boundary condition (124) at z= O 
and the radiation condition at z= + co, constitutes a very general eigenvalue problem. Its 
properties can be derived from those in the present paper by substituting (122) into the latter , 
and then passing to the limit for a-7 co , As an example we can give the expansions which 
correspond in the spherical case to (120) and (121) : 

/3 )2/3 
( - A' U 2/ 3 \2 1 0 

2k5/3 

( 3 ,)1/3 
- AI { ( ' ) 2 3 , 1 A2 4 /3 

k~'3 16 A1-g A; U o 

- - 1 (A) 
ko 7 ="' -
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