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The electric current on a finite antenna is expressed as the sum of a current emanating

from the gap and two currents reflected from the ends.
a perfectly conducting hollow pipe of circular-cross section.

These currents are determined for
The antenna is excited by an

electric field parallel to the axis applied across a gap of finite width which encircles the an-

tenna.

The currents are also determined for a thin antenna of any cross section.
results the current on and the input admittance of the antennas are determined.

From the
It is

shown that the thin antenna theory yields an incorrect result for the admittance because

it ignores a boundary layer effect near the gap.

1. Introduction

The fundamental problem in the analysis of a
transmitting antenna is that of determining the elec-
tromagnetic field everywhere in space which results
when a prescribed input is supplied to the antenna.
From this field all the properties of the antenna can
be found. One of the most important of these prop-
erties is the distribution of current in the antenna, or
on its surface if the antenna is a perfect conductor.
Knowledge of this current is essentially equivalent
to knowledge of the field since either can be found
from the other. Most analyses of transmitting an-
tennas are devoted to the determination of the cur-
rent, which is the more convenient to deal with. We
shall follow this practice in determining the current
on a cylindrical antenna of finite or infinite length.

A basic difficulty arises in introducing the source
of the field into a transmitting antenna problem.
The difficulty is that the electromagnetic field pro-
duced by the source is affected by the antenna. In
principle it is necessary to determine this field simul-
taneously with that produced by the antenna.
However, in order to render the analysis feasible,
it is customary to split this problem in two—an an-
tenna problem and a feed problem. In the antenna
problem the feed is idealized by assuming that it
produced a specified applied field across a gap or
aperturein the antenna surface. In thefeed problem
the antenna and the space or medium surrounding it
are idealized by assuming that they present a certain
terminal load impedance to the waveguide or trans-
mission line from the source to the antenna. In this
procedure, which we shall follow, it is necessary to
determine the impedance just referred to. It is
called the input impedance of the antenna, and can
be found from the antenna current in the antenna
problem.

It has been recognized generally that the decom-
position of the total electromagnetic problem into an
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antenna problem and a feed problem introduces inac-
curacies. In particular, properties of the solution of
the antenna problem which depend upon details of
the gap size or shape, or of the applied field distri-
bution across it, are considered to be irrelevant in
applying the theory to actual antennas. Therefore
the gap is often taken to have zero width, since
details which depend upon the width are assumed to
be unimportant. Unfortunately this simplification
introduces a technical difficulty into the analysis;
namely the antenna current at the gap is then infinite.
The input admittance of the antenna, which is de-
termined by this current, is also infinite. Since only
the component of current out of phase with the
applied voltage is infinite, it is only the input suscep-
tance which is infinite, while the input conductance
1s finite.

We avoid this difficulty by keeping the gap of
finite width, and thus we obtain a finite input ad-
mittance. We also suggest a method for applying
the results to actual antennas by subtracting the
gap-dependent input susceptance from our result
and replacing it by the input susceptance of the
actual gap or feed.

The singularity in the current at the gap and the
consequent infinite value of the input susceptance
have been pointed out by various authors. However
they have been overlooked by many others who have
concerned themselves with the theory of thin an-
tennas. (A thin antenna is one in which two di-
mensions, called transverse, are small compared to
the third, called longitudinal, and to the wavelength
of the radiated field.) The current on a thin antenna
is usually obtained by solving an integral equation,
which is an approximation to the exact ntegral
equation satisfied by the exact current. It can also
be obtained by approximating the expression for the
exact current in cases where the exact current can
be found. Both of these methods lead to an ex-
pression for the current on a thin antenna which is
finite at the gap, even though the gap is of zero
width. But, as we shall see, this expression for the
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current is not valid at or near the gap. Instead
there is a narrow region in which the current de-
creases from its infinite value at the gap to the finite
value given by the thin antenna theory. This is an
instance of a boundary layer effect, such as often
arises in the asymptotic expansion of solutions of
boundary value problems. As a consequence the
values of the input admittance given by the usual
thin antenna theories, are incorrect.

The essence of our analysis of finite antennas,
presented in section 2, is to represent the current in
terms of a current emanating from the gap and two
currents reflected from the ends. We identify these
currents as the solutions of simpler problems for
infinite and semi-infinite antennas respectively. In
section 3 we determine the current on an infinite
eylindrical antenna of circular cross section, or on a
thin cylindrical antenna of any cross section. In
sections 4 and 5 we evaluate these currents both
near the gap and far fromit. Insection 6 we analyze
the current reflected from the end of a semi-infinite
cylindrical antenna of circular cross section, and of
a thin antenna of any ecross section. Finally in
section 7 we use the results of sections 3 to 6 in the
theory of section 2 to determine the current on, and
input admittance of, a finite cylindrical antenna.

Many of the results which we use in our analysis
have been obtained before by others and we shall
point this out where it seems appropriate. The
approximations upon which our theory is based make
it more accurate the longer the antenna. Therefore
we shall not have occasion to consider short antennas.
A comprehensive account of them is givenin the book
of R. W. P. King [1956].

2. Current on a Finite Antenna

Let us consider a straight or bent antenna of uni-
form or nonuniform cross section and let z denote
distance along the center line of the antenna. Sup-
pose the ends of the antenna are at z=-—z; and
2=z, and that a gap extends from z=—4§ to z=a4.
Let Vel«t be the voltage applied across the gap and
let VI(z)et“* be the total current excited on the outer
surface of the antenna by this voltage. We wish to
determine this current and from it the antenna’s
input admittance Y=1/2[1(5)+1(—¢)]. Henceforth
we shall omit the factor e'«*.

We write the current as a sum of three terms

I(2)=1(2) + B:1,(21+2) + BoIr(2,—2). (1)

We interpret 7;(z) as the current emanating directly
from the gap, B/, as the current reflected from the
end z=—2z and B.l, as the current reflected from
the end z=z,. For thin antennas, similar ways of
writing the current have been suggested and used
by various authors, especially E. Hallen [1948] and
L. A. Vainshtein [1959 a, b]. More precisely we
define Z;(2) to be the current which the same voltage
across the same gap would produce on an infinitely
long antenna (z;=z=w). This definition is un-
ambiguous in the case of a straight antenna of uni-
form cross section but depends upon how the antenna
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is extended to infinity in other cases. We next
define 7; (z,+2) to be the dimensionless current re-

flected from the end z=—zwhen unit current is
incident on that end and the other end of the antenna
is at  infinity (z,=«). We define 7,(z,—2)
analogously.

On the basis of these definitions we can now
determine the constants B; and B, in (1). The
current incident on the end z=-—z; is just l;(—z,)
+ By 15(2,-+2;) and this must equal By, since /;(z,+2)
is the current reflected for unit incident current.
Thus we have

31:[5("21)+B2[2 ‘32+‘31)~ (2)

B2215(22)+B1[1(21+22). (3)

By solving these equations for B; and B, and in-
serting the results into (1), we obtain

(Ls(—21) +1s(z2)I2(21+22) 11 (2, +2)
+[Ls(22) +Ls(—21)11(21422) 1 2(2,—2) X
1—1,(21+22)15(21+25) @

It is interesting to note that (2) and (3) have a
nontrivial solution for B, and B, in the absence of
the exciting current /;(z) when the determinant of
the coefficients vanishes.

1—1I(21422)12(2:422)=0.

Similarly

](2)_15(2)4—[

)

This equation determines the values of w at which
there can be unexcited or free currents on the an-
tenna. The current in any such mode is from (1)
and (3), proportional to [,(z;42)+ 11(z14 22) [o(2.— 2).

From (4) we can compute the input admit-
tance Y. If we neglect § compared to z, and z, which
is usually permissible in practice, the result simpli-
fies to

Y= [Ia(a)+la(_5>]

[[15 —z1)+1; (22) L (21+22)] 11 (21)

+Ls (20) + 15 (—21) Iy (21+20)] Iz (29)

+ 1—1, (2:+20) I (21122) ©)
For a symmetrical antenna I;(—z)=1;(2), z

and /;,=1,. Then (4) and (6) simplify to

D[ =

==

IQ)=1 O+ S 1+ )+ L 2] ()
Y —1, (5>+]a (21)7]1 (21) (8)

1—1, (22y)

The resonance condition (5) becomes /,(2z) =41,
but only 7,(2z)=1 occurs as a resonance denomi-
nator in (7) and (8). This is because center feeding
can excite only the symmetric modes, and not the
antisymmetric ones corresponding to 7,(2z)=—1.



For a cylindrical antenna we assume that away
from the ends /,(z) and 1,(z) vary with z in the same
manner as does /3(z). Therefore we write

I, (2)=1I, (2)=CI, (2). (9)

The constant (' in (9) depends upon the shape and
size of the end of the antenna. We shall determine
it in section 6 for a hollow cylindrical antenna of
circular cross section and for a thin cylindrical an-
tenna of any cross section. By means of (9) the
results (4) to (8) can be simplified so that they
involve only the one function /;(z) and the constant
(. Thus, for example, (7) and (8) which apply to
a symmetric antenna become, when z is away from
the ends + 2,

:>:16<:>+%m<z1+z>+la<:l—:>] (10)
(7

We observe that the input admittance of a finite
antenna is expressed by (6), (8), and (11) as the
sum of the input admittance of an infinite antenna,

3[15(6)+1:(—9)], and a finite additional term. In
\C(llOll 4 we shall show that 7;(+46) is finite for
6 >0, in the case of the circular cylindrical antenna,
and that it becomes infinite as § goes to zero. It is
only the imaginary part of /5(46), and thus only
the susceptance of the antenna, that becomes in-
finite. This is due to the infinitely large capaci-
tance of the gap of zero width, as is well known, and
as has been verified by T. T. Wu and R. W. P.
King [1959].

Since for small values of 6 the susceptance depends
critically on 6, it might be inappropriate to use the
above theoretical results for an actual antenna
with a feed which is different from the gap of width
26.  We can overcome this difficulty by subtracting
from the theoretical value of the admittance of a
finite antenna the susceptance of the corresponding
infinite antenna. Then we can add to this dif-
ference the susceptance of the feed of the actual
antenna. In this way the theoretical results can be
used in practice. A similar procedure was suggested
by Wu and King [1959].

3. Current on an Infinite Antenna

We shall now consider a linear antenna consisting
of an infinitely long perfectly conducting thin hollow
pipe of circular cross section and radius a. In a
cylindrical coordinate system (r, 8, z) let the pipe
lie in the surface 7=a,|z[>5. 1n the gap we assume
that the applied electric field is

E’;""”“’=-¥ de,  r=a,lz|>s. (12)
On the pipe
18.=(0) r=a,|z|>é. (13)

We seek the electromagnetic field throughout space,
assuming that it vanishes at infinity, or else satisfies
an appropriate radiation condition if the conduc-
tivity of the surrounding medium is zero.

This problem has been solved by various authors,
so it should suffice to indicate the method of solu-
tion and to present the main formulas. First we
note that as a consequence of Maxwell’s equations,
F. satisfies

(ARG =), (14)
Here &= (epw’—iouw)? is the propagation constant
of the field while €, x, and ¢ are the dielectric con-
stant, permeability, and conductivity of the medium
surrounding the antenna.

The radiating solution of (12) to (14) is ecasily
found by separation of variables and is

V (" sin 85 H (k*—B*r)

E.(r, *)_—_‘Tr_ o PBo ]](’)(Ul" Jl/,')(()sﬁ ag,
rza (15)
. ___l_ “ sin (36 J‘L([kQ;BZII/?I') o
(1 ) TJo 66 J()(lkz__ﬁzjl/za)(()b B; ([ﬁ’
r<a. (16)

The expression (15) is contained in the results of
J. A. Stratton and L. J. Chu [1941], S. A. Schel-
kunoff [1941], V. V. Vladimirskii [1944], E. Hallen
[1948], and F. H. Northover [1958]. The magnetic
field has only an angular component //; which is
derivable from a vector potential with only one

component A, by the relation Hg~——12A The
u Or
potential A, is related to £, by the equation
oF e .
<$+A“) A,=wepE,. (17)

The outgoing solution of (17) is

A,=—1Vwuer!

sin 36 H(”([kQ—B?]”?r) cos Bz ) :
Xf 8  HO(—Ba) (—p) dp rza (18)
A, =—1Vwuer™?

sin 88 Jo([k2—B%]Y/2r) cos Bz ,
X, T T g rSe (9

The surface current density on either side of the

s S = .
antenna is given by n>XH(a,z) where n is the unit
outward normal to that side of the antenna surface;

e., pointing inward on the inside and outward on

i
the outside. Since / has only a 8 component, the
current has only a z component. We define the
total currents, V/;(z) and VZ;(z) on the inner and
outer surfaces respectively, as the z components of

27ra?z><H(a,z). Then from (18), (19), and the
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relation of A to A. we obtain

1;(2)=2iawed ™!
® sin @6 cos Bz H®' ([k*—
0 B(k?_ )1/2 H(2)( k?

® sin B8 cos Bz J§ ([k*—
o BE—B)V2 J, ([k*—

Bz]llza)
#17a)
B*"*a)
§17a)

dg  (20)

dag.
(1)

I (2)=—2iawed ™!

Upon adding 7; and 7; we obtain the total current
which becomes, upon making use of the Wronskian
of the Bessel and Hankel functions in (20) and (21),

4 _ © . 6
I;(2) + I, (z) = 4wer IJ; s126[3
cos Bz
5, (P T = % 22

These results have all been obtained by one or more
of the authors referred to above. The total current
(22) with 6=0 was also obtained by T. T. Wu and
R. W. P. King [1959] and R. H. Duncan and F. A.
Hinchey [1960].

When ka< <1 the result (20) for [I;(z) can be
simplified to

Ii(2) ~iwefm sinBs eIl dB
32) = ; .

Ba (k?_BZ) log I\a(kl_62)l/2-

2

(23)

Here I' ~1.781 is the exponential of Euler’s constant.
The expression (22) with 6=0 is the usual result for
a thin antenna with a gap of zero width. It is given
by Vladimirskii [1944], Hallen [1956], and Vainshtein
[1959a, b]. If the cross section is not circular, @
denotes the equivalent radius. We shall see that
this approximation is incorrect near the gap.

4. The Current Near the Gap

We shall now evaluate the currents 7;(z) and
I;(2) near the gap. Let us first consider /;(z) and
introduce a=Fk|z|, z=p8|z| and v=4é|z|~* into (20)
which becomes

® sinyz cosx HP' ([o? —rz]l/gkaa“l)d
vy (of—x)V? HP ([o*— 22|V kaa™?)
(24)

15(2> =) ia,wef
0

We wish to evaluate the integral in (24) for
0<a< < 1. To this end we observe that if ¢ is any
complex number the argument of the Hankel
function in (24) has the value —i¢ when z=
all+c*(ka)="*.  Thus no matter how large the con-
stant ¢ is, the absolute value of the argument of
the Hankel function exceeds ¢ for all z greater than
a certain complex multiple of « which vanishes as
a does.

Consequently for all these values of z, the |
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Hankel functions in (24) differ by an arbitrarily
small amount from their asymptotic forms. Fur-
thermore the error resulting from replacing the
Hankel functions by their asymptotic forms for
smaller values of z vanishes as « tends to zero.
Thus we may write

Sin yx cos

Ia(.?):2aweﬁ m(ll+0 (a) (25)
Here we have used the asymptotic form
. . 21
H (—iy) =" Ki(y)
w2\ I'(3/2) —2y |
i) LtarCimroe} e

In the preceding equations the branch of (a ——:r"’)
employed is that which is equal to —i|(a?—a?)*
when z?>a%  From (26) it follows that the ratio
of Hankel functions in (24) is just —i. In the same
way we find that /;(z) is also given by the right
side of (25).

To evaluate the integral in (25) we introduce a
division point b and write 1t as two integrals. In
the second mtegral we omit o, introducing an error
of order «®>. Thus (25) becomes

I5(2) =2iawe l:f

sin yr(osx
2)1/2

sinyz cos .
+L S22 202 gy ]+0< ) @)

We now integrate the first integral in (27) by parts,
neglect terms of order «, and obtain

dx

I3(2) =2igwe |:—10g - +Si‘;07b

—fb log 21i<sin YL COS I) o
o 7
+fb sin 'y[ cos T :I"H)(O‘) 28)

The right side of (28) is obviously independent of b
so we set b=, which makes log 2b= We also
substitute a=Fk|z| and obtain finally

cos b log 2b

I5(2)=—21awe I:log k[si—ilr
-|—f S cos r) dr
vy

fsm'y
12 YL

The expression (29) for 7;(z) is
our result for the current near the gap.

When the gap width 6=0 and z:0 then y=
8|z/=0 and (29) becomes

oi
d

cos I(Zx:l—{—O (). (29)




. | LT t1/2 .
Iy (2)=—2iawe [log klzl—t5— log 2 sin xdx
Z 0
—ci (%)]Jro @. (30)
The total current is 275(2)+0(a). The term

—4iawe log z in the total current for 6=0 was given
by Wu and King [1959], Duncan and Hinchey [1960],
and G. Hasserjian and A. Ishimaru [1961]. The
former two pairs of authors discussed an ambiguity
in the current near the gap which is resolved by our
additional terms in (30).

The input admittance ¥ when 6>0 is given by
our result (29) evaluated at z=4.

Y =—2iawe [Ioaka——z —+—f log ;5/ SHZ}?/>JJ/
-—Jl = dy]+0(k5). (31)

If currents on both sides of the pipe are excited, this
result must be multiplied by two. The leading term
in the admittance is imaginary and proportional to
log ks, which becomes infinite as § vanishes. The
next term, which is independent of 4, contains the
real part —rawe (or —2mawe when currents are excited
on both sides) which is the input conductance.
Since it is independent of the gap width, it would
presumably result for any type of antenna feed.

An incorrect result for the current at a gap of zero
width was obtained by J. A. Stratton and L. J. Chu
[1941]. Their error consisted in evaluating the in-
tegral for the current by replacing it by a sum of
residues, ignoring the fact that the integrand con-
tained a branch point. The integral should have
been replaced by a branch cut integral plus the resi-
due sum. As a consequence they concluded that the
input admittance of the infinite antenna with a gap
ol zero width is zero, whereas it is actually infinite
as our result (31) shows.

Another incorrect result for the current at a gap
of zero width follows {rom the thin antenna expres-
sion (23) with =0, obtained by Hallen [1956],

Vladimirskii [1944], and Vainshtein [1959a, b]. The
latter two authors showed that (23) yields
=— 0 .

1
\/ £ log Tka
p g
This same result was obtained by Schelkunoff [1941],
Hallen [1948], and Wu [1961]. The correct result
(30) for 6=0 1s infinite at z=0 in contrast to the ap-
proximate expression (32) which is finite. The error
in obtaining (32) from the exact expression (20) was
made in interchanging the limiting processes z—0
and ka—>0. The convergence to these limits is non-
uniform. Therefore, it is not permissible to first let
ka—0, in which case (20) is asymptotic to (23), and
then let z—0, when (23) approaches (32). The non-
uniformity manifests itself in a small interval around
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the gap, which we may call a boundary layer.
Within this layer the current drops from its large
value at z=6 (or from its infinite value when 6=0)
to a small value. For example (30) shows that
I5(z)=1a, where a is some small finite current, when
z| =k le~e/7«¢ Therefore, the width of the bound-
ary layer is very small when ka is small.  Within
this layer the thin antenna theory is inapplicable.
It is precisely in this layer where the current must
be evaluated in order to determine the input admit-
tance of the antenna.

5. The Current Far From the Gap

Let us now evaluate the current 7;(z) far from the
gap, starting from (20) which we write as
dg.

e f )
(33)

Since (33) expresses /;(z) as a Fourier integral, its
value for large |z| (actually large k|z|) is determined
by the singularities of the integrand. These occur
at B=+k and therefore it suffices to replace the
Hankel function in (33) by its asymptotic expansion
for small values of its argument

sin B0 H® ' ([k*—
Bs  H® ([k

g'a) '
—p'a) [k*—p)

6'1;‘112\

H (12— Pa) ~ 2 Bl (34)

F[U ]

Here T'=1.781 is Euler’s constant. Since [6=+ké
at the singularities, and k6§ is assumed to be small,

we also replace sin B6/86 by unity. Then (23)
becomes
I o~ 1812
J-w (/Lg_ﬁz) ll)g it el 5

We observe that when 6=0 the thin antenna result
(23) coincides with (35).

The integral in (35) has been evaluated asymptoti-
cally for kz>">1 by Vladimirskii [1944], Hallen
[1948], Northover [1958], and Vainshtein [1959a, b]
with the result

({~ik\z1

S

2mwe

],5(2) =

This result also applies to thin antennas.

6. Reflection From the End

Liet us now consider the reflection of the current
from an end of a cylindrical antenna. This problem
has been solved by E. Hallen [1956] for a hollow tube
of circular cross section and for a thin antenna of
any cross section. It has also been treated by Li. A.
Vainshtein [1959a, b] and T.T. Wu [1961]. They only
complete their analysis to obtain explicit results for



thin antennas. The antenna is assumed to be semi-
infinite lying in the region z>>0 with its end at z=0.
The incident current is (Lssumcd to be ¢**. For the
hollow circular antenna of radius « Hdll(‘]l finds the
reflected current on the outside of the antenna to be

. Tika
1,(2) —21r¢>(k(l)
= e HOF—) . .
f .. 2B HP(F—p1"a) - ©7

Here ¢(aa) is defined by
©+ie

aa)*oxp%f . §‘ -

log [g Jo(VP=Fa)H (chsz“a)]- (38)

This result was obtained by using the Wiener-Hopl
method to solve the integral equation satisfied by
the total current on the cylinder, and then separating
the current into its inner and outer parts.

If |ka|<<<1, the cylinder functions in (37) and
(38) can be replaced by the leading terms in their
expansions for small values of their arguments, and
they become

1,(z)—= ik ® e~ B
B o (ka)) (F—p) o I‘a\ 12— g 8 (39)
S
e glffe —4
¢(aa) =exp Q—if—m+ie —a log log m (40)

Theresult (39) with ¢ given by (40) was also obtained
by Hallen by solving his simplified integral equation
for the current on a thin antenna. If the cross section
is not circular, @ represents its effective radius.

Let us now evaluate /;(z) for large [kz[. Since
1,(z) is expressed by (37) as a Fourier integral, the
asymptotic behavior of it for large |kz| is determined
by the neighborhoods of the singularities of the
integrand. The function ¢(aa) is regular and
different from zero in the lower half of the « plane
and the only singularity of the integrand of (37)
in that plane is at a=£k. The singularity in the
upper half plane at z=—#% is irrelevant in the evalua-
tion of /,(z) for large positive values of z. Thus we
may replace ¢(aa) by é(ka) in (37) which then
becomes, upon comparison with (23)

I(z)~ Ii(2). (41)

_k
2rwep®(ka)

Thus our assumption (9) that 7,(z) is proportional to
Is(z) for large z is verified. The proportionality
constant ('in (9) is seen to be, from (41),

k.
" 2rwed’(ka)

The results (41) and (42) also apply to the thin
antenna with ¢ given by (40).

(42)

Twice the reciprocal of the constant € occurs in
the work of Hallen and he calls it the end admittance
of the antenna. He has computed its real and
imaginary parts for a large range of ka, assuming
o=0, using both (38) and (40) for ¢(ka). The two
l'esulting values of  are practically equal for ka<0.1.
For small values of ka

arp oy —1 [ 1 *:I ;
¢ (ka)VQIOg T (log ka)® (43)
and
C=— [low ikal’ +0 <10g o ):I (44)

For the thin antenna it follows from (39) and (40)
that 7;(0)=—1 so that the incident plus the reflected
current is zero at the end. This verifies the assump-
tion usually made in the theory of thin antennas.

7. The Finite Cylindrical Antenna

Now 75(z), I,(z), and C have been determined
for cylindrical antennas of circular cross section and
for thin cylindrical antennas of any cross section.
Therefore we may use them in the formulas of section
2 to obtain the current on and input admittance of
the corresponding finite cylindrical antennas. Thus
when z is not near the gap nor the ends, (4) becomes

2nwe e~ izl 1

M= PEE
k) logalz| ¢2(k"')—¢?(1ka) [log a(z,+2,) |2

e—i?k(zl+zg)

e—-ik(z+2zl) 1

log a(z,+2) \log az,
e~ k22 > e—ik(222—2) 1

+¢2 (ka) log az, log a(z,-+2) +log a(z,—2) \log az,

e-i2kzl

+¢2(lca) log az, log a(ZH—Zz))]

(45)

Here a=2i/T"%a*k. The input admittance }” becomes

Y =—2iawe [log Ic6—12+f log sin 1/> o

1

e—i?k(zl+z2>

¢*(ka)log o (z1+22)]*

sm y 21 we
"f & ]+ $2(ka)—

e——i?kzl e—i2k22
(logaz))? ' (log azs)®
26—i2k(21+z2)
+ (46)

¢*(ka) log az, log az,log a(z,+2,)
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For the center fed antenna, these results simplify to

— ikz zkz
[log alzi+2) loga 21—2) ]logQa
log az, [¢p*(ka) (log 2az,)¢'*1—

(47)

Y — —2iauwe [log ko—i T
d siny
Yay v ™ _J

2
1
—I—f log h/]
0
4reelog 2a

T Eogazy)? [¢2(ka)e’“'1 Tog 2az,—1]

For thin antennas, when (' is given by (44), the
results (45) and (47) are the same as those given by
Vainshtein [1959a, b].

U

(48)
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