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The electric current on a finite antenna is expressed as the sum of a currcnt emanating 
from the gap and two currents rellected from the ends. These currents are determined for 
a per~ectly conducting hollow .pipe o~ circu lar-cross section. The antenna is excited by an 
electnc fi eld parallel to the aX Is applied across a gap of finite width which encirclcs the an­
tenna. The currents are a lso determined for a thin antenna of any cross section . From thc 
results the current on and the input admittance of the antennas are determined. It is 
shown that the thin antenna theory yields an incorrect result for the admittance because 
it ignores a boundary layer effeet near the gap. 

1. Introduction 

The fundalllenLal problem in Lhe analysis of a 
translll lt ting antenna is that of d etermining tbe elec­
tromagnetic field everywher e in space which results 
when a prescribed input is supplied to the antenna. 
From tbis field all the properties of the antenna can 
be found . One of the most important of th ese prop­
erties is the distribution of cmrent in the antenna, or 
on its smface if the antenna is a perfect conductor. 
Knowledge of this cml'en t is essenLially equivalent 
to knowledge of the field since either can be found 
from the other. Mos t analyses of tnmsmiLLing an­
tennas are devoted to the determination of the cur­
ren t, which is the more convenien t to deal with. We 
shall follow this practice in determining the cmrent 
on a cylindrical antenna of finite or infinite length. 

A basic difficul ty arises in introducing the source 
of the field into a transmitting antenna problem. 
The difficulty is that the electromagnetic field pro­
duced by the source is affected by the antenna. In 
principle it is neces ary to determine this field simul­
taneously with that produced by the antenna. 
However, in order to r ender the analysis feasible, 
it is customar y to split this problem in two- an an­
tenna problem and a feed problem. In the antenna 
problem the feed is idealized by assuming that it 
produced a sp ecified applied field across a gap or 
apertme in the antenna surface. In the feed problem 
the antenna and the space or medium surrounding it 
are idealized by assuming that they present a certain 
terminal load impedance to the waveguide or trans­
mission line from the source to the antenna. In this 
procedme, which we shall follow, it is necessary to 
determine the impedance just referred to. It is 
called the input impedance of the antenna, and can 
be found from the antenna current in the antenna 
problem. 

It has been recognized generally that the decom­
position of the total electromagnetic problem into an 
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antenna problem ftnd ft feed problem introduces inac­
cUl'acies. In particular, properties of the solution of 
the antenna problem which depend upon details of 
the gap size 0]' shape, 01' of the applied field disLri­
bu tion across it, are con id ered to be irrelevan t in 
ftpplying the theory to actual antennas. ThercJol'e 
the gap is often taken to have zero wid th, since 
details which depend upon the width are assumed to 
be unimportant. Unfortunately this simplification 
introduces a technical difficulty into the analy sis ; 
namely the antenna current at the gap is then infinite. 
The input admittftnce of the antennft, which is de­
termined by this eUl'l'ent, is also infinite. ince only 
the component of current out of phase with Lhe 
applied vol tage i infinite, it is only the input suscep­
tance which is infinite, while the inpu t conductance 
is finite. 

We avoid this difficul ty by keeping the gap of 
finite width , and thus we obtain a finite input ad­
mittance. We also suggest a method for applying 
the results to actual antennas by subtracting the 
gap-dependent input susceptance from our result 
and replacing it by the inpu t susceptance of tbe 
actual gap or feed. 

The singularity in the cmI'ent at the gap and t.he 
consequent infinite value of the input susceptance 
have been pointed out by various autbors. However 
they have been overlooked by many other who have 
concerned themselves with the theory of thin an­
tennas. (A thin antenna is one in which two di­
mensions, called transverse, are small compared to 
the third, callecl longitudinal, and to the wavelength 
of the radiated field.) The cmrent on a thin antenna 
is usually obtained 'by solving an integral equation, 
which is an approximation to the exact integral 
equation satisfied by the exact cmrent. It can also 
be obtained by approximating the expression for the 
exact current in cases where the exact current can 
be found. Both of these methods lead to an ex­
pression for the current on a thin antenna which is 
finite at the gap, even though the gap is of zero 
width. But, as we sh all see, this expression for the 
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curren t is no t valid at or neal' the gap . Instead 
there is a narrow region in which tbe curren t de­
creases fro tn i ts infini te value at the gap to the fini te 
value given by the thin an tenna theory. This is an 
instance of a boundary layer effect, such as often 
arises in the fLsymptotic expansion of solu tions of 
boundary value problems. As a consequence the 
values of the input admi ttance given by the usual 
thin antenn a theories, are incorrect. 

The essence of our analysis of fini te antennas, 
presen ted in section 2, is to r epresen t t he current in 
terms of a CUlTen t emanating from t he gap and t wo 
curren ts reflected from the ends. We iden tify these 
curren ts as the solutions of simpler problems for 
infinite and semi-infinite antennas respectively. In 
section 3 we determine the curren t on an infini te 
cylindrical antenna of circular cross section, or on a 
thin cylindrical an tenna of any cross section. In 
sections 4 and 5 we evaluate these currents bo th 
neal' the gap and far from it. In section 6 we analyze 
t he curren t reflec ted from the end of a semi-infinite 
cylindrical an tenna of circular cross section, and of 
a thin an tenna of any cross section. Finally in 
section 7 we use t he resul ts of sections 3 to 6 in t he 
theory of section 2 to determine the curren t on, and 
input admi ttance of, a fini te cylindrical antenn a. 

M any of the results which we use in our analysis 
have been ob tained before by others and we shall 
point this out where i t seems appropriate. The 
approximations upon which our theory is based make 
it more accurate the longer the an tenna. Therefore 
we slmll not h ave occasion to consider shor t an tenn as . 
A comprehensive account of them is given in the book 
of R. W . P. King [1956}. 

2. Current on a Finite Antenna 

Let us consider a straigh t or ben t an tenna of uni­
form or nonuniform cross section and let Z denote 
distance along the cen ter line of the antenna. Sup­
pose t he ends of t,he an tenna are at Z= - Zl and 
Z=Z2 and that a gap extends from ;;= - 0 to z= o. 
Let V ei w t b e the vol tage applied across the gap and 
let V I (z)e i wt be t he total curren t excited on t he outer 
surface of the an tenna by t his voltage. We wish to 
determine this curren t and from it the an tenna's 
input admittance Y = I /2[I (0)+ I ( - 0)]. H encefor th 
we shall omi t t he factor eiw t • 

Vle write the curren t as a sum of three terms 

I (z) = I . (z) + B III( ZI + z) + B 2I 2 (z2- z) . (1) 

We interpret I . ( z) as the current emanating directly 
from the gap, Ril l as t he curren t reflected from the 
end Z= - ZI and B2I 2 as the curren t reflected from 
the end Z = Z2 . For t hin an tennas, similar ways of 
writing th e curren t h ave been suggested and used 
by various au thors, especially E . H allen [1948} and 
L . A. Vainsh tein [1959 a, b]. More precisely we 
define I .(z) to be the curren t which the same vol tage 
across t he sa tne gap would produce on an infinitely 
long antenna ( Zl = Z2= 00 ) . This defini tion is un­
ambiguous in the case of a straigh t an tenna of uni­
form cross sect ion but depends upon how tbe ftn tenna 
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is extended to infinity in other cases. We n ext 
defin e I I ( Zl + z) to b e the dimensionless curren t r e­
fl ected from the end Z= -zlwhen uni t curren t is 
inciden t on that end and t he other end of the antenna 
is at infini ty ( Z2= 00 ) . We define I 2(z2 - z ) 
analogously. 

On t he basis of t hese defini tions we cftn now 
determine the constants BI and B 2 in (1) . The 
current inciden t on t he end Z= - Zl is just I .(-zl) 
+ B 2I 2(z2+zl) and this must equal B I, since I I( zl+z) 
is the curren t reflected for uni t incident current. 
Thus we have 

(2) 
Similarly 

(3) 

By solving these equ ations for BI and B2 and lU­

ser ting the resul ts in to (1) , we obtain 

It is interesting to no te that (2) and (3) have a 
non trivial solu tion for B I a,nd B2 in the absence of 
the exciting curren t I . (z) when the determinan t of 
t he coefficients vanishes. 

(5) 

This equation determines t he values of w at which 
there can be unexcited or free curren ts on the an­
tenn a. Th e curren t in any such mode is from (1) 
and (3) , propor tional to I1 (z l+z)+ I I( zl+z2)I2(z2- z). 

From (4) we can COln pute t he inpu t admit­
tance Y. If we neglect 0 co mpar ed to ZI and Z2 which 
is usua,lly permissible in prac t,ice, the result simpli­
fies to 

1 
Y = 2 [1. (0) + 1.( - 0)] 

[ [I . (-z l)+I . (Z2) 12 (ZI+Z2)] I I (ZI) ] 

+ + [I , (zz)+ I . (-zl) II (ZI+ZZ) ] I d zz) . (6) 
I - I I (Z I+Z2) 12 (Z I+ZZ) I 

F or a symmetrical antenna I .(-z)= I .(z), ZI=Z2 
and 11= 12• Then (4) a nd (6) simplify to 

I .(z l) 
I (z ) = 1. (z) + I - I

1 
(2 z l) [I I (z l+z) + I I (ZI-Z )] (7) 

Y = 1. (0 ) + I . (Z l) II (Z I) . 
I - I I (2z l ) 

(8) 

The resonance condition (5) b ecomes I I (2z1) = ± 1, 
but only I I (2zl) = 1 occurs as a resona,nce denomi­
nator in (7) and (8). This is because center feeding 
can exci te only the symmetric modes, and no t the 
an tisymmetric ones corresponding to I I (2zl) = - 1. 



For ,1, cylindl'i c1'1l fw tcnna we assum e that aw1'1Y 
from t he ends I J z) ,tnd I 2(z) vary with z in the S1'1me 
lllanncr as cloes I .(z). The)'efor e we write 

(9) 

Th e conslanL 0 in (9) depellds upon the shape a nd 
sizc of th e end of th e antenna. W e shall determin e 
it in sec Lion 6 for a hollow cylindrical antenna of 
c il'cul ftl' cross section and for a thin cylindrical an­
tenna o f a ny cross section . By means of (9) the 
l'csulLs (4) to (8) can be simplified so that they 
involvc o nly the one function I .(z) and the constant 
C. Thus, for example, (7) and (8) which apply to 
a symmetric an tenna become, when z is away from 
1 he ends ± ZI, 

I (z)= I . (z)+ I !!b~;~~zl) [I, (zl + z)+ I , (Zl-Z)] (10) 

Y = 1, (D) + On (Z I) (ll ) 
1- 01, (2 z l ) 

We observe that Lhe input 1'1dmiLt1'1nce of a finite 
ftntenn1'1 is expressed by (6), (8), a nd (11) as the 
sum of the input admittftllce of a n infiniLe antenna, 
t [I ,(D) + 1,(-0)]' and 1'1 finiLe additional tcrill . In 
section 4 we sh all show Lh1'1t 1,( ± D) is finite for 
0> 0, in t be case of Llle cir cular cylindrical a nLenna, 
and that it becomcs infinite as D goes Lo zero . I t is 
only the imaginary part of 1,( ± D), ,tncl t hu s only 
Lhe susceptance of the ftntcnna, Lhat becomes in­
finite. This is due to t he infinitely I1'1l'ge capaci­
tance of t he g1'1P of zero width, as is well knowJl , and 
as has b een verified by T . T. , iVU ,wei R. W. P. 
King [1959]. 

Since for small values of D the susecptance depends 
cl'iLically on D, it might be in1'1ppropl'iate to use Lhe 
above th eoretical r cs ul ts for an actu1'11 1'1ntenna 
with a feed which is different from the gap of width 
2D. vVe Cem overcome t his difficulty by subtra.cting 
from Lhe theoretical value of t he admittance of a 
finite antenna th e susceptance of the corr esponding 
infinite antenna. Then we can add to this dif­
ference the suscep tance of the feed of the actual 
antenna. In this way the theoretical results can be 
used in practice. A similar procedure was suggested 
by Wu and King [1959]. 

3. Current on an Infinite Antenna 

IVe sh all now consider a linear antenna consisting 
of an infini tely long p erfectly conducting thin hollow 
pipe of circular crOSS section and r adius a. In a 
cylindrical coordinate system (1', e, z) let the pipe 
lie in the surface 1' = a, lzl> D. ]n the gap we assum e 
that t Lte ftpplied electric field is 

EaDPl le<1 = _ V e i",t 

z 28' r= a,l zl>D. (12) 

On Lbe pipe 

l'= a, lzl>D. (13) 

W e seek the electromagnetic field throughout space, 
assuming that it vanishes at infinity, or else satisfies 
an appropriate radiation condition if t he conduc­
tivity of the surrounding medium is zero. 

This problem h as been solved by various authors, 
so it should suffice to indicate the method of solu­
tion and to present the main formulas. First we 
note that as a consequence of Maxwell's equations, 
E z satisfies 

(14) 

H ere k=(EIJd - iCTJ.lW)l!2 is the propagation const1'1n t 
of the field while E, Il, and CT are the dielectric con­
stant, permeability, and conductivity of the mcdium 
surrounding t he antenna. 

The radiating soluLion of (12) to (14) is cas ily 
found by separation of variables and is 

V roo sin (38 I1JZ) (w - (32] IIZr) 
E ,(r, z) =-;: J 0 7i8 H J2) ([!c2-(3z]l IZa) cos (3 z d(3, 

r~ a (15 ) 

V r oo sin (3D J o((k2 - (32jl /2r) 
E z(r, z)=--; Jo ----;38 J o((k2 - (32]l /2a) cos (3z d(3, 

l'~a . (16) 

The expression (15) is contained in the l'esulLs of 
J. A . StratLon and L. J. Chu [1941], S. A. Schel­
kunoff [1941], V. V. Vladimirskii [1944], E. Hallen 
[1948), and F . H. Northove[' [1958] . Th e magnetic 
field has only an a ngular component I-Io which is 
derivable from a vector potenLial with only on e 

component A , by the relation Ho=-~ ~ A z • The 
Il u 7' 

potential A z is related to E z by the eq uation 

(OO;z+p) A ,=iwEIlE,. 

The outgoing soluLion of (17) is 

A z=-iVWIlE7I' - 1 

r oo sin (3D H JZ) ([lc2 - (32jl /Zr) cos (3z 
X Jo ~ H JZJ([lc2 - (3zJ I/Za) (lc2 _ (32) d{3 

A ,=-iVWIlE 7I'-1 

r oo sin (3D J o([lc2 - {3Z]I IZr) cos (3 z 
X Jo ~ J o([lc2 _ {32]1 /Za) (kz - {3Z) d{3 

(17) 

T~ a (18) 

r~a. (19) 

The smface current density on either side of the 

antenna is given by ?{ X H (a, z) where ?{ is th e unit 
outward normal to that side of the antenna surface; 
i .e., pointing inward on the inside and outward on 
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.... 
the outside. Since H has only a e component, the 
current has only a z component. W e define the 
total currents, V I~(z) and V I ,(z) on the inner and 
ou ter surfaces r espectively, as the z components of 

.... .... 

271'an x I-I(a, z) . Then from (18), (19), and the 
.... 



rela tion of I-l to A z we obtain 

1,(z ) = 2i aWE8 - 1 

{ oo sin {38 cos (3 z I-lJ2l'((k2 - {32]l /2a) 
J 0 (3 (k2 - (32) 1/2 I-lJ2 l ((k2 - (32)1 /2a) cl{3 (20) 

, . -I { oo sin {38 cos {3z J~ ([k2 - {32]l /Za) 
I , (z )=-2WWE8 Jo (3(P- {3Z) 1/2 J o ([k2 - {32]l/2a) d{3. 

(21 ) 

"Gpon adding I , and 1~ we obtain the total current 
which becomos, upon making use of the vVl'onskian 
of the B essel and H ankel func tions in (20) ::tnd (21 ) , 

I { oo sin (38 
1, (z) + I , (z )= 4wE1T - I Jo ---;3B 

cos {3z 
(F_ (3 2) J O ([k2 _ {32]1/2a) I-lJ2l (tp- {3Z]l /2a) d{3. (22) 

These results have all been obtained by one or more 
of the authors referred to above. The total current 
(22) with 8= 0 was also obtained by T . T . Wu and 
R. W. P. King [1959] and R. H. Duncan and F . A. 
Hinchey [1960]. 

When ka< < 1 the result (20) for 1,(z) can be 
simplified to 

. f OO sin{38 e-illlzi d{3 
1, (z) """ /'wE _oo ---;38 (F_ {32) 100' ra(F- (32)1/2' (23) 

b 2 

H ere r ""' 1.781 is the exponential of Euler 's constant. 
The expression (22) with 8=; 0 is the usual result for 
a t hin an tenna with a gap of zero width. It is given 
by Vladimirskii [1944], H allen [1956], and Vainshtein 
[1959a, b ]. If the cross section is not circular, a 
denotes the equivalent radius. We shall see that 
this approximation is incorrect near the gap. 

4. The Current Near the Gap 

We shall now evaluat e the currents 1,(z) 
!~ (z) near the gar. Let us first consider ! ,(z) 
mtroduce a= k lzl , x= {3 lzl and ,,( = 8Izl- 1 mto 
which beco111.es 

and 
and 
(20) 

We wi sh to evaluate the integral in (24) for 
0< 0'< < 1. To this end we observe that if c is any 
complex number the argument of the Hankel 
function in (24) has the value - ic when X= 
0' [1 +c2(ka)-2]Yz . Thus no m at ter how large t he con­
stan t c is, t he absolute value of the argument of 
t he H ankel function exceeds c for all x gr eater than 
a cer tain complex multiple of a which vanishes as 
a does. Consequen tly for all these values of x, the 
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H ankel functions in (24) differ by an arbitrarily 
small amount fronl their asymptotic forms. Fur­
thermore the error resul ting from r eplacing the 
H ankel functions by their asymptotic forms for 
smaller values of x vanishes as a tends to zero. 
Thus we may write 

l oo sin"(xcosx 
1,(z)= 2awE (2 2) 1/2 clx + 0 (a). 

o "( X a - X 
(25) 

H er e we have used t he asymptotic form 

I-lJ2l(_ i y)= 2i K o(Y) 
1T 

.(2 )1/2 -v [ r (3/2) -zl 
"-' ~ 1Ty e 1+ 2yr (_ l j2)+0 (y ) J (26) 

In the preceding equations the branch of (a 2_xZ)Yz 
employed is that which is equal to -il (a 2-x2) Yz I 
when xZ>a2• From (26) it follows that the ratio 
of Hankel functions in (24) is just -i. In the same 
way we find that 1~(z) is also given by the righ t 
side of (25) . 

To evaluate the integral in (25) we introduce a 
division point b and write it as two integrals. In 
the second integral we omit 0'2, introducing an error 
of order 0'2. Thus (25) becomes 

. [i b sin 'YX cos x 
1,(z )= 2wwE (2 2) 1/2clx 

o 'Yx X - a 

+ ( oo sin'Yx ~osx dxJ + O(a) 
Jb 'YX-

(27) 

We now integrate the first integral in (27) by parts, 
neglect terms of order a , and obtain 

1, (z ) = 2i awE [ - lOg (- ia) + sin 'Yb cos b log 2b 
'YO 

_ e log 2x ~ ( sin 'YX cos X) dx 
J 0 clx 'YX 

+ r oo sin "(x ~os x dxJ +O (a). (28) 
Jb 'YX 

The right sid e of (28) is obviously ind ep end ent of b 
so we se t b =~, which makes log 2b = 0. W e also 
substitu te a = k lzl and obtain finally 

I , (z) =-2iawE [ lo g klzl- i ~ 

fI /2 cl ( sin 'YX ) + J 0 log 2x clx ----:yx cos x dx 

Joo sin'Yx ] 
- --2- cos xclx +0 (a). 

1/2 'YX 
(29) 

H ere 'Y = 8Izl-1 . The expression (29) for 1,(z) is 
our r esul t for the curren t neal' the gap. 

When the gap wid th 8= 0 and z ~ O then 'Y = 
81z1 = 0 and (29) becomes 



[
rt f ? 

l o(z )=-2iawE log le lzl -q- Jo -log 2x sin xdx 

-Ci G)]+O (a). (30) 

The Lotal emrent is 210(z)+ 0(a). The term 
- 4iawE log z in the total current for 0= 0 was given 
by Wu and King [1959], Duncan and Hinchey [1960], 
and G. Hasserjian and A. Ishimaru [1961]. The 
fonner Lwo pairs of authors discussed an ambiguity 
in t he CWTent near the gap which is resolved by our 
additional terms in (30). 

The input admittance Y when 0> 0 is given by 
our r esulL (29) evaluated at z= o. 

~ . [ • 7r II d ( si n Y) 1 =-21aWE log leo -1(j+ log Y -d -- ely 
~ 0 Y Y 

_ r" sin Y dY]+ 0 (leo) . (~ 1 ) Jl y2 

If cmrents on both sid es of the pipe are excited, this 
result mus t be multiplied by two. The leading term 
in the ftd mittn.nce is imaginfl.ry and proportional to 
log leo, which becomes infinite as 0 vanishes. The 
next term , which is independ ent of 0, contains the 
real part - 7raWE (or - 2 7raWE when ctnTent ar e exci ted 
on both sides) wh ich is the input conclucLance. 
Since it is ind epend ell t of the gap width, it would 
presumably result for any type of antenna feed. 

An incorrect r esult for the current at a gap or zero 
width was obtained bv J. A. Stn),ttoll and L . J. Chu 
[1941]. Their error consisted in evahlfl.Ling the in­
tegral for the cmrent by replacing it by a sum of 
r esidues, ignoring t he fact t ha t thc integrand con­
tained a branch point. The integral should h ave 
been r eplaced b)' a bl't),nch cut integr al plus t he resi­
due sum. As a consequence Lhey concluded that the 
input admittance of the infinite antenna with a gap 
of zero width is zero, wherea it is actually infinite 
as our result (31) shows. 

Another incorrect result for the current at a gap 
of zero width follows from Lhe thin antenna expres­
sion (23) with 0= 0, obtained by Hallen [1956], 
Yladimirskii [1944], and Vainshtein [1959a, b]. The 
latter two authors showed that (23) yield s 

10(0)= ~,1 [1+0(1)]. 
- log rica 
J.l-

(32) 

Tllis same r esult was obtained by Schelkunoif [1941], 
H allen [1948], and Wu [1961]. The correct r esult 
(30) for 0= 0 is infinite a t z= o in contrast to the ap­
proximate expression (32) which is fini te. Th e error 
in obtaining (3 2) from the exact expression (20) was 
made in interchanging the limi ting processes Z-JoO 
and lca -JoO. The convergence to these limits is non­
uniform. Therefore, it is not permissible to fll'St let 
lea -JoO, in which case (20 ) is asymptotic to (23), and 
then let z-JoO, when (23) approaches (32). The non­
uniformi ty manifests itself in a small interval around 
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the gap, which we may call a boundan lay er. 
Within this layer the cmrent drops from its l;wgc 
value at z= o (or from its infinite value WhOll 0= 0) 
to a small value. For example (30) show that 
1.(z)=ia, where a is some small finite curren t, wh en 
Izl = lc- Ie-afzaw,. Therefore, the width of th e bound­
ary layer is very small when lea is small . Wi th in 
this layer the thin antenna theory is inapplicable. 
It is precisely in this layer where the cmrent must 
be evaluated in order to determine the input ad mil­
tance of the antenna. 

5. The Current Far From the Gap 

Let us now evaluate tbe current 1.(z) far from LIlc 
gap, starting from (20) which we wriLe as 

Since (33) expresses 1.(z) as a Fomier integral , its 
valu e for large Izl (actually large le lzl ) is determined 
by th e s ingularities of the in tegrand . These occur 
at {3 = ± le and therefor e it uffices to r eplace the 
Hankel function in (33) by its asymptotic expansion 
for mall values of its argument 

Here r ",, 1.7 1 is Euler 's cons tan t. Since {3o=±lco 
at the singularities, and leo is assumed to be small, 
we also replace sin {30 /{30 by uni ty. Then (23 ) 
beco mcs 

(35 ) 

Vve observe that when 0= 0 the thin antenna result 
(23) coincides with (35) . 

The integral in (35) has bee11 evaluated as,Ylllp toti­
cally for lcz» l by Vladimirskii [1944], H all en 
[1948], Northover [1958], and Vainshtcin [1959<l, b] 
with the result 

(36) 

This resul t also applies to thin antennas. 

6 . Reflection From the End 

Let us now consider the reflection of the current 
from an end of a cylindrical antenna. This problem 
has been solved by E. Hallen [1956] for a hollow tube 
of circular cross sec tion and for a thin antenna of 
any cross section. It has also b een treated by L . A. 
Vainshtein [1959a, b] and T. T. Wu [1961]. They only 
complete their analysis to obtain e}..-plicit results for 



thin antennas. The antenna is assumed to be semi­
infinite lying in the r egion z> O with its end at z= O. 
The incid ent current is assumed to be e ikZ. For the 
hollow circular antennl1 of radius a Hallen find s the 
reflected current on the outside of the antenna to be 

+ika 
27r¢(ka) 

f '" e-i{JZ H J2l /([P -{32]1/2a) 
-'" ¢ ({3a)(P -{32)1/2 H J2l (tp - {32]l /2a) d{3. 

Here ¢ (o:a) is defined by 

1 f "' + i . dr 
¢ (o:a)=exp -2 . --

7r~ -",+i. r-o: 

(37) 

log [I J o(-vP .\2a)H J2l(-v'p -r2a)]- (38) 

This r esult was ob tained by using the Wiener-HopI 
method to solve the integral equation satisfied by 
the total current on the cylinder, and then separating 
the curren t into its inner and outer parts. 

If Ikal< < 1, the cylind er functions in (37) and 
(38) can be r eplaced by the leading terms in their 
expansions for small values of their arguments, and 
th ey b ecome 

ik f '" e- i{JZd{3 
I I (z) 

27r¢2(ka) -00 ra-VP- {32 (39) 
(P_{32) log 2 

1 f "'+ i. d.\ -4 
¢ (o:a) =exp -2' . r _ log log 2r 2(p- .\2)' 

7r~ _"'+" ~ 0: a 
(40) 

The r esult (3 9) with ¢ given by (40) was also obtained 
by Hallen by solving his simplified in tegral equation 
for the current on a thin antenna. If the cross section 
is not circular, a r epresents its effective radius. 

Let us now evaluate I I( z) for large Ikzl . Since 
I 1(z) is expressed by (37) as a Fourier integral , the 
asymptotic behavior of it for large Ikzl is determined 
by the nei.ghborhoods of the singularities of the 
integrand. The function ¢(o:a) is regular and 
different from zero in the lower half of the 0: plane 
and the only singularity of the integrand of (37) 
in that plane is at o:= k. The singularity in the 
upper half plane at z=-k is irrelevant in the evalua­
tion of I 1(z) for large positive values of z. Thus we 
may r eplace ¢(o:a) by ¢(ka) in (37) which then 
becomes, upon comparison with (23) 

(41 ) 

Thus our assumption (9) that II (z) is proportional to 
I .(z) for large z is verified. The proportionality 
constant C in (9) is seen to be, from (41), 

(42) 

The results (41) and (42) also apply to the thin 
antenna with ¢ given by (40). 

Twice the reciprocal of the constant C occurs in 
the work of H allen and he calls it the end admittance 
of the antenna. H e has computed its r eal and 
imaginary parts for a large range of ka , assuming 
u= O, using both (38) and (40) for ¢ (ka). The two 
resulting values of C are practically equal for ka < O.l. 
For small values of ka 

¢2(lca) - 1 +o[ 1 ] (43) 
2log iNa (log ka) 3 

and 

C= - lc [log ikar + O (l~k )J. 7rW€ og a 
(44) 

For the t hin antenna it follows from (39) and (40) 
that 11(0) = - 1 so that the incident plus the reflected 
current is zero at the end . This verifies the assump­
tion usually made in the theory of thin antennas. 

7 . The Finite Cylindrical Antenna 

Now I .(z) , I 1(z), and C have been determined 
for cylindrical antennas of circular cross section and 
for t hin cylindrical antennas of any cross section. 
Therefore we may use them in the formulas of section 
2 to obtain the current on and input admittance of 
the corresponding finite cylindrical antennas. Thus 
when z is not neal' the gap nor the ends, (4) b ecom es 

2/rwe{ e-iklzl 1 
I (z)=T 10go:lzl + 1 e- i2" (Z t+ zzl 

¢2 (ka) - ¢2 (ka) [Jog O:(ZI +zz) F 
[ 

e-ik(z+ 2Zt) ( 1 
. log o:(z\ + z) log n:Z\ 

e-ik2z2 ) e-ik(2Z2-Z) ( 1 

+ ¢2(ka) log o:z2 log 0:(ZI+Z2) +log 0:(Z2-Z) log O:Z2 

+ .'(ka) log !::7;~ a(,,+z,) ) ] l (45) 

Here 0: = 2i /r 2a2k. The input admittance Y becomes 

Y =-2iaw€ [ log ko-i~+ L1logy (~~(Si~Y) dy 

i "' sinYd J 2m, r __ ~l ~--,---
l' + 1 e- i2k (Z \ +Z2) - 1 ---:;;- ,j - k- <jJ2(ka) 

¢2(ka) [log 0: (ZI+Z2)]2 

(46) 
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For the center jed an tenna, these results simplify to 

2 7rWE { e -iklzl 1(z)-- --
- k logalzl 

[log :~:~~z) +10ga~;~_z)}og2aZI } 
+ log aZI [cp2(ka) (log 20'z l)ei2kZI- 1] 

Y =-2iawE [log k8- i ~ 

+ (1 10 , !{ sin Yd _ J' ''' sin y ch ] 
J o g y dy y Y 1 y2 .'! 

(47) 

47r WE 10 g 2az 1 

+ k(lOg O'ZI)2 [cp2(1ca)ei2kZI log 20'zl- 1] (48) 

For thin antennas, when C is given by (44), the 
r esults (45) and (47 ) ar e the same as those given by 
Vainshtein [1959a, b] . 
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