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Maxwell’s equations in an anisotropic inhomogeneous medium are transformed by means
of the Stratton-Chu formula into a vector integral equation which couples the various elec-

tric field components.

In case the hypotheses of far-zone field and low frequency electro-

magnetic waves apply, this vector integral equation can be approximated by a system of

uncoupled scalar integral equations.

This implies an approximate equivalence between the

original vector integral equation and a system of modified scalar inhomogeneous Helmholtz

equations.

The conditions under which the system of uncoupled scalar integral equations

can be solved by Neumann series are discussed, and the first three terms of the Neumann

series are given explicitly.

1. Introduction

Maxwell’s equations for the electromagnetic field
in an inhomogeneous anisotropic medium, such as
the ionospheric magnetoplasma, can be written in
the form [Turner, 1954]

oH .
curl E=—y, St div D=0
oD . oD
il =20y 2 5 _
cur! H Y, J4 Y, div H=0. (1)

Assuming harmonic time dependence e¢’“* and that
the ambient magnetic field B, is directed along the
z-axis, one obtains the following vector wave equa-
1i(m]. appropriate to an inhomogeneous anisotropic
medium :

curl curl E= «?y, f):kﬁ(k) -E (2)

Y - . .
where ki=co’ue, and (k) is the conductivity tensor
[Turner, 1954] of a magnetoplasma in a uniform
magnetic field:

B C o
®={—C B 0} (B)
0 0 A4

In the case of the ionosphere* A, B, and ' are
given by

A=1—(X/U), B=1-UX/U-Y?),

C=XY/[/(U*-Y? (4)
where X, V', and U=1—1Z are the usual definitions
of magneto-ionic theory [Ratecliffe, 1959].

‘]Fnr a cold magnetoplasma the collision frequency vanishes and definitions (4)
reduce to
A=1-X, B=1-X/(1-Y?), C=iXY/(1-Y?) 4)
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If the left-hand side of eq (2) is now expanded
according to the usual vector identity, one obtains a

VY

term in grad div E=grad div [(¥)~*-D]. This term is
a dyadic, and the various field components are thus
inextricably coupled [Westfold, 1949] in an <nhomo-
geneous anisotropic medium. In all but the simplest
cases the resulting systems of differential equations
are practically intractable, and those formulations
[Keller, 1953 ; Clemmow and Heading, 1954 ; Budden
and Clemmow, 1957] which do exist are extremely
involved, even in rectangular coordinates. It is the
purpose of this paper to show how the problem may
be simplified, at low frequencies and in the far-zone
field, by using the Stratton-Chu formula [Stratton,
1941 ; Silver, 1949] to transform to a vector integral
equation ' with uncoupled components.

2. Transformation to a Vector Integral
Equation

In what follows, we shall assume that the medium
is unbounded; i.e., consists of all of 3-space, so that
there are no boundaries in the finite part of the
medium. Silver-Miller type radiation conditions
[Silver, 1949; Miiller, 1957] will be imposed. The
ionization will be assumed to be confined to a finite
portion of space, so that at infinity A=1, B=1, and
O=0. Thus at great distances, we have to do
essentially with a free-space problem.

The Stratton-Chu formula [Stratton, 1941; Silver,
1949] reads as follows:

f{G-VAVAE—E-VAVAG}dV
Vv

=J' {EAVAG—GVAE} ndZ.
bdryv
(5)

1 A somewhat similar formulation has recently been published by A. T.
Villeneuve [1961]
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In this expression n is the exterior normal to a region
V of 3-space V3, and G and E are twice-differentiable
vector functions of position over the closure of V.
The vector E will of course be taken to be the total
electric field, so that the left-hand side of the vector
wave eq (2) may be introduced into (5). As men-
tioned above, Silver-Miiller type radiation condi-
tions will be imposed upon E and H, so that the right
hand side of (5) vanishes if the boundary of V' is at
infinity; i.e., V' is all of 3-space. Following Stratton
and Chu, we shall take G to be the free-space Green’s
function e~ %%/R times a constant but otherwise
arbitrary vector a. Thus

G=g(P,Q) a=ae~"""/R p,- (6)
For later use we note that
curl curl G=ak}g-+adrs(P—Q)+(a-V)Vg. (7)

The result of substituting (2) and (7) into (5),
and taking account of the radiation conditions, is the
vector integral equation in the total field E:

Be)— [ {wse0 0n-B@

+(v-E) Vg}dQ:O (8)
where

(M) = () — ()= (o) /(iwey), (9)

and (/) is the unit dyadic. Since the operator V
applies to the source point @, we may also write the
integral equation (8) as

BP)= [ o0 {10n-E@

+(itet ) Reo-B) Fae, a0

A
where R denotes a unit vector in the rp—r, direction.
If we write the total field as the sum of incident and
scattered fields:

E(P)=E'(P)+E*(P),

then the integral equation (10) may be written as
the inhomogeneous integral equation in the unknown
scattered field:

B (P)=F P+ [, 0@ {100 2@

(11)

+<¢k0+7§—> (v B } dQ, (12)

where F'(P) is a known vector function of position
defined in terms of the incident field by the formula:

PP = [, o, 0 { KODE@

+<iko+%> R(V-EY) }dQ—Ef ). (13)

3. The Low-Frequency, Far-Zone Approxi-
mate Form of the Integral Equation

In the sequel attention will be restricted to the
case of low frequency electromagnetic waves, i.e.,
those fields for which the free space wave number is

such that
kel<1.

However, this hypothesis does not imply that the
first term of the integrand in (10) or (12)) is neces-
sarily small, for even in a weakly ionized magneto-
ionic medium the product |[k3(M)||=wu||(a)[| can
be large whenever << wy<<w?/w.

We further require that the field point P be in
the far-zone with respect to the distribution of
ionization, the latter being assumed to be confined
to a finite volume V, of space. Thus we can impose
the hypothesis that

R PQ> K= 7\0/ (27")

The second term in the integrand of (10) (and
(12)) contains the quantity div E, which since we
assume quasi-electrostatic equilibrium, can be iden-
tified as proportional to the polarization charge
density:

(14)

when Qel. (15)

V-E=pp/e
But the equation of continuity implies, since
oP
J——St_, that
v.E——Y"J (16)
1weg

where J is a conduction current occurring only in
the ionized portion of space:

J=(o) - E. (17)
That 1s )
{ -(M)- E) mV, (18)
0,in Vz—

For those source points ¢ in V/,, the presence of
ionization implies that (o)5(0), and so (M)=(0)
and v-E0; for all other ¢, (¢)=(0), and so (M)
and V-E vanish. Therefore the only contribution to
the integrals in (10) (and (12)) can arise from those
@ which are both in V, and such that R>">\, If
we now impose the hypothesis that

v- (M) - B)| <[

(19)

(i.e., a slowly-varying distribution of ionization),
then (19) together with (14) and (15) implies that
the second term in the integrand of (10) (and (12))
is of higher order than the first. We may therefore
approximate (10) by the polar integral equation

EP-L [ ye00nE@de. @
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We state this result as a theorem:

Theorem 1. Under hypotheses (14), (15), and (19)
the vector integral equation reduces to the approxi-
mate form

B [, o, QUDEQde. @0

Corollary 1.1. Under the same hypotheses the in-
tegral equation (13) in the scattered field Ef reduces
to the approximate form

B@)=F @)+ [ 0?0 00 -E@ g,
(21)
where F*(P) is given by (13).
Corollary 1.2. For a cold plasma (»=0) hypoth-
esis (19) may be replaced by the hypothesis that

X>1, >1 over V..
Proof. Since

X . XY
1—72 'L —ye?

LAY X
oy 11

0o 0 —XJ

0

1] .

2yt )= () @

the conclusion follows immediately.

=X

4. Transformation to a System of Uncoupled
Scalar Integral Equations

In an appropriate orthogonal basis (e;, e, e;)
(which may, in particular, be the base vectors for
cartesian or cylindrical coordinates),

(M)-E=[(B—1)E\+CE]e,
+[(B—1)E,—CE\le;+(A—1)Ee;.  (23)

The vector integral eq(20) can then be written as
the coupled system of scalar integral equations

E«P)J"f g(P,QIB—1)E(Q +CEQQ |

B =1 [ oPQ-CB@+B-DEMe
E(P) =2 [ o, - EQdQ
(24)

with a corresponding form for eq(21).

Now define the following quantities:

&.2(P)=E+iE, (25)
&(P)=E, (26)
Fio(P)=Fi+iF, (27)
B.o(P)=B—1TFiC (28)
A (P)=A—1 (29)

We note that & and & represent counter-rotating
circularly polarized components about the xj-axis,
while ¢ is the longitudinal field component directed
along the xz-axis. Further, under the hypothesis
(X>1, Y>1), of corollary 2

i
B o=XlY=F — (30)
WWr
and
oA =—X=—wifu?. (31)

Then the system (24) can be written as the follow-
ing unwu])led system of scalar integral equations
mn & 1y & 2 (;3

Eua(P)=18 fm (P,Q) %1.4(Q) &.2(Q)dQ
(32)

03<P>—‘“ 9(P,Q)./ (Q EAQQ

with a corresponding uncoupled form for the com-
ponent form of eq(21):

5P =FLPHE [ 10,0 2.0 51.@1Q

SP)=FUP+EE [ 90 /(@ 63QQ
(33)

5. Equivalences Between the Vector Wave
Equation and Approximate Systems of
Uncoupled Scalar Helmholtz Equations

The following equivalences can now be stated:

Theorem 2.  Under hypotheses (14), (15), and (19)
above, the vector wave eq(2) can be approximated by
the uncoupled system of scalar Helmholtz equations:

E,+1iE, B—iC 0 0
v\ E\—iE; | 1-k2 0 B+iC 0

0 0 A

E\+iE,
El—iEz =0
Ey

Es

(34)
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Proof. This follows immediately from applying
to the system (32) the equivalence between the

integral equation u(P)——Afg(P,Q)p(Q)u(Q)dQ:O

and the boundary value problem consisting of
v2u-+A[l+p(P)] w(P)=0 together with homoge-
neous Dirichlet or Neumann boundary conditions
and/or a radiation condition, and at the same time
taking into account definitions (25), (26), (28),
and (29).

Theorem 3. Under hypotheses (14), (15), and (19)
above, and the assignment of an E(P) such that
there exists an /*(P) satisfying

F P = [ 00,0 @0 69

the vector wave equation curl curl E —k2(x)-E°
=f(P) is essentially equivalent to the uncoupled
system of scalar inhomogeneous Helmholtz equations:

Ei+iE; B—iC 0 0
v2\ Es—iEs |4k O B+ic 0 |
A

i 0 0
Ei-Hiks\ - [fitifs
Ei—iks )= fi—ift ) 36)
1 I3

Proof. The theorem follows in the same way
as theorem 2 from the equivalence between the
integral equation

u(P)—A fg(P,(z)p(Q)u(o)dQ: fg(P,Q)q(Q)dQ

and the inhomogeneous Helmholtz equation
Vu+All+p(P)] w(P)=q() with homogeneous

boundary conditions and/or a radiation condition.

6. Solution of the Uncoupled Integral
Equations by means of Neumann Series

Each of eqs (33) is of the form of a singular
Fredholm integral equation with symmetrizable
kernel. Since the domain V; has been taken to
be all of 3-space, and so is infinite, the integral
equations will be singular. However, Neumann
series solutions of the integral equations can still
be defined [Schmeidler, 1955] in the usual form and
subsequently shown to actually converge to the
solutions of the respective integral equations, pro-
vided the kernels K, ,,(P,Q)=g(P,Q)#..(@) and
K3 (P,Q)=g(P,Q).<7(Q) are integrable over V,; with
respect to every function df¢ (P) in L, and with
respect to every function dn(@Q) in L., and both of
the following iterated integrals exist and are equal:

f E® (f Q' (Q)dQ> P

~[ r@(f, x@.0F @ar)ie =12

The way to proceed is described by the following
theorem [Schmeidler, 1955]: For a kernel K(F,Q)
which satisfies the three requirements just stated
and whose associated bilinear form is absolutely
bounded:

[, K2, Q8@ Q2P| <,
3 3
The Fredholm equation of the second kind
y(P)*AfV KPP, QyQ)dQ=FP), yelL,
3

has a unique solution in the form of a mean-square
convergent Neumann series

y<P>:z.fz'.m.{F<P>+A f K(P,Q F(QdQ

[ K@ ([ K@@ )ig+ - }

In the present application the hypotheses of this
theorem are equivalent to

[, 80P O @arig|<

(37)
and

U ‘x‘ g(P,0)./ (QF ™ (P)n’ (QdPdG | <M,

(38)

where & (P) and »’(P) are arbitrary L. functions on
Vs, and

M, <m\2. (=123} (39)

The zero-order terms in the Neumann series solu-
tion for &5(P), &5(P), and &5(P) are simply Z(P),
FLUP), and Fi(P), respectively. The respective
first-order terms (Born approximation) are given by
the integrals:

£ ar. 077 @i (40)
and
A%Z)rfl/sg([): Q)7 (Q)Fi(Q)dQ. (41)
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The third terms in the corresponding Neumann
series are, respectively,

Gl 4Q9P, Q7,0 | 9@ Q) F Q) T3 1

and

By 1207, Q)4 (@) | 9@ @)/ @)FiQ),

ete.  Since kf/4r<<1 in the low frequency case, the
first two or three terms in the Neumann series will
ordinarily suffice for numerical purposes.
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