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The theory for the diffraction of spherical electromagnetic waves by a finitely conducting
spherical earth was developed from Maxwell’s equations by Watson [1918] and the intricate
computation details were later worked out by van der Pol and Bremmer [1936] as the now
classical series of residues. Two aspects of this computation present considerable difficulty,
especially at low frequencies:

(1) The caleulation of the height-gain factor which takes account of an elevated trans-
mitter and/or receiver.

(2) The evaluation of the special roots, r=r,, of Riccati’s differential equation,

d—6—26?r+1=0,
dr

near the circle of convergence, |827|=1.

These analytic difficulties are avoided with the aid of modern analysis techniques
applied to a large scale electronic computer. Hankel functions of the first and second kind
of order one-third and two-thirds are calculated by numerical integral methods and then
used with iteration to solve Riccati’s differential equation. The amplitude and phase of
the spherical radio wave diffracted in the vicinity of the earth with various altitudes above
the surface of the earth, of both the transmitter and the receiver, are then calculated by a

summation of the series of residues.
1. Introduction

The field of the diffracted spherical wave in the
vicinity of a finitely conducting spherical earth has
been discussed in detail as the ground wave by
Watson [1918], van der Pol and Bremmer [1937],
and the particular case of a vertically polarized
Hertzian dipole source, F,, volts/meter; i.e., the
electric field directed radially with respect to the
center of the earth, can be written [Johler, Kellar,
and Walters, 1956],

E1:2Eer7: (1)
where,
1077w : 1
EPT:T Iol exp {’L[kld— ‘*’t] 5 (2)

where, d is the distance, meters, f=w/2r the fre-
quency, cycles/second, I,/ is the dipole current
moment, ampere-meters, exp (—iwt) implies a wave
varying harmonically in time, ¢, in a medium with

w . .
wave number, k1=g n, where ¢ is the speed of light,

c~3 (10%) m/sec, u, is the index of refraction of air,
m~1. The attenuation function or secondary
factor, F, which takes account of the earth’s
curvature, finite conduectivity, and dielectric con-

1 Sponsored by Air Force Cambridge Research Laboratories, CSO&A 58-40
(3/31/58).

2 An earlier version of this paper was presented at the 1961 Spring meeting of
the International Scientific Radio Union (URSI), Washington, D.C. (May 1961)

stant, can be evaluated as a summation of the
classical series of residues,
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where @ is the radius of the earth and « is a factor
which takes account of the vertical lapse of the
permittivity of the earth’s atmosphere.

The parameter, 6=4, for vertical polarization is
defined,
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with kzzg[er{—z—”—] radians/meter, e the dielec-
w

tric constant relative to a vacuum, ¢ the conductivity
of the medium, mhos/meter, u, the permeability of
free space, henrys/meter, and r=r, describes the
special roots of Riccati’s differential equation,

Ao oy L
T —28'+1=0, (5)
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which define the positions of the poles at which the
residues for the series s=0, 1,2, 3 . . . are calculated.
In the case of horizontal polarization, £, may be
replaced by H, (vertical magnetic field) providing
. 18 replaced by §,, where,

2

1
67” k% 66‘ (6>
The isolated factors, f.(h:), fs(hy), which are in
each term of the series describe the effect of elevating
either the transmitter, Ay, or the receiver, h,, or
both, and can be evaluated without further ap-

proximations [Johler et al., 1956] as follows:

2hal’?

(kya)*?
—27,

f}é{ [(/cl yers 20 —273] }
a3 —zmm}

It is often more convenient to use some sort of
modified Hankel function, hA;(z) [Furry, 1945], for
which values of complex argument (z=z-1y) have

been tabulated,
N o3 2hal’
) o 20)
Inf{—(2)"7,] '
The roots, 7, are found [Johler, Walters, Lilley,
1959] by expanding the Riccati differential equation
In a power series,

”‘_27'; 1/2

fs(h)=

fi(h)=

® 1 [d"r, "
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L (I( )
!627[>21

where the limiting roots, 7,, and =, . for §,=0 and
6,— « have been tabulated [Johler, Walters, Lilley,
1959].

The power series in 6" and 7" both seem to lose
precision near the circle of convergence, |6°7=3%, for
a finite number of terms. Although a considerable
number of terms have been determined [Johler,
Kellar, Walters, 1956] the calculation of more terms
becomes very laborious. Furthermore, the tabula-
tion of the Hankel functions [Furry, 1945] does not
seem to provide an adequate range of values, es-
pecially at low frequencies and indeed is not espec1ally
suitable for application to large scale computers.

Since the Riccati differential equation can be
expressed as a ratio of Hankel functions,

(1)
1 1/3

A e i [ra—0, (1)

a basic technique to evaluate Hankel functions
H{%,s (2) would permit an iterative solution of
Riceati’s differential equation and at the same time
could be employed to evaluate the Hankel functions
H{}y (z) in the height gain factor, f,(h). The
development of such a technique is the prime task
of this paper.

\/ —275 51

2. Evaluation of Hankel Functions by
Gaussian Quadrature

Bessel functions of order » are solutions of the
differential equation.

P (]Z/ d?/
" dz T

2 T E—)y=0 (12)

where v and z are real or complex. The Bessel func-
tions of the third kind, known as Hankel funetions,
are linearly independent solutions of eq (12) and are
denoted by H® (z) and H® (z) where »=% or 2
for the purpose of this discussion. Hankel functions
have complex values for a real argument, but are
real for 2+ I, (iy) and «~“*? H» (—iy) when
y is positive. These functions are important in
applications because they are the only Bessel func-
tions that vanish for an infinite complex argument,
H;P (z) if the imaginary part is positive and I1*
(2) if 1t is negative [Jahnke and Emde, 1945].

Integral representations for H" (z) and H® (z)
are as follows [Jeffreys and Jcﬁrews 1956]:

f °Xp[ ()] 09
ape=% 1 ew[3e (1)

where the expression of the limits in eq (13) means
that the path is taken from 0 to — o« by way of 7.

Integrals with real limits are derived by selecting
a path as shown in figure 1.

HY (2)=

(14)

<& >

® =i} (o] |

Ficure 1. Contour of integration of Hankel functions, HS(2).
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If A=u, the part of the integral for H{® (z) from 0
to 1 becomes,

1 (! g 1 S
" fo exp [5 (u U):I w”r " du.

On the semicircle from —+1 to—1, if A=exp (i),
this part is,

(15)

%fﬂ exp (42 sin 6) exp (—wvif)d6. (16)
0

From—1 to— e, if \=wu"1¢'™, this part is,

7%' ﬁl xp [—Z— <’“—%>:| wtexp (—vri)du (17)

and together,

H®(2) :71_r f exp (22 sin 6—vif)do
0

+7% j;l exp [% (u—%)] [u=r!

4wt exp (—vmi)|du (18)

for Re (2) > 0.
As HP® (2)=[HZ (2*)]*?® [Erdelyi, 1953],

H® (2) :71_r J::r exp (—1z sin 0-+vif) do

+£fl ex I:E<U“l>] (w=r='w=t exp vri) du
7 Jo P 2 U, o
(19)

for Re (2) > 0. Note that this method is applicable
not only for »—1% and %, but also for complex ».

The integrals in (18) and (19) may be evaluated by
Gaussian quadrature |[Kopal, 1955]. In this method
a finite integral is expressed as a sum:

Lb A@)do=

M

] W (yn) +e (M) (20)

m=

where e (M) is an error term which may, in general,
be made arbitrarily small by increasing M where
m=1,2,3,. ..M.

Un=5 | (h—) 2o+ )] (21)

The ,,’s are the Gaussian abscissas and M determines
the number of values of # to be used in the quad-
rature. The Gaussian weights and abscissas may
be determined from the following:

[" s@de=33 Mg e 22)
Wm:% (b—(l) Hm- (23)

3The * denotes the conjugate of the quantity.

The z,/s are the roots of the Legendre polynomials
defined by

dm 2 m___m
d—x—,ﬁ(x —1)™=2"m!P,,(x) (24)
Po(x>:1
Pl(T):CE
1
Py(a)=3r—

> ()= D32,
3(‘”)_2‘1‘ 2"

P.(x) :%-).r“—lfﬁ—}—:—z

Polynomials of higher degree are determined by use
of the recursion formula:

(m+1)P,i1(x) +mP,,_(x)=2m—+1)zP,,(x). (25)
Upon determination of the roots, the weight co-

efficients, H,, of the corresponding quadrature
formulas are evaluated as follows:

()
Iim: B = 7 2"
(I—I;n) [Pbl(xm)]z

Forty-eight weights and abscissas were used in this
quadrature [Davis and Rabinowitz, 1956] approxi-
mating the integrand in this case with a polynomial
of ninety-fifth degree [Kopal, 1955].

Equations (18 and 19) are valid for Re(z) >0,
but the values of the Hankel functions in the second

(26)

and third quadrants mav be found from the
equations:
HP (2)=[HE (9], (27)
Y :sin A=—m)rr 17 N
= oh sin v LA
Lt ST oy g
sin v () RNEE)
and .
H (zem) Sin ('1+m)”7" HO ()
sin v
i SIN VT 2 ) -
tert oo, V() (29)
with m=—1 in this instance [Watson, 1948].

3. Method of Iteration

An iterative method with the above procedure for
finding Hankel functions may be used in (11) to
find the roots of (5). The iterative method described
by Muller [1956], although it was developed to solve
polynomial equations, may be used for any function
which is analytic in the neighborhood of the roots.

103



The functions for 7 are from (11):

Py ——HBEC20Y i

—b,, |8,|< 1

Va2 P 3 S

and (30)
— =2  H{(—2n)"? 1

PO == o e 5y >

(31)

Alternate expressions for F(7) are used so that 4,
does mnot completely dominate the function and
prevent convergence.

Each iteration in the process of finding one root
is obtained from the calculation of the nearer root
which passes through the last three points of the
function, f(r). The quadratic equation is, in
general, complex i.e., it possesses complex roots and
complex coefficients. The function f(7) has the
same ordinates as F(r) for n-+1 distinct abscissas

as 7, Tpo1 . . . 7. The Lagrange interpolation
formula through the three points 7,2, F(7:-s),
Ti1, F(74-1), and 74, F(r;) of F(r) is,

f(T) :A2T2+A1’f +Ao (32)

where A,, A;, and A, are evaluated from the re-
quirement:

Jao)=F(ri_3), f(ri1)=F(7:-,) and f@)= F("’t)

Upon solving for As, Ay, Ay and using the quantities
B 61
—=r— ANi=—o—
0 B Bt

and §,=1-F\; the Lagrange interpolation formula
becomes a quadratic in \:

f(”') )\25 F(Tz 2)>\2 F(Tv:—l))\ilsi
FF(r)N]HENTE (71— ) Ni— F(74_,) 6
+F(r) (N6, ]+ F (7).

7411 1s found for the condition, f(7)=0, solving for A
and employing the relationship,

Tiy Bi:Ti—Ti—ly B;—1271—1—"T:~2, A=—

(33)

. Ti+17 Ty
A=A =——
Ti—Ti-1

(34)

Rationalizing the numerator of the standard quad-
ratic formula, and solving for \;y,

_ —'211"<Ti)6i
i ﬂ:\/g%—4F(Tz’)51’}\1'[1”(71'—2))\:'—F<Ti—1>5i+ F(‘fi)]
(35)
where,
:Iﬂ(Ti_Q)A%— (FTi_l)Bi?+F(Ti) (}\1‘1“51) (36)

The sign choice in the denominator of \;y; (35) is
resolved by selecting the value for the larger denomi-
nator. This choice of Niy; gives 7444 the root of the
LaGrange interpolation formula (32) which is nearer
T1, To, T1, and 7., the initial value of 7 are estimated

in this instance from the limiting roots 7,,(6,=0) and
Ty (8,= ) for any desired s [Johler et al., 1956],
with the corresponding F(r) evaluated from (30 or
31).
The actual values of 7., and 7. are used for s
<4 while approximations for other s are determined
from the following [Miller, 1946]:

i’ i__f’_:l 7
o~ on | 1T ag 56, B
y§/3|: 7 35 ]
oo™ o178 45J;+258y2 )
where,
3T
?/1=§ (4s+3) (39)
y%f (ds+1). (40)

The iterative process is terminated with 7, the
desired root when,
IT S 1l<
|74l

(41)

where € is a predetermined number.

With procedures developed for finding Hankel
functions and 7's, /£, may be calculated from (1)
and (3).

4. Discussion of Results

In figures 2 and 4, describing effects of land and
sea water, respectively, the transmitter on the sur-
face, the receiver at varying heights above the sur-
face in wavelengths, )\=ch and for any distances along
the surface of the earth, the ratio of the field aloft
relative to that at the surface (A=0), El(la(’ L d;t)
proaches a value of one as the height of the receiver
approaches zero. For increasing heights of the re-
ceiver, this ratio first exhibits a minimum less than
one, although slight in some instances, and then in-
creases in an exponential manner. The analytical
behavior of the height-gain function has been dis-
cussed in considerable detail by Wait [1956].

Characteristics of the amplitude ratio described
above, however, with some differences, are present
if both transmitter and receiver are elevated (fig. 6).
For a transmitter height of 1 wavelength and vary-
ing receiver height, for any distance along the sur-
face of the earth, the amplitude ratio approaches a
value less than 1 as the receiver height approaches
zero. For a transmitter of height 10 wavelengths
and varying receiver height, the amplitude ratio ap-
proaches values greater than one which varies with
the distance along the surface as the receiver height
approaches zero. The amplitude ratios for these
elevated transmitters increase very rapidly as ex-
pected because there are two height gain factors
increasing in an exponential manner.

For the phase relationships (figs. 3, 5, and 7) cor-
responding to the amplitude ratios (figs. 2, 4, and 6)
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Ficure 2. Amplitude of the vertical electric field, E., relative
to surface value at various distances over land, with either
transmatter or recewer elevated.

In this figure as well as those which follow ki and h; can be interchanged
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Fraure 3. Phase of the vertical electric field, E,, relative to
surface value at various distances over land with either trans-
mitter or receiver elevated.
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Frcure 4. Amplitude of the vertical electiic field, E,, relative
to surface value al various distances over sea water, with
either transmitter or receiver elevated.
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Frcure 5. Phase of the vertical electric field, E., relative to
surface value at various distances over sea water with either
transmaitter or receiver elevated.

respectively, the difference of the phase aloft and
that at the surface (Ah=0), ¢ (w,dh)—t (v,d)<<0
with a very slight minimum at low increasing heights.
To illustrate details of the phase in this region, a
logarithmic scale was used with # (w,d,h)—t (w,d)<0
graphed as lead with dashed lines, and ¢ (w,d,h)
—1t (w,d) >0 designated as lag with solid lines (figs.
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Ficure 6. Amplitude of the vertical electric field, E,, relative
to surface value at various distances over land, with both
transmitter and recewer elevaled.

3, 5). The phase lag may be ambiguous by 2=
radians in any case, which i microseconds is 10, 1,
or 0.1 for 100, 1,000. and 10,000 ke/s, respectively.
In figure 7, the lower solid lines represent lead for
the transmitter at 1 wavelength, while the upper
solid lines represent lag for the same case. For 10-
wavelength height of transmitter, the dotted lines
represent lead.

5. Conclusions

All of the amplitude ratio curves have a minimum,
even though slight in some cases, and then rise ex-
ponentially. For transmitter and receiver both
elevated this ratio is very pronounced. The phase
curves also exhibit a minimum, sometimes very
slight, with ¢ (w,d,h)—t (w,d) changing from a nega-
tive to a positive quantity or from a phase lead to
a phase lag relative to the surface.

In applying the methods used in this paper, it may
be concluded that the iterative method described 1s
applicable for roots of Riccati’s differential eq(5) to
any desired accuracy consistent with the capacity of
the electronic computer used. Also, the method for
evaluating Hankel functions, as it is applicable for
real or complex order, may be used for the many
other applications of these functions.

In particular, the height gain functions and the
ground wave field can be evaluated at most any dis-
tance or altitude of transmitter and/or receiver with
the aid of the techniques presented, the ultimate
limitation being the computer capacity and speed,
and the failure of the approximation in (3).
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Ficure 7. Phase of the vertical electric field, E,, relative to
surface value at various distances over land with both trans-
matter and receiver elevated.
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