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A Precision Noise Spectral Density Comparator
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The theory is given for a precision comparator that measures the ratio of two noise

spectral densities.

The relative error of a single measurement is also derived.

The com-

parator described removes or alleviates many of the problems in high-speed switching,
and since the instrument operates under null conditions, the null position is essentially
independent of amplifier noise and gain instabilities.

1. Introduction

The relative strength of two power sources or
signal levels is often desired.  As the strength of the
two power sources decreases the determination of
this ratio becomes inereasingly difficult.  When the
desired signals have levels that are approximately
equal or smaller than the internal noise level of a
very low noise amplifier, the problems become severe.
This is due not only to the masking effect of the in-
ternal amplifier noise but also to the instability of the
amplifier gain. This in turn arises [rom the enor-
mous amounts of gain needed.

The usual practice is to sample the outputs of the
two levels at a switching rate that is high compared
to the instability drift rate of the amplifier. An
attenuator is usually used to reduce the level of the
stronger signal to that of the other signal. The
early pioneer of this method was the Dicke Radiom-
eter [Dicke, 1946].

The switch with its noise, losses, and instabilities
is often a limiting factor in such methods. The at-
tenuator and the necessity of impedance matching
is another problem source. These problems are
eliminated or greatly alleviated by the method de-
scribed herein.

2. Principle of Operation

The basic problem in such measurements is to
make the amplifier gain drift essentially unimportant.
In principle, the usual radiometer samples the two
sources so that the variation of amplifier gain affects
the amplified source levels of both sources equally.
A preferable method would be to have both sources
simultaneously present and no switching. The
problem then, is to separate the two amplified
sources at the output. If the two sources are
statistically independent, they could be separated
by correlation techniques. In principle this s
what is done in the system described below.

Correlation techniques are an old tool and there
are systems described in the literature that in various
respects resemble the one discussed here [Fink, 1959;
Freeman, 1958, p. 274].

The block diagram of the system is shown in
ficure 1. The individual components and also the
configuration can take on different forms without
changing the basic principles. The system described
here is similar to one presently under construction.
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Fraure 1. Block diagram of comparator.

2.1. Sources
The two sources may be very general. They may
consist of random noise, pulse sineals, CW, ete., or
combinations of various types. It is assumed their
output levels are constant during the measuring time.

2.2. Attenuator

For precison results the attenuator may be an
accurate wave guide-below-cutoff (piston) attenuator.
Small changes in attenuation may also be determined
by measuring changes in the input level to the
attenuator.

2.3. Junction

This simple but important component is shown in
figure 2. It is a low-loss symmetrical coaxial 7.
Opposite to where the center leg joins the 7' very
small slits, perpendicular to the axis of the two side
arms, are cut mto the outer conductor. These are
symmetrically placed on the 7. The junction then
is made an integral part of the attenuator so that the
fields (TE;; mode) within the attenuator guide
impinge upon the slits of the 7. In effect, the 7" acts
as a center-tapped secondary of a transformer. The
source X is applied to the center tap.
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ATTENUATOR WAVEGUIDE

Ficure 2. Junction.

2.4. Amplifiers

There is some value in having the two amplifiers
similar, though this is not necessary. The amplifiers
should be linear; at least the frequency components
produced by the nonlinearity should be prevented
from reaching the input to the multiplier. For some
modes of system operation it is essential for the pass
band characteristics of the amplifiers to remain
constant during a measurement while the gain can
vary. This is what primarily happens in an amplifier
as the mutual conductance of a vacuum tube varies.
The stability of the pass band can be enhanced by
keeping the amplifier broadbanded except for stable
band limiting devices.

2.5. Multiplier, Filter, and Indicator

The multiplier has the function of forming the
product of the input voltages. The output of the
multiplier, which is this product, is applied to the
filter. The filter permits only the d-¢ and very low
frequency components of this product to reach the
indicator. Of course the filter and multiplier could
be a single integral unit. The indicator responds to
both positive and negative d-¢ voltages and is used
only to obtain a null.

3. General Theory

Only the basic general theory will be presented.
This describes, under certain assumptions, what the
system measures and the expected error (due to the
inevitable random fluctuations in the output) in this
measurement. Possible errors due to various com-
ponents deviating from the assumptions will be
reserved for a forthcoming report when a specific
system is being described.

The assumptions used in the following theory are:

The system, excluding the multiplier, is con-
sidered linear.

2. The amplifiers and filter, while linear, may be
considered varying in time. The wunit impulse
response and Fourier system response functions of
these units are then time variable. The analysis

could have also been carried through with the
assumption that the unit impulse functions were
sample functions from a linearly independent ergodic
process with the essential results being the same.

3. The signals present are all assumed to be sample
functions from random processes that are bounded,
and are singly and jointly ergodic as well as singly
and jointly stationary. The periodic signals are
considered to occur with a uniform random phase
distribution over the ensemble.

4. The components, other than what is stated or
implied above, are considered to be ideal. For
example, the multiplier performs the proper product.
Also, the junction is symmetrical, ete.

Sources X and Y respectively give rise to random

signals z(f) and y(f) that are Teal time varying
functions and contain, in general, both periodic and
nonperiodic parts. T he input to d]]lp]lfl(‘l Ais

x(@)+y(t). (1)

To amplifier B, it is
z(t) —y(0).
The output of amplifier A, ¢,(t), is

ea(t)=f:° ha(a, )[2(t—a) +y(t—a) +2,(t—a)|da  (3)

where h,(a, t) is the unit impulse response of amplifier
A, z,() is the internal noise of amplifier A referred
to its input, and « is the variable of integration in
the convolution integral. Likewise the output of
amplifier B, ¢,(1), is

0= [ 1B Ol —p)—yt—8)+2, 0~ @)

where the b subscripts refer to amplifier B. The
quantities ¢,(t) and ¢,(t) are multiplied together by
means of the multiplier. The expected value or
statistical average of the output of the multiplier,
indicated by K(e.e,) or e.e, is

Eles)—E [( f _2 hala, 8)[2(t—a)
(=) +2,(t—a)Mla )

o (8, ) (l—B) —y(t—B) + z,,<t~3>wa)]-

()

Since h,(e,t) and hy(B,t) are considered to be non-
random functions,

©

E(e.e,)= f

J —o e

" haa, ) (8, 1) E(:

— o

=G E = (=)

+2u(t—a) [[2(t—B) —y(t—B)+2,(t—B)])dadB  (5)

where the order of integration and averaging have
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been interchanged. The expected value or statistical

mean of the indicator output, /, is given by
T=1,(0,1) f f hale, )Ry (8, ) E([x(t—a)

+y(E—a)+z.(t—a)][x(t—B)
—y(t—B) +2.(t—B)])dadB  (6)

where H,(0, ) is the zero frequency response of the
filter and indicator. ) )
The expected value of the time varying signal
function in (6) is composed of the statistical auto-
correlation and cross correlation functions of the
various random signals present. Thus
Elr(t—a)x(t—B)] = R.(8—a) (7a)
' where R,(B—a) is the statistical autocorrelation
function of z(t). Similarly
Elz(t—a)y(t—B)]=Rz(B—a) (7b)
with similar results for other combinations, where
R,,(B—a) is the cross correlation function of the

functions z() and y(1). )
From the foregoing, (6) may be written

=100 [ [ Iule, 0hs(5, 01R-(6—2)
_RU(B—O‘) _Rzy(ﬁ—a) '}‘Rzzb(ﬁ“a)

+ Ry (B—a) +]l)z/zb(6_a) +]l’2a,; (B—a)

_ll)zau(ﬁ_a)+1{zazb(ﬁ_a>](la(lﬁ- (8)

If the respective signals are uncorrelated all cross
correlation functions become zero, and (8) reduces
to (correlation between z,(f) and z,(f) is discussed
" later)

T—H,0.1) f i fw hala, )ha(8, 1)
[R.(8—a)—R,(6—a)]dodB. (9)

The above correlation functions are related to the
spectral densities of the various signals. Let S:(f)
represent the spectral density of the signal z(f).
Then S,(f) and R.(r) are related (by definition)
through the Fourier transform pair

Sx(f)=f_w Ri(r)e~#"dr (10a)

Iiz(r)zf S(Pe*udf (10b)

/=
with similar relations for the ¥ signal.

Substituting the above values for the correlation
functions into (9) together with the relation r=g—a
vields

T—=H,(0,1) f f f ha(ex, t) e~ 270l (B, 1) ¢ 72778

[S:(f) =Sy (N]dfdedB. (11)

Now the impulse response function, /h,(a,t), is
related to the complex {requency response function,

H,(52xf, t) by
f ha(a, t) e eda=H,(j2xf, t) = |H . (52xf, t)| e
(12)

where I1,(j2xf,1) is the complex frequency gain
function of amplifier A and 6, is the associated
phase angle. Similarly

f ho(B, 1) ¢ dB=HT}(j2xf, t)=|H(j2xf, t)] e~
(13)

In general, 6, and 6, are functions of time, though
for simplicity in notation they are not explicitly
written as such. Thus (11) becomes

T=H.00, 0) | \Ho(j2nf, 0| [H(2ef, 0)llcos 6.—0)

+Jsin (0a—0,)] [S:(f) =S, (Ndf. (14)
It may be shown that 77(j2xf,¢) has an imaginary
part that is an odd function of frequency.
Using this fact, (14) becomes

T=110,0) | ILi2nf, 0| [F(j2xf, 1) Leos (0—00)
[1S.(N—S,(N1df. (15)

Periodic signals such as CW signals or even
periodic wide-sense random processes have power
spectral densities expressed by means of the Dirac
delta function, &[Davenport, 1958; ch. 6]. For
example, a CW signal, V' cos (wit+6) has a power
spectral density

"2

1% S
Scw(f) - ’4’ 0 (f_fn) +'4 0 (/ +h/()) . (16)
The total power, therefore, is
o e V2 -
[ satnar=Y an)

as 1s well known.
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The output, /, would become zero (a null would
exist) when

[ " \HL(j2nf, ) || Ha(j2nf, t) [cos (0a—6,)S:(f)df

— [ imGnt, 11 G2n, O] cos @00 S, .
(18)

It is of considerable practical importance to
consider those cases for which a null is obtained
independent of the variations in the amplifiers and
filter response functions. Since (18) contains no
filter response function, the null is independent of
the filter characteristics. From (18) it is also
obvious that if the spectral densities of the z(f) and
y(t) signals were equal over the amplifier pass bands,

that is, if
S:(N=8,(/), (19)

a null is then obtained regardless of the time varying
aspects of the amplifiers. Thus the important
result is obtained that a drift or variation in the
gain or phase response of the amplifiers and filter
would not influence the null condition.

Further, if the amplifiers were constructed so that
the frequency response determining components
were stable, the amplifier characteristics could be
written

[Ha(j2xf, 8) |[Hy(j27f, 1) [cos (8a—0r)

=G, (t) Gy (1) | H  (52xf)||H,(j2nf) |cos (6a—0r)  (20)
where G,(t) and G,(t) represent the time variable
or unstable parts of the gains of the respective
amplifiers and the primed /I’s are new time-stable
frequency-dependent parts of the amplifier gains.
The 6’s are now also independent of time.

The output of the system may then be written,
since G,(t) @, (1) is independent of f over the bandpass,

T=H,0,06,06,0 [ |H.(2x0) |\ 2n)

cos (6,—0)[S:()—S,(N]df. (1)

This becomes zero when
[ ia2np 732 cos 0,00 8.1

= 7 i Geen | G2ef) | cos @S, (22)

and is independent of the amplifier drift or variation
in gain. Such amplifiers are not too hard to realize
by making the unstable frequency-dependent parts
with pass bands broad compared to the stable
frequency-dependent parts.
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With such amplifiers a time-stable null condition
expressed by (22) may be met with signals having
spectral densities with widely different frequency
characteristics. For example y(#) may be a sinusoidal
signal

Y(t)=Y, cos (wt-+0). (23)

Then (22) becomes

[ \H, (j2mf) ||y (72nf) | cos (8,—6,) S.(f)df

— [ v G2 | H G2 cos (0,00
Y NS <.
[ sur—o+ o440 o

— I, j2nfo) | H3 200 cos [, —0,(/)] o (24)

This is again independent of the amplifier gain
variation.

4. Measurement of Spectral Densities

From the foregoing relationships, spectral densities
of one source may be obtained in terms of that of
another source.

Assume, for example, the value S,(f) is known
and is also known to be essentially constant over
the pass band, and it is desired to obtain the value
of S.(f) which is also known to be constant over the
pass band.

With reference to (18), a null condition is obtained
when S,(f)=8,(f). The two spectral densities are
thus equated.

Let two different z(f) signals be measured. Then
Su(H)=8u(f) (25)
Sa2(f)=8,2(f). (26)

The ratio .
Se=4 @

may be measured by means of the precision attenua-
tor (see fig. 1), and hence

S:? (f) :ASII (ﬁ a

In this case S, (f) and S, (f) need not be equal
and only relative values of S,(f) are needed. The
relative values of S,(f) may be obtained by means
of the attenuator.

A CW signal could just as well be used in place
of S,(f). Then

(28)

\ %

Szz(f):V? Sa1(f)=ASu (f) (29)



where

and is again measured by the attenuator.

If S,.(f) and S, (f) vary differently with frequency,
the relationship between them may be obtained bV
using (22) to relate S, (f) with S,,l(/) and S, (/) with

S,2(f).  Noting also that S,.(f) =AS,,(f), the desired

. relationship becomes

[ imcean 2| cos 6,00 Sa(ndf

=A [ iR G2a)| cos 0,—0) Sa (DAY,
(30)

If the spectral deusity of S, (f) is constant in value
over the pass band, (30) becomes

[ mepliT2an] cos 600 Sulndr

[ i G2 cos G0y
—ASa()). (1)

In practice, this is what 1s usually measured.
This gives the equivalent constant spectral density
that would yield the same total power as the actual
spectral density function when both are integrated
over the actual pass band response function. This
means the relative pass band response function of the
actual system used should be given when stating the
equivalent S,(f).

A system that meets the conditions imposed by
(22) lends itself very well to a measurement of the
relative pass band response function,

K|H(72xf)||Hy (j27f)| cos (6.—0s).

Here K is a constant and represents the fact that
only relative and not absolute values are needed as
a function of frequency. The above function is
obtained by using CW signals for both the z(f) and
y(t) signals. The y(t) signal may be varied in level
to maintain a null as z(f) is varied in frequency but
kept at a constant level. The relative values of the
attenuator setting as a function of frequency give
the desired relationship.

Other ways of using the system may readily come
to mind. One other will be briefly mentioned.
Another uncorrelated signal »(f) with spectral
density S,(f) may be combined with the z(7) signal.
The relative amounts of this extra signal may be
measured by an attenuator external to the z(f) signal
in much the same way as is done with the () signal.
In this case, the () signal need not be varied and,
(19) could be written

S,()=8x(f)+Sulf)

=822(f)+Su(f) =8u(f) +Su(f).  (32)

f only relative values of S,(f) are known a useflul
Ielatlon 18

y1"1(1) ( ) > ¢
=] e
o e G (33)
where

S,
44312872’)
Sy
An=g2"

4.1. Broad Spectral Signals Versus CW Signals

As indicated, either broad spectral signals or
a CW signal may be used as the y(f) signal to com-
pare various random z(t) signals.  When CW signals
are used, it is important that the frequency of the
CW swnal be constant. Also, practical usage
dictates finite averaging times at the output. This
means that a CW y(t) signal would produce less
random fluctuation than a mndom y(t) signal.

Broad spectral y(f) signals, however, pLue less
stringent requirements on 1 the constanc v of the band

pass characteristics, especially if their spectral
densities are similar to those of z(f). A broad
spectral nonrandom signal would produce less

random fluctuation than a random signal and still
have those advantages of broad spectral signals.

4.2. Residual Noise

If the signals z,(tf) and z,(f) are correlated an
additional term

\Ho (2, 0| Hy (527, 0|18z, ()] cos (0a—0,+9,z,)
would have occurred. Here, ¢.. is the relative
phase of the correlated part of the amplifier noise
signal in (15). This represents a contribution in the
output; due to correlation between the two amplifier
noise signals. While there is usually very little
(‘orr(\latlon between the two amplifier noise signals
there can be contributions by the two ampln‘lm
noises that have common origins and are therefore
correlated. Whether the effect of this correlated
residual noise can be ignored depends on the relative
strength of signals being measured to the residual
noise and the desired accuracy of measurement.

This residual noise may possibly be reduced by
proper design of the amplifier, or by using special
networks that prevent (()uphno or that cause shifts
in the phase of the correlated parts of the residual
noise Sll(‘ll that the quantity 6,—0,+¢.,., in (17)
equals 7/2, thus making the cosine factor zero.

Also, the residual noise may be simply measured
by the use of two sources of different known levels.
The principle may be simply demonstrated by
assuming (this is not a necessary assumption) all
signals have constant spectral densities within the
ampliﬁel pass bands and the amplifiers have equal
phase shifts (9,=6,). Using (15) with the assump-
tion that no signals are correlated except z,(f) and
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2p(t) and that the null condition holds, then

Sr(f) _Sy(f) + lSzazb(f)] (CO) q»”zazb:O (34)
For two different levels of S,.(f), this yields
‘ AS,—8S5 .
[Szazb(f)\‘ €Os ¢zazb:ﬁ (30)

where
o)
S yl (f)

4{:

5. Relative Error of a Single Measurement

Any practical system will average the output over
a finite time. Because this time is finite, random
fluctuations will appear in the output giving rise to
errors when the output indicator is read.

For simplicity in evaluating this error, the follow-
ing assumptions in addition to those above (with one
exception) will be made.

1. Each amplifier has a square band pass of
width B.

2. The random processes giving rise to z(1), 2,(t),
and z,(t) are considered to be Gaussian, and the
respective signals are independent and thus uncor-
related. Also, the various signal sources have zero
means.

3. The signal z(f) has a speectral density S.(f)
that is constant over the band.

4. The signal, y(t)=7Y, cos (wi), 1s now a de-
terministic (nonrandom) CW signal centered in the
pass band of the amplifier. The former theory still
applies. The present system merely represents
sample functions of the ensemble with time origins
fixed relative to the CW signal.

5. The two amplifier noise signals, z,() and z,(),
are noncorrelated. Their respective spectral densi-
ties S,,(f) and S.,(f) are constant over the band.

6. The exception to the former assumptions is
that the response functions of the amplifiers and
filter are constant with time.

It is quite common to represent a narrow band of
noise of band width B around a central frequency by
[Davenport, p. 158]

X(t)=X.,(t) cos wit—X(t) sin wyt
=R (t) cos [wt—o¢(t)]

where X, (f), X)), R(), and ¢(f) are random fluc-
tuations that are slowly varying (due to the narrow
band) with respect to the central frequency, f,=

(36)

wo/2m. Similarly
20(0) =Z4. (1) c08 wit— Zqo(1) sin wot (37)
er(t):ZblO() COS wol‘—Z,,,(l‘) Sin w(]t. (33)
It can be shown [Davenport, p. 158] that
G=Xi2 | So-25.08 @)
JO

Z2,=72,—28, (0)B (40)
Z,,~73,=28. ()B (41)
4Y61Y /acéaa 7hcébs (42)

where S,(0) denotes the constancy of S, with fre-
quency.
Also, it can be shown [van der Ziel, 1954] that

XD X2(t+n) =2R5.(r) + (X0 (43)
where
Rou(r) =X 0 X0 = f T 8Ny
sin = Br
=28,(0)B =5 (44)

since S,(0) is constant. Similar relationships hold
for X(t), Z.(t), and Z ().
It will also be assumed that the two amplifier

noise signals are of equal strength. Hence
S.,(0)=8,,(0)=85.(0). (45)
The inputs to the two amplifiers will be
Input a
ea(t) =[Xo(t) +Y o+ Zue ()] cos wt
— [ X (1) +Z,s ()] sin wot  (46)
Input b
er(t) =[Xo(t) =Y o+ Zp.(t)] cos wit
— X (1) +Zps(t)] sin wot.  (47)

For mathematical convenience, the filter is con-
sidered to consist of two parts; (1) a zonal filter
(i.e., a filter that has a system function that is
unity over the pass band and zero elsewhere) that
effectively integrates [Freeman, p. 226] the output
of the multiplier over a period long compared to
that of the central frequency f;, and (2) a filter that
is effective at much lower 1requenues

The output of the multiplier, M, is effectively
time averaged over a cycle of the center frequency,
wy, by the zonal filter. Thus

M ())=<ealt) es(t) >=5 {[Xe(t) +T o+ Zue1)]
[X(0) =Y Zoe(t)]
FX) + Zua0)) [Xu() + ZuD)]) (43)

where <Ze,(t)e,(t) > represents the temporal average.
To obtain the spectral density of M, its auto-
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correlation function is needed. Now
Ry =M@)ME+7). (49)

1l the value of M(¢) and M(t+7) are used as given
in (48) together with other relationships 0\])10%90(1

above, it may be shown that
B? sin 7TBT . QY2
Ry(r)= i {(T)? [16S3(0)
L 168,(0)S.(0)+852(0)] +-4728.(0) B 31 I’fT

+1652(0) B2—8Y§S,(0) B+Y3} - (50)

Since Ry (7) is an even function of 7

S;,(f)j? I‘“’ Ry (7) cos (271:[T)(/T. (51)
Ja

Substituting the value of 2,,(7) as given by (50)

and integrating

Sa(f) :}1[4&(0) B—Y %)

r Y'3S.(0)+2[282(0) +28,(0)S3(0)
+82(0)1[B—| ]
for 0<|f|< 2
+{ oro Q2 oQ N Q2
2[282(0) +28,(0)S,(0) +S%(0) ][ B—If]]
for Sy < B
L 0 for | f|> B. (52)
The mean value of the indicator deflection, 7, is
given by
-1 . B
1:5 H,(0)[4S,(0) B—Y7G] (53)

which may be obtained from (48) by taking the aver-
age over the ensemble and multiplying by the d-c¢
response function H,(0). The same value can be
obtained by integrating (52) over the vicinity of
zero requency, taking the square root, and multi-
plying by /7,(0). At null, of course, / is zero which
occurs when

Y?=48,(0)B. (54)

In adjusting the output to a null, the fluctuations
in the output cause an uncertainty in the value of
Y, for a null condition. This means that the
measured value of Y, and consequently the meas-
ured value of S,(0) are random variables. These
are designated Y, and S,,(0) respectively and are
related through (54); that is

ng:4Szm (0) B.

(55)

653930—62——3

The relative error, ¢, in a single measurement is

now defined as

V(Sn(0) =S (0))*
m(())
VAS,,,,(()) (56)
S:(0)
where
Sz (0) =Sz (0) =A8,(0)
and
Sen(0)=8(0). (57)

It is assumed the operator (or servomechanism) in
adjusting the attenuator makes an error, AY, (which
is a random variable) that just compensates for the
fluctuation, AZ, in Z(f), where

A=T(t)—
or
AP=T"@)— (D). (58)
This means, using (53), that
A== H,0)[48,(0) B— (Vo +AY)2.  (59)
Simplifying by the use of (54)
AI=H,(0)Y,AY (60)

where AY? has been neglected compared to AY'Y.
Using (58) it can be shown that

3 z:fm \Ho( 20 ESau(Hdf— )2 (61)

When H,;(727f) 1s nonzero except at zero and near-
zero frequencies, 1t follows that essentially

—$0) [ I (62)
Now, from (52), and using (54)
2
WO =820 B[ 142047 (63)
where
S.(0) (64)

778,(0)

and the prime denotes S,,(0) less the term mvolving
the delta function.

The quantity 1-+v is equivalent to the operating
noise figure. This would reduce to the standard
noise figure when z(t) is equivalent to a signal that
originates from a resistor at a temperature of 290 °K.

Using various relations as given above, the follow-



ing chain of relations may be obtained

, ASI(0) IAT®  3AP
CSi0) Y3 Hi(0)Y

| [ s 0]

€

16817(40)13 142747 )f (dj(‘.;gf) de
- B<1+‘> n ) f Hji,’;f) af. (65)

For a simple RC filter of time constant 7', the
%; For a critically damped
system the integral would be % that given above.

Using the simple RC filter, the equatlon for e

becomes
1 1 ) 1/2
6*(54‘7‘*‘1?)

For example, if
B=5X10°%¢/s
y=1
T=3.5 sec

integral is equal to

L 66
VBT (66)

then
e=10"2 or 1 percent.

If v=10, then 7" must be increased to 80 sec to
obtain the same value of e. If y=0, then 7 need
only be 1.0 sec for the same value of e

6. Conclusions

The system described has several desirable char-
acteristics.

1. The normally used high-speed switch has been
eliminated. This removes the problems of switch
noise, insertion loss, and instability.

The effect of amplifier gain drift has been
essentially eliminated.

3. The system is operated under null conditions
and the indicator null position is therefore inde-
pendent of amplifier gain settings.

4. A precision, continuously variable piston at-
tenuator may be used.

5. Signals of widely varying strengths may be
compared.

6. The system is capable of measuring its own
effective pass band response to a high degree of
precision.

7. Problems of impedance variations in a dissi-
pative attenuator have been removed.

8. The system is quite insensitive to ‘“hum’ and
other such signals that might possibly modulate the
normally present signals. This follows since the null
condition is independent of a time variable system
response. This time variation if produced by “hum?”
or other signals is what often gives troubles in
systems, especially those using linear or envelope
detectors and switching frequencies commensurate
with the undesirable modulating frequencies.

Some undesirable aspects are:

1. One must have two low noise amplifiers.

2. The signal power is now divided into two
channels.

3. A determination of the effect of correlation be-
tween the internal amplifiers may be necessary in
some situations. This may be done by comparing
two standard sources of different levels.

4. An appropriate multiplier is needed. Only the
output at zero frequency is of interest and this fact
removes many problems. Also, an ideal multiplier
is not necessarily needed. The main consideration
is that no output at zero frequency should exist
when only one input is energized.

The author expresses his gratitude for the valuable
discussions and encouragement given by M. C.
Selby and M. G. Arthur.
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